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Introduction

Motivation

Growing empirical evidence: large firms matter for trade

1st wave of micro data (1995-): Exporting firms are exceptional:

Larger, more productive

2nd wave: Even within exporters, large firms dominate:

Distribution of exporters is bimodal
The firms that matter (for most questions) are different: larger,
multi-product, multi-destination

[Bernard et al. (JEP 2007), Mayer and Ottaviano (2007)]
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Introduction

Similarly in France

what I call the ‘second wave’ of micro data on firms and trade. The first wave,

from the mid-1990s onwards, showed that exporting firms are exceptional,

larger and more productive than average. More recent datasets in the second

wave have provided more disaggregated information on the activities of firms,

and have highlighted the degree of heterogeneity even within exporters.

Table 1 summarises some aspects of the distribution of manufacturing

exports for the US and France, adapted from Bernard et al. (2007) and Mayer

and Ottaviano (2007). Looking at the breakdowns by number of products sold

and number of foreign markets served, two features stand out. First is that

the distribution of firms is bimodal, with 40.4 per cent of US firms (29.6 per

cent of French firms) exporting only one product to only one market, while

11.9 per cent (23.3 per cent) export five or more products to five or more

markets. Second, the latter firms account for by far the bulk of the value of

exports, 92.2 per cent (87.3 per cent), so the distribution of export sales is

highly concentrated in the top exporters. If we ignore the number of destina-

tions and simply focus on the firms that export five or more products, we

find that they account for 25.9 per cent of US firms (34.3 per cent of French

firms) but an overwhelming 98.0 per cent (90.8 per cent) of exports. Bearing

in mind that non-exporting firms are excluded, these data suggest that the

largest exporting firms are different in kind from the majority. I am not the

first to draw attention to these features of the data. In particular, the work of

Xavier Gabaix (2005) on ‘granularity’, recently extended to international trade

by di Giovanni and Levchenko (2009), has also highlighted the importance of

large firms for aggregate behaviour. However, in their formal modelling those

authors stick with the assumption of monopolistic competition between firms.

They allow for large firms in one sense by assuming that the distribution of

firm productivities is Pareto with a high value for the dispersion parameter,

but nevertheless they continue to assume that all firms are infinitesimal in

scale. I want to go further: to try and put the grains into granularity.

TABLE 1
Distribution of Manufacturing Exports by Number of Products and Markets

Number of US 2000 France 2003

Products Markets

% Share of
Exporting
Firms

% Share of
Value of
Exports

% Share of
Exporting
Firms

% Share
of Value
of Exports

1 1 40.4 0.2 29.6 0.7
5+ 5+ 11.9 92.2 23.3 87.3
5+ 1+ 25.9 98.0 34.3 90.8

Notes:
Data are extracted from Bernard et al. (2007, Table 4), and Mayer and Ottaviano (2007, Table A1). Products
are defined as 10-digit Harmonised System categories.

� 2009 The Author
Journal compilation � Blackwell Publishing Ltd. 2009
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Introduction

Motivation

Large firms important in other ways too:

They grow just as quickly as small ones

Conventional view that small firms grow faster . . .
. . . suffers from a statistical illusion

[Berthou-Vicard (2013)]

They are older

They do more R&D
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Introduction

So much for facts, what about theory?!

Mainstream model of firms in international trade:
[Krugman (1980)-Melitz (2003)]

Strong assumptions about functional form

Market structure is monopolistic competition

. . . embedded in general equilibrium

Assumes rapid entry and exit

So: No “superstar” firms
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Functional Form From General Demands to CES

From General Demands to CES

How to specify demands in monopolistic competition?

In principle: No restrictions [Chamberlin (1933)]

Key feature: Firms take not price but demand function as given
But: Hard to get results or extend to general equilibrium

Breakthrough came with a specific tractable form: CES
[Dixit-Stiglitz (1977)]

U =

[∫
i∈Ω

u{x(i)}di
]1/θ

, u{x(i)} = x(i)θ, 0 < θ < 1 (1)

⇔ x(i) = α[λp(i)]−
1

1−θ (2)

Partial and general equilibrium linked cleanly by λ
Easy to work with theoretically, especially with symmetric goods
Easy to work with empirically: iso-elastic demand functions
BUT: Very special ...
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Functional Form A Firm’s-Eye View of Demand

A Firm’s-Eye View of Demand

Perceived inverse demand function:
p = p(x) p′ < 0

Firm cares about:

1 Slope/Elasticity:

ε(x) ≡ − p(x)
xp′(x) > 0

2 Curvature/Convexity:

ρ(x) ≡ −xp
′′(x)
p′(x)

4


4

3

2

11

0
-2 -1 0 1 2 3 

Alternative measures of slope and curvature . . .
Skip
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Functional Form A Firm’s-Eye View of Demand

The Admissible Region

For a monopoly firm:

First-order condition:
p+ xp′ = c ≥ 0 ⇒ ε ≥ 1

Second-order condition:
2p′ + xp′′ < 0 ⇒ ρ < 2

Both less stringent in oligopoly
Details
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Functional Form CES and Super-Convexity

CES Demands

In general, both ε and ρ vary with
sales

Exception: CES/iso-elastic case:

p = βx−1/σ

⇒ ε = σ, ρ = σ+1
σ > 1

⇒ ε = 1
ρ−1

4.0

 CES
4.0

3.0

2.0
Cobb-Douglas

1 0

Cobb Douglas

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

Cobb-Douglas: ε = 1, ρ = 2; just on boundary of both FOC and SOC
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Functional Form CES and Super-Convexity

Super-Convexity

[Mrázová-Neary (2011)]

Definition :

p(x) is superconvex IFF log[p(x)] is
convex in log(x)

⇔ p(x) more convex than a CES
demand function with the same
elasticity

 SC
Super-

4.0 Convex

A B

3.0 SubConvex

A B

2.0

C

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0
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Functional Form CES and Super-Convexity

Super-Convexity and Sales

p(x) superconvex:
⇔ ε increasing in sales: εx ≥ 0.

εx = ε
x

[
ρ− ε+1

ε

]
= ε

x

[
ρ− ρCES

]
1 ε decreases with sales to left
2 ε is independent of sales only

along CES/SC locus
3 ε increases with sales to right

Which is most plausible?

εx < 0: “Marshall’s 2nd Law of Demand”!

Marshall (1920), Krugman (1979)
Linear/Quadratic, LES/Stone-Geary, CARA, etc.

The comparative-statics analogue of a phase diagram:

Arrows indicate direction as sales rise
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Functional Form The Demand Manifold

The Demand Manifold

For most demand functions:

ε(x) and ρ(x) can be solved
for ε = E(ρ) ≡ ε [x(ρ)]

The “Demand Manifold”

Special cases:

CES: Collapses to a point
Linear: Collapses to a line

4.0

 CES
4.0

3.0

2.0
Cobb-Douglas

1 0

Cobb Douglas

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

When is the Demand Manifold invariant to shocks?

p = p(x, φ) ⇒ ε = ε(x, φ), ρ = ρ(x, φ) ⇒ E(ρ, φ) = ε [X(ρ, φ), φ]

E is independent of φ in CES and linear cases. Does this generalize?

Peter Neary (Oxford) Globalization and Firms March 6, 2013 21 / 39



Functional Form The Demand Manifold

The Demand Manifold

For most demand functions:

ε(x) and ρ(x) can be solved
for ε = E(ρ) ≡ ε [x(ρ)]
The “Demand Manifold”

Special cases:

CES: Collapses to a point
Linear: Collapses to a line

4.0

 CES
4.0

3.0

2.0
Cobb-Douglas

1 0

Cobb Douglas

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

When is the Demand Manifold invariant to shocks?

p = p(x, φ) ⇒ ε = ε(x, φ), ρ = ρ(x, φ) ⇒ E(ρ, φ) = ε [X(ρ, φ), φ]

E is independent of φ in CES and linear cases. Does this generalize?

Peter Neary (Oxford) Globalization and Firms March 6, 2013 21 / 39



Functional Form The Demand Manifold

The Demand Manifold

For most demand functions:

ε(x) and ρ(x) can be solved
for ε = E(ρ) ≡ ε [x(ρ)]
The “Demand Manifold”

Special cases:

CES: Collapses to a point
Linear: Collapses to a line

4.0

 CES
4.0

3.0

2.0
Cobb-Douglas

1 0

Cobb Douglas

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

When is the Demand Manifold invariant to shocks?

p = p(x, φ) ⇒ ε = ε(x, φ), ρ = ρ(x, φ) ⇒ E(ρ, φ) = ε [X(ρ, φ), φ]

E is independent of φ in CES and linear cases. Does this generalize?

Peter Neary (Oxford) Globalization and Firms March 6, 2013 21 / 39



Functional Form The Demand Manifold

The Demand Manifold

For most demand functions:

ε(x) and ρ(x) can be solved
for ε = E(ρ) ≡ ε [x(ρ)]
The “Demand Manifold”

Special cases:

CES: Collapses to a point
Linear: Collapses to a line

4.0

 CES
4.0

3.0

2.0
Cobb-Douglas

1 0

Cobb Douglas

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

When is the Demand Manifold invariant to shocks?

p = p(x, φ) ⇒ ε = ε(x, φ), ρ = ρ(x, φ) ⇒ E(ρ, φ) = ε [X(ρ, φ), φ]

E is independent of φ in CES and linear cases. Does this generalize?

Peter Neary (Oxford) Globalization and Firms March 6, 2013 21 / 39



Functional Form The Demand Manifold

The Demand Manifold

For most demand functions:

ε(x) and ρ(x) can be solved
for ε = E(ρ) ≡ ε [x(ρ)]
The “Demand Manifold”

Special cases:

CES: Collapses to a point
Linear: Collapses to a line

4.0

 CES
4.0

3.0

2.0
Cobb-Douglas

1 0

Cobb Douglas

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

When is the Demand Manifold invariant to shocks?

p = p(x, φ) ⇒ ε = ε(x, φ), ρ = ρ(x, φ) ⇒ E(ρ, φ) = ε [X(ρ, φ), φ]

E is independent of φ in CES and linear cases. Does this generalize?

Peter Neary (Oxford) Globalization and Firms March 6, 2013 21 / 39



Functional Form The Demand Manifold

The Demand Manifold

For most demand functions:

ε(x) and ρ(x) can be solved
for ε = E(ρ) ≡ ε [x(ρ)]
The “Demand Manifold”

Special cases:

CES: Collapses to a point
Linear: Collapses to a line

4.0

 CES
4.0

3.0

2.0
Cobb-Douglas

1 0

Cobb Douglas

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

When is the Demand Manifold invariant to shocks?

p = p(x, φ) ⇒ ε = ε(x, φ), ρ = ρ(x, φ) ⇒ E(ρ, φ) = ε [X(ρ, φ), φ]

E is independent of φ in CES and linear cases. Does this generalize?

Peter Neary (Oxford) Globalization and Firms March 6, 2013 21 / 39



Functional Form The Demand Manifold

The Demand Manifold

For most demand functions:

ε(x) and ρ(x) can be solved
for ε = E(ρ) ≡ ε [x(ρ)]
The “Demand Manifold”

Special cases:

CES: Collapses to a point
Linear: Collapses to a line

4.0

 CES
4.0

3.0

2.0
Cobb-Douglas

1 0

Cobb Douglas

1.0

0.0
-2.0 -1.0 0.0 1.0 2.0 3.0 

When is the Demand Manifold invariant to shocks?

p = p(x, φ) ⇒ ε = ε(x, φ), ρ = ρ(x, φ) ⇒ E(ρ, φ) = ε [X(ρ, φ), φ]

E is independent of φ in CES and linear cases. Does this generalize?

Peter Neary (Oxford) Globalization and Firms March 6, 2013 21 / 39



Functional Form The Pollak Demand Family

The Pollak Demand Family

x = γ + αp
1

θ−1 , (x− γ)(1− θ) > 0

ε = 2−θ
1−θ

1
ρ

θ → −∞: CARA

θ ∈ (−∞, 1): “Translated CES”:

θ ∈ (−∞, 0): TCES-I

θ = 0: Stone-Geary LES

θ ∈ (0, 1): TCES-II

θ ∈ (1,∞): “Generalized
Quadratic”:

θ ∈ (1, 2): Sub-Quadratic
θ = 2: Quadratic
θ ∈ (2,∞): Super-Quadratic
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Functional Form Globalization and Welfare with Pollak Preferences

Globalization and Welfare with Pollak Preferences

Monopolistic competition

General equilibrium
Pollak Preferences

Gains from globalization:
[Rise in number of countries k]

Û =

[
1− (ε− 1)2

ε2 (2− ρ)

]
k̂

= 1/ε in CES case

Sufficient condition for Û > 0:
ρ < ε+1

ε i.e., subconvexity.

Welfare can fall if preferences are sufficiently superconvex

Diversity rises a lot, but prices increase

Welfare rises by more for lower ε and ρ
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Û =

[
1− (ε− 1)2

ε2 (2− ρ)

]
k̂

= 1/ε in CES case

Sufficient condition for Û > 0:
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Monopolistic Competition versus Oligopoly
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Monopolistic Competition versus Oligopoly

Monopolistic Competition

“New” trade theory borrowed from half of IO only

IO (Industrial Organization): Partial equilibrium only
Trade: Oligopoly squeezed out by monopolistic competition

Monopolistic competition more plausible than perfect competition . . .

Differentiated products
Increasing returns
So: successful in explaining intra-industry trade

. . . but not much!

Firms are infinitesimal
No strategic behaviour
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Free Entry

Free Entry

Standard trade models assume instantaneous entry and exit

Entry and exit are much less important in the short run
French firms adjusted along intensive margin in the crisis

[Bricongne, Fontagné, Gaulier and Taglioni (JIE 2012)]

U.S. firms adjust more along extensive margin the longer the time
horizon

[Bernard et al. (2007)]

Entry and exit are much less important for large firms
Melitz model assumes that probability of “death” is independent of
firm size or productivity
But: very successful firms are typically older

Entry and exit are much less important for value of exports than for
the number of firms

Even with free entry, “natural oligopoly” may prevail if fixed costs can
be chosen endogenously
[Dasgupta-Stiglitz (EJ 1980), Gabszewicz-Thisse (JET 1980), Shaked-Sutton (Em

1983)]
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[Dasgupta-Stiglitz (EJ 1980), Gabszewicz-Thisse (JET 1980), Shaked-Sutton (Em

1983)]
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[Bricongne, Fontagné, Gaulier and Taglioni (JIE 2012)]

U.S. firms adjust more along extensive margin the longer the time
horizon

[Bernard et al. (2007)]

Entry and exit are much less important for large firms
Melitz model assumes that probability of “death” is independent of
firm size or productivity
But: very successful firms are typically older

Entry and exit are much less important for value of exports than for
the number of firms

Even with free entry, “natural oligopoly” may prevail if fixed costs can
be chosen endogenously
[Dasgupta-Stiglitz (EJ 1980), Gabszewicz-Thisse (JET 1980), Shaked-Sutton (Em

1983)]

Peter Neary (Oxford) Globalization and Firms March 6, 2013 28 / 39



Free Entry

Free-Entry Cournot: Market Size and Firm Numbers

1 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.0 1.0 2.0 3.0 4.0 5.0 6.0

n
 

s 

Cournot Competition: Equilibrium n as a Function of Market Size 

Real

Peter Neary (Oxford) Globalization and Firms March 6, 2013 29 / 39



Free Entry

Free-Entry Cournot with Integer Firms
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Free Entry

Natural Oligopoly: Market Size and Firm Numbers
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General Equilibrium

General Equilibrium

Core questions in trade are general equilibrium

In the sense of requiring interactions between goods and factor markets

Theoretical barriers to putting “OLigopoly” into “GE”: “GOLE”

Do large firms affect wages? national income? the price level?

Resolution: View firms as “large in the small, small in the large”
[Hart (QJE, 1982), Neary (JEEA 2003)]

Like monopolistic competition but more firms in each sector

U =

∫
i∈Ω

u{x(i)}di ⇔ x(i) = x[λp(i)] (3)

Application: Cross-border mergers [Neary (REStud 2007)]

Mergers may be for strategic or synergistic reasons
In partial equilibrium, strategic mergers must lower consumer surplus
In GE, they can raise welfare if resources are reallocated to more
efficient firms
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Superstar Firms

Superstar Firms

Evidence suggests large firms are different in more than just scale

Bimodality in the data suggests a modelling strategy:

Oligopoly of multi-product firm . . .
. . . plus a monopolistically competitive fringe

Technically: Each large firm produces a finite measure of goods
All products are differentiated and of measure zero
Fits with recent work on multi-product firms in trade

[Eckel and Neary (REStud 2010), Bernard et al. (QJE 2011)]

Some progress to date:

“David and Goliath”: Neary (WE 2009), Shimomura and Thisse (RJE

2012), Parenti (2012)
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Conclusion

The Best Model for a Globalized World?

Not one but many

Plausible, falsifiable, simple (but not too much so!)

Some desirable features:

Not too reliant on special functional forms
Recognise strategic behaviour by large firms
Allow for general equilibrium
. . . and for free entry, at least by small firms
Allow for superstar firms
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Conclusion
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