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Population Protocols (PP)
[Angluin et al. PODC’04, DC’06]

 Collection (population) of computational agents
 of unknown size n
 uniform (indistinguishable)
 finite state, independent of n (constant)
 anonymous

 Interacting 
 in asynch. and unpredictable way
 in pairs,

while exchanging and
updating their states
according to a
transition function

 Example of a protocol:
compute a global property (predicate/function)
eventually on the input values of the agents
 E.g., whether 10% of the population have an elevated input value?

p q p’ q’

Transition 
(p,q)  (p’,q’)
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Motivating scenarios
 Passively mobile sensor networks

 ZebraNet [ASPLOS’02] (wildlife tracking)
 EMMA [WCMC’07] (pollution monitoring)

 Social networks
propagation of:
 trust [Diamadi, Fischer WU.J.Nat.Sci.01]
 rumors [Daley, Kendall J.Inst.Math.Appl.65]
 epidemics [Bailey,75] [Herbert et al, SIAM’00]

 Chemical Reaction Networks 
dynamics of well mixed solutions
[Gellespie 77], [SoloveichikCookWinfreeBruck 08], [Doty SODA’2014]

 Game Theory
repetitive games of n-participants
[Bournez, Chalopin, Cohen, Koegler, Rabie OPODIS’11]
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Interaction graph
and fairness
Interaction Graph

 nodes = agents
 edge (u,v) = possible interaction
 weakly connected
 Frequently a complete graphcomplete graph

FairnessFairness
 WeakWeak

each pair of agents interacts infinitely often
 Global  Global  

infinitely often reachablereachable configuration
is reachedreached infinitely often

 ProbabilisticProbabilistic
each pair interacts uniformly at random

Probabilistic Fairness Probabilistic Fairness  Global Fairness w.p.1Global Fairness w.p.1

initiator   uinitiator   u

edge/interactionedge/interaction ((u,vu,v))

responder  vresponder  v

A vector of states
of all the agents



Main complexity measures in PP

Space complexity: in number of different 
possible memory states of an agent

Time complexity with probabilistic fairness: in 
terms of expected parallel interactions
(1 parallel = n consecutive interactions)
until stabilization (to the correct 
output/behavior)



PP – Minimalist Model
 PP compute a predicate P 

P is semi-linear eq. 1st order formula in 
Presburger arithmetic [Angluin et al. DC’07]*

* holds even with o(log log n) memory bits 
[Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, 
Spirakis TCS’11]

predicate P(x,y,z,w,…)
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PP – Minimalist Model
 Termination is impossible (only eventual stabilization)

 Fault-tolerance is limited:
 O(1) crash and transient faults can be tolerated [Delporte-Gallet, Fauconnier, 

Guerraoui, Ruppert DCOSS’06]
 Any number of transient faults (self-stabilization) is frequently impossible 

to tolerate (leader election [Cai, Izumi, Wada TCS’12], phase clock 
[Beqauquier, Burman DCOSS’10], counting [Beauquier, Clement, Messika, Rosaz, 
Rozoy DISC’07], bipartition [Yasumi, Ooshita, Yamaguchi, Inoue – OPODIS’17], …)

 Communication faults are impossible to tolerate [Luna, Flochini, Izumi, Izumi, 
Santoro, Viglietta TCS’19]

 Byzantine tolerant protocols are impossible [Guerraoui & Ruppert ICALP’09]

 Stabilization time acceleration is limited
 Every semi-linear predicate computable in O(n) parallel time [Angluin, 

Aspnes, Eisenstat DC’08], and some (e.g., majority) cannot be computed 
faster [Belleville, Doty, Soloveichik ICALP’2018]

 Leader Election takes Ω(n) parallel time [Doty & Soloveichik DISC’15]



Extensions to obtain 
termination

 Relaxing the termination requirement
 eventual stabilization may be sufficient

 depending on an application
 composing non-terminating protocols is 

possible [Angluin, Aspnes, Chan, Fischer, Jiang, 
Peralta DCOSS’15]

 Oracles
 “heard of all” detector for solving consensus [Beauquier, 

Blanchard, Burman, Kutten AlgoSensors’15] 
 “state absence” detector based leader  allow terminating 

PP with Turing Machine power of space O(log n) [Michail & 
Spirakis JPDC’15] 



Extensions to augment 
computational power

 With (log log n) memory bits eq. (logO(1)n) identifiers 
(homonyms)
 the first non-semi-linear predicate can be computed

[Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis TCS’11]
allows to simulate Turing Machine on space O(log O(1) n)

[Bournez, Cohen, Rabie TCS’18]

 Adding unique identifiers - (log n) memory bits
(Community Protocols or Passively mobile Machines model) 
symmetric predicates in NSPACE(n log n) eq. to a power of TM 
with O(n log n) space [Guerraoui & Ruppert ICALP’09], 
[Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis TCS’11]

 Adding shared memory per agent pair (Mediated Population 
Protocols)  symmetric predicates in NSPACE(n2) eq. to TM 
with O(n2) space [Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, 
Spirakis ICALP’09]



Extensions for speed up

 With a given leader constant-space PP 
(semi-linear predicates) converge
exponentially faster – O(polylog n) 
parallel time [Angluin, Aspnes, Eisenstat
DC’08], [Belleville, Doty, Soloveichik ICALP’2018]

 With a small probability of error
constant-space PP converge in O(polylog
n) parallel time [Kosowski & Uznanski



Extensions for fault-tolerance

 Adding unique identifiers - (log n) memory 
bits - Community Protocols – O(1) Byzantine 
faults can be tolerated [Guerraoui & Ruppert ICALP’09]

 With a leader and/or unbounded memory some 
communication faults can be tolerated [Luna, 
Flochini, Izumi, Izumi, Santoro, Viglietta TCS’19]

 What about any transient number of faults –
self-stabilization?



Motivation: any number of transient failures, 
hard to initialize, agents that leave and join

Self-stabilizing protocol:
starting from an
arbitrary configuration,
reaches (barring additional faults)
correct configurations
eventually (and stays correct)

CorrectCorrect
configsconfigs..

All system 
configs.

Fault-tolerance to 
transient faults
Self-Stabilization

Self-stabilization [Dijkstra’74]
Fault attack



Self-stabilizing PP
[Angluin, Aspnes, Fischer ACMJ’08]

Positive results: 
 coloring, orientation, spanning-tree

in bounded degree graphs
 non-uniform Leader Election (LE) in rings

Negative result:
 uniform LE in complete graphs is impossible

 No general characterization of self-stabilizing PP



Extensions for fault-tolerance
Self-stabilizing LE

 with “leader absence detector” -
oracle ?
 uniform leader election in rings [Fischer 

& Jiang OPODIS’06]
 uniform leader election in arbitrary 

graphs [Beauquier, Blanchard, Burman
OPODIS’13, SSS’16 ] [Canepa & Potop-Butucaru
WRAS’10]



 With n states and knowledge of n
[Cai, Izumi, Wada TCS’12] 
  O(n2) time solution
 impossible otherwise

 With stronger models and less than n states
 mediated PP [Mizoguchi, Ono, Kijima, Yamashita DC’12]
 k-interaction PP [Xu, Yamauchi, Kijima, Yamashita SSS’13]

 With upper bound N on n and relaxed self-
stabilization - loose-stabilization 
 With exp(N) holding time: stabilization (Nn) and (N) states are 

necessary and sufficient [Izumi SIROCCO’15]
 Solution stabilizing in polylog(n) time but with poly(n)

holding time [Sudo, Ooshita, Kakugawa, Masuzawa, Datta, Larmore
OPODIS’18] 

Extensions for fault-tolerance
Self-stabilizing LE (cont.)



Self-stabilizing LE vs. Initialized LE

 While impossible without initialization, 
easy with uniform initialization 
 with one bit of memory
 one transition rule (leader, leader)  (leader, non-leader)

(when two candidate leaders meet, one drops out)

 The best SS-LE stabilizes in O(n2) time – exponentially 
slower than polylog(n) time initialized LE

 Very few studies on self-stabilizing PP!



Future directions: self-stab. PP

 Study time efficiency limits (time-space 
trade-offs) of self-stab. LE

 Study other self-stab. PP
(majority, counting, naming …)

 General characterization of n-state self-
stab. PP



Future Population Protocols

 Adapt to new applications
(e.g. more nature inspired)
 position aware PP
 beeping PP
 PP implementing

micro-biological circuits
 future biological computers
 intelligent drugs



Why Population Protocols?
 Simple and convenient model allowing formal 

analysis 
 Can be extended

 Model many real world phenomena
 Many existing and future applications

 Still many open algorithmic questions
 Related to model, problems and complexity


