
Challenges in
Population Protocols

Janna Burman

Colloquium on Distributed Algorithms
Collège de France, 2019

Population Protocols (PP)
[Angluin et al. PODC’04, DC’06]

 Collection (population) of computational agents
 of unknown size n
 uniform (indistinguishable)
 finite state, independent of n (constant)
 anonymous

 Interacting
 in asynch. and unpredictable way
 in pairs,

while exchanging and
updating their states
according to a
transition function

 Example of a protocol:
compute a global property (predicate/function)
eventually on the input values of the agents
 E.g., whether 10% of the population have an elevated input value?

p q p’ q’

Transition
(p,q)  (p’,q’)

predicate P(x,y,z,w,…)

x

y

z

w

t

Motivating scenarios
 Passively mobile sensor networks

 ZebraNet [ASPLOS’02] (wildlife tracking)
 EMMA [WCMC’07] (pollution monitoring)

 Social networks
propagation of:
 trust [Diamadi, Fischer WU.J.Nat.Sci.01]
 rumors [Daley, Kendall J.Inst.Math.Appl.65]
 epidemics [Bailey,75] [Herbert et al, SIAM’00]

 Chemical Reaction Networks
dynamics of well mixed solutions
[Gellespie 77], [SoloveichikCookWinfreeBruck 08], [Doty SODA’2014]

 Game Theory
repetitive games of n-participants
[Bournez, Chalopin, Cohen, Koegler, Rabie OPODIS’11]

LOW
SECURITY

MEDIUM
SECURITY

HIGH
SECURITY

VENTILATION
Gas Senso

..
Human Performance

Video Tracking/Surveillance
Image Processing

Data Fu
Data M

WALLS

Blast Layer

Sensor
Layers

...
.

Biometrics

Smart Materials
Smart Sensors
Smart Structures

Wireless Networks
PICO

Screening

Interaction graph
and fairness
Interaction Graph

 nodes = agents
 edge (u,v) = possible interaction
 weakly connected
 Frequently a complete graphcomplete graph

FairnessFairness
 WeakWeak

each pair of agents interacts infinitely often
 Global Global

infinitely often reachablereachable configuration
is reachedreached infinitely often

 ProbabilisticProbabilistic
each pair interacts uniformly at random

Probabilistic Fairness Probabilistic Fairness  Global Fairness w.p.1Global Fairness w.p.1

initiator uinitiator u

edge/interactionedge/interaction ((u,vu,v))

responder vresponder v

A vector of states
of all the agents

Main complexity measures in PP

Space complexity: in number of different
possible memory states of an agent

Time complexity with probabilistic fairness: in
terms of expected parallel interactions
(1 parallel = n consecutive interactions)
until stabilization (to the correct
output/behavior)

PP – Minimalist Model
 PP compute a predicate P 

P is semi-linear eq. 1st order formula in
Presburger arithmetic [Angluin et al. DC’07]*

* holds even with o(log log n) memory bits
[Chatzigiannakis, Michail, Nikolaou, Pavlogiannis,
Spirakis TCS’11]

predicate P(x,y,z,w,…)

x
y

z

w

t

PP – Minimalist Model
 Termination is impossible (only eventual stabilization)

 Fault-tolerance is limited:
 O(1) crash and transient faults can be tolerated [Delporte-Gallet, Fauconnier,

Guerraoui, Ruppert DCOSS’06]
 Any number of transient faults (self-stabilization) is frequently impossible

to tolerate (leader election [Cai, Izumi, Wada TCS’12], phase clock
[Beqauquier, Burman DCOSS’10], counting [Beauquier, Clement, Messika, Rosaz,
Rozoy DISC’07], bipartition [Yasumi, Ooshita, Yamaguchi, Inoue – OPODIS’17], …)

 Communication faults are impossible to tolerate [Luna, Flochini, Izumi, Izumi,
Santoro, Viglietta TCS’19]

 Byzantine tolerant protocols are impossible [Guerraoui & Ruppert ICALP’09]

 Stabilization time acceleration is limited
 Every semi-linear predicate computable in O(n) parallel time [Angluin,

Aspnes, Eisenstat DC’08], and some (e.g., majority) cannot be computed
faster [Belleville, Doty, Soloveichik ICALP’2018]

 Leader Election takes Ω(n) parallel time [Doty & Soloveichik DISC’15]

Extensions to obtain
termination

 Relaxing the termination requirement
 eventual stabilization may be sufficient

 depending on an application
 composing non-terminating protocols is

possible [Angluin, Aspnes, Chan, Fischer, Jiang,
Peralta DCOSS’15]

 Oracles
 “heard of all” detector for solving consensus [Beauquier,

Blanchard, Burman, Kutten AlgoSensors’15]
 “state absence” detector based leader  allow terminating

PP with Turing Machine power of space O(log n) [Michail &
Spirakis JPDC’15]

Extensions to augment
computational power

 With (log log n) memory bits eq. (logO(1)n) identifiers
(homonyms)
 the first non-semi-linear predicate can be computed

[Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis TCS’11]
allows to simulate Turing Machine on space O(log O(1) n)

[Bournez, Cohen, Rabie TCS’18]

 Adding unique identifiers - (log n) memory bits
(Community Protocols or Passively mobile Machines model) 
symmetric predicates in NSPACE(n log n) eq. to a power of TM
with O(n log n) space [Guerraoui & Ruppert ICALP’09],
[Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis TCS’11]

 Adding shared memory per agent pair (Mediated Population
Protocols)  symmetric predicates in NSPACE(n2) eq. to TM
with O(n2) space [Chatzigiannakis, Michail, Nikolaou, Pavlogiannis,
Spirakis ICALP’09]

Extensions for speed up

 With a given leader constant-space PP
(semi-linear predicates) converge
exponentially faster – O(polylog n)
parallel time [Angluin, Aspnes, Eisenstat
DC’08], [Belleville, Doty, Soloveichik ICALP’2018]

 With a small probability of error
constant-space PP converge in O(polylog
n) parallel time [Kosowski & Uznanski

Extensions for fault-tolerance

 Adding unique identifiers - (log n) memory
bits - Community Protocols – O(1) Byzantine
faults can be tolerated [Guerraoui & Ruppert ICALP’09]

 With a leader and/or unbounded memory some
communication faults can be tolerated [Luna,
Flochini, Izumi, Izumi, Santoro, Viglietta TCS’19]

 What about any transient number of faults –
self-stabilization?

Motivation: any number of transient failures,
hard to initialize, agents that leave and join

Self-stabilizing protocol:
starting from an
arbitrary configuration,
reaches (barring additional faults)
correct configurations
eventually (and stays correct)

CorrectCorrect
configsconfigs..

All system
configs.

Fault-tolerance to
transient faults
Self-Stabilization

Self-stabilization [Dijkstra’74]
Fault attack

Self-stabilizing PP
[Angluin, Aspnes, Fischer ACMJ’08]

Positive results:
 coloring, orientation, spanning-tree

in bounded degree graphs
 non-uniform Leader Election (LE) in rings

Negative result:
 uniform LE in complete graphs is impossible

 No general characterization of self-stabilizing PP

Extensions for fault-tolerance
Self-stabilizing LE

 with “leader absence detector” -
oracle ?
 uniform leader election in rings [Fischer

& Jiang OPODIS’06]
 uniform leader election in arbitrary

graphs [Beauquier, Blanchard, Burman
OPODIS’13, SSS’16] [Canepa & Potop-Butucaru
WRAS’10]

 With n states and knowledge of n
[Cai, Izumi, Wada TCS’12]
  O(n2) time solution
 impossible otherwise

 With stronger models and less than n states
 mediated PP [Mizoguchi, Ono, Kijima, Yamashita DC’12]
 k-interaction PP [Xu, Yamauchi, Kijima, Yamashita SSS’13]

 With upper bound N on n and relaxed self-
stabilization - loose-stabilization
 With exp(N) holding time: stabilization (Nn) and (N) states are

necessary and sufficient [Izumi SIROCCO’15]
 Solution stabilizing in polylog(n) time but with poly(n)

holding time [Sudo, Ooshita, Kakugawa, Masuzawa, Datta, Larmore
OPODIS’18]

Extensions for fault-tolerance
Self-stabilizing LE (cont.)

Self-stabilizing LE vs. Initialized LE

 While impossible without initialization,
easy with uniform initialization
 with one bit of memory
 one transition rule (leader, leader)  (leader, non-leader)

(when two candidate leaders meet, one drops out)

 The best SS-LE stabilizes in O(n2) time – exponentially
slower than polylog(n) time initialized LE

 Very few studies on self-stabilizing PP!

Future directions: self-stab. PP

 Study time efficiency limits (time-space
trade-offs) of self-stab. LE

 Study other self-stab. PP
(majority, counting, naming …)

 General characterization of n-state self-
stab. PP

Future Population Protocols

 Adapt to new applications
(e.g. more nature inspired)
 position aware PP
 beeping PP
 PP implementing

micro-biological circuits
 future biological computers
 intelligent drugs

Why Population Protocols?
 Simple and convenient model allowing formal

analysis
 Can be extended

 Model many real world phenomena
 Many existing and future applications

 Still many open algorithmic questions
 Related to model, problems and complexity

