Unicité et stabilité (suite)

2006-2007.

5.

Le point.

- Une économie abstraite :
 - Un espace des biens, R^n , w, u(h,.),Y(j) $\subset R^n$
 - Deux déclinaisons.
 - Economie d'échanges : u(h,.), w(h).
 - Une économie de production.
 - Deux questions :
 - Existence, Calcul: tâtonnement
- Un outil :
 - La fonction d'excès de demande (éco. d'échanges strict.convexe).
 - $Z: p \in R^n_+ \rightarrow Z(p) \in R^n$
 - \underline{Z} : $p \in \mathbb{R}^{n-1}_+ \to \underline{Z}(p) \in \mathbb{R}^{n-1}$, numéraire-sphère, S^{n_i} simplexe, U^n .
 - $Z(p^*)=0$
 - Si économie de production avec rdts constants... Z(p) ∈ Y
- Philosophie:
 - Unicité paraît plausible....stabilité aussi ?
 - Difficulté analytique

Technique mathématique pour l'unicité.

- Un ingrédient supplémentaire : Z est différentiable.
 - p, <u>Z(p)</u>, différentiable, numéraire choisi et oublié
 - Considérons le Jacobien (∂<u>Z</u>)(p), matrice (n-1, n-1)
- Le concept d'économies régulières.
 - Economie régulière : En tt équilibre p*,Det((∂<u>Z</u>)(p*))#0.
 - Presque toutes les économies sont réqulières.
 - Un théorème à la fois « intuitif » et « profond ». (Sard, Thom)
- Techniques de démonstration; Suite.
 - Indice équilibre est 1, Sign (Det((∂Z)(p*)) = sign (-1)ⁿ⁻¹
 - Ss réserve des conditions au bord;
 - **Σindices** = 1. (Poincaré-Hopf).
- THM: Si tous les équilibres ont l'indice +1, alors, l'économie a un seul équilibre.
 - Elle est régulière.
 - Est-ce mieux que : $\forall p$, Sign (Det(($\partial \underline{Z}$)(p)) = sign (-1)ⁿ⁻¹?
 - Légèrement pour deux raisons
 - $((\partial Z)(p))$ a des propriétés particulières au voisinage de l'équilibre.
 - Idées a priori sur la zone de l'équilibre.

Indices visualisés

Un théorème d'unicité.

- Les intuitions économiques derrière l'unicité ou la convergence.
 - Version différentielle de la loi de la demande
 - <u>Z</u> définie négative : ∀p,dp, dp.(∂<u>Z</u>)_p.dp<0.
 - Version affaiblie :
 - \underline{Z} définie négative sur $\underline{Z(p)}^{\perp}$, $\forall p, dp, \underline{Z}dp = 0, dp.(<math>\partial \underline{Z})_p$. \underline{d} dp < 0. (id.)
 - Version locale :
 - <u>Z</u> définie négative à l'équilibre : propriété préc. Z=0.

THM:

- Si en tout équilibre, la matrice (∂<u>Z</u>)(p*) est définie négative,
- alors il existe un équilibre unique.
- Le tâtonnement est localement convergent...
- Preuve.
 - Matrice déf. négative \Rightarrow le polynome caractéristique $[(\partial \underline{Z})(p^*)-\lambda I]$ pas de valeur propre positive,
 - son signe en zéro= sign Det..= signe à l'infini= sign (-1)ⁿ⁻¹ .indice +1.
 - Tâtonnement, voir plus loin....

Matrices jacobiennes.

$$(\partial Z)_{(p)} = \begin{pmatrix} \partial Z_1 / & \partial Z_1 / & \dots & \partial Z_1 / \\ / \partial p_1 & / \partial p_2 & \dots & \partial P_n \end{pmatrix}$$

$$\frac{\partial Z_2 / & \partial Z_2 / & \dots & \partial Z_2 / \\ / \partial p_1 & / \partial p_2 & \dots & \partial P_n \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial Z_n / & \partial Z_n / & \dots & \partial Z_n / \\ / \partial p_1 & / \partial p_2 & \dots & \partial P_n \end{pmatrix}$$

$$(\partial Z)_{(p)} = \begin{pmatrix} \partial Z_1 / & \partial Z_1 / & \dots & \partial Z_1 / \\ /\partial p_1 & /\partial p_2 & \dots & /\partial p_n \\ \partial Z_2 / & \partial Z_2 / & \dots & \partial Z_2 / \\ /\partial p_1 & /\partial p_2 & \dots & /\partial p_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \partial Z_n / & \partial Z_n / & \dots & \partial Z_n / \\ /\partial p_1 & /\partial p_2 & \dots & /\partial p_n \end{pmatrix} = (\partial Z)_{(p)} + \begin{pmatrix} \partial Z_1 / & \partial Z_2 / & \dots & \partial Z_1 / \\ \partial Z_1 / \partial R & Z_2 / \partial R & \dots & Z_n / \partial R \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \partial Z_n / \partial R & Z_2 / \partial R & \dots & Z_n / \partial R \end{pmatrix} = (\partial Z)_{(p)}^c$$

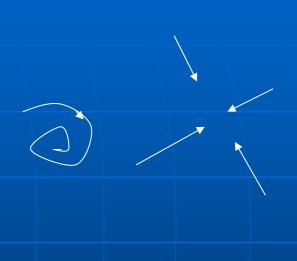
$$p \cdot (\partial Z)_p^c = 0$$

$$(\partial Z)_p = (\partial Z)_p^c - \left(\frac{\partial Z}{\partial R}\right)(Z^t)$$

La convergence du tâtonnement walrassien.

Convergence locale

- ∂<u>Z</u>a des vecteurs propres réels et des valeurs propres négatives.
- CNS : Valeurs propres à partie réelle négative.
- Unicité + cvgce locale ⇒ cvgce tâtonnement W ?
- Convergence globale.
 - Distance entre sit. et l'équ. p*, V=||p*-p||,
 - (dV/dt)=
 - $2(p^*-p(t)).Z(p(t))$
 - =-p*. Z(p(t))
- THM:
 - Si en tout équilibre, p*. Z(p(t))>0,
 - alors le tâtonnement est globalement stable et l'équilibre unique.
 - V est une fonction de Liapounov



L'intuition de Walras : La loi de la demande ?

- Monotonie faible :
 - $p_h \rightarrow Z_h(p_h,.)$ est décroissante.
 - p \rightarrow (∂ Z) a une diagonale négative.
 - Suffisant avec deux biens seulement.
 - Avec plusieurs biens. Walras.
- Stricte Monotonie forte : Loi de la demande.
 - Normer p, $(\Delta p)(\Delta \underline{Z}) < 0$
 - $(p_2 p_1)(\underline{Z}(p_2) \underline{Z}(p_1)) < 0.$
 - Version locale.
 - (∂<u>Z</u>) négative définie/D ⇒ stricte Monotonie/D.
 - Essentiellement ... équivalent (\Leftrightarrow sans st Z(p2)-Z(p1)
- THM:
 - Loi de la demande implique unicité de l'équilibre.
 - Cvgce globale du tâtonnement.
 - Preuve
 - unicité : directe ou thm précédent.
 - Cvge : thm précédent

L'axiome Faible.

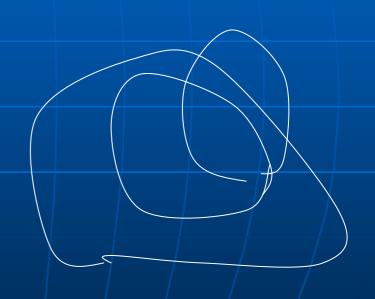
- Axiome :
 - Def. p.Z(q) \leq 0 \Rightarrow q. Z(p)>0, p#q, Sans normalisation
 - Interprétation : Axiome Faible de la Préférence Révélée
 - Def équivalente : $(p-q)\mathbf{Z}(q) \le 0$, $\rightarrow (p-q).\mathbf{Z}(p) < 0$ après normalisation
- Propriétés.
 - Z satisfait la version faible locale de négativité définie :
 - si Z négative définie sur Z(p)⊥sur D ouvert convexe alors Z satisfait l 'axiome: v(∂Z)v<0, v/v.Z=0. Essentiellement équivalent.
- Remarques sur l'axiome faible.
 - Loi demande.. $(p-q)[(Z(p)-Z(q)] < 0, \Rightarrow AF$
 - Propriété la plus faible impliquant tjrs unicité/ production ajoutée.
 - Pas préservé par addition.
- THM
 - Axiome faible ⇒ Cvgce globale du tât. Walras, Unicité.
 - Preuve:
 - PH
 - q*.Z(p)>0.

La substituabilité brute.

- Définition :
 - Une hypothèse sur le Jacobien de la demande
 - $(\partial \overline{Z})$ a une diagonale négative.
 - des termes hors diagonale positifs.
 - Interprétation substituabilité.
 - Plausibilité, niveau agrégé, (dispersion des choix)
 - Préservée par addition,
 - mais pas par plongement dans une éco. de production...
- Propriétés.
 - (∂**Z**) a une « diagonale dominante » (déf...,dét. signe constant(0))
 - On peut écrire (∂Z)=-r[I-A],
 - A positive et « productive ».
 - $(\partial \underline{Z})^{-1}$ est une matrice à éléments négatifs.
 - Cdtion de signe déterminant,(1),
 - Vérifie aussi :
 - Version locale de sdn à l'équilibre (comme AF) (2)
 - p*.Z(p)>0 (pour la version finie de SB). (3)
- Résultats : unicité.
 - Preuves: 0,1,2,3, stabilité locale (2), globale (3).

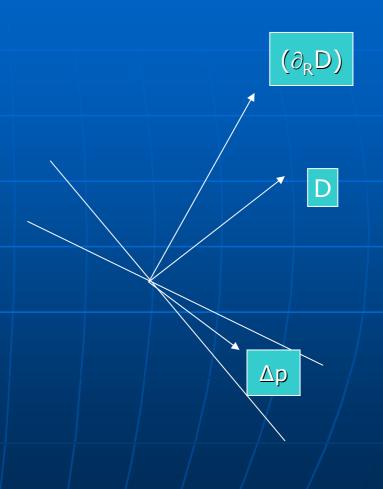
Relations conditions unicité.

- Autres théorèmes d'unicité
 - Absence d'échanges.
- Relations entre les conditions.
 - Demande
 - Axiome faible.
 - Substituabilité Brute
- Plausibilité.
 - AF: trop fin.
 - SB
 - Peu plausible sauf argument d'agrégation
 - Loi de la demande.
 - Sens économique.
 - Extension par addition



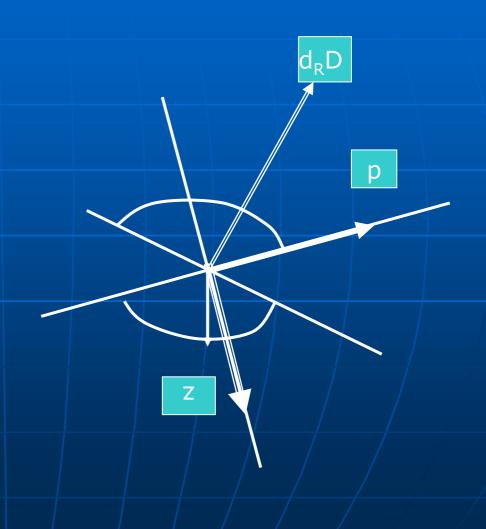
La loi de la demande

- Commentaire :
 - Préservé par addition.
- Loi de la demande individuelle », cas de revenus exogènes
 - Effet de richesse à R donné.
 - Dérivée de la demande : $(\partial_D D) = (\partial_D M) + (\partial_R D)(D)^T$
 - $\begin{array}{c} \bullet \quad \Rightarrow \exists \ \Delta p / \ (\Delta p) \ (\partial_R D)(D)^T \ (\Delta p) \\ > 0 \end{array}$
 - Effet à comparer à l'effet de substitution
- Niveau individuel
 - Si la fonction d'utilité satisfait
 - $-[x.(\partial^2 u).x]/[x.\partial u(x)] < 4, \forall x$
 - D(p,.) satisfait la loi ..demande
 - Substituabilité élevée.
- Niveau agrégé (Hildenbrandt)
 - Conditions théoriques agrégation. Preuves empiriques.



La loi de la demande avec revenus non exogènes.

- Les revenus proviennent des dotations en biens.
 - Les effets de revenu dépendent du signe des échanges avec le marché...
 - Le contre-effet à la substitution peut être « violent ».
- Si suffisamment d'agents/ biens, jouer/effets de revenus eng.. dem?. agrégée loct. quelconque.
- Effet substitution suf. fort : dominer effet revenu (super Cobb-Douglas).



Demande agrégée localement quelconque.

- Si suffisamment d'agents/ biens, jouer/effets de revenus eng.. dem?. agrégée loct. quelconque.
- Exemple :2 biens, 2 agents.
 - Prix (1,1)
 - Pas d'effet de substitution.
 - Effets revenus $A\rightarrow 1$, $B\rightarrow 2$
 - Ex : 2 biens, 1,2, prix =, deux consommateurs A, B.
 - On peut engendrer Z(1),
 ∂Z(1) donnés.
 - z(1,A)+z(1,B)=Z(1).
 - $\partial Z(1) = -z(1,A)$

Le théorème de Sonnenschein-Debreu-Mantel.

- Dans une économie d'échanges :
 - n biens.
 - Prendre Z, p.Z(p)=0, Z continue.
 - Prendre : ε / $p_l \ge \varepsilon$, $\forall l$. : S- ε .
 - Alors ∀ ε, on peut trouver une économie d'échanges à n consommateurs, dont la fonction d'excès de demande coincide avec Z sur S- ε.
 - Fonction d'utilité homothétiques!
- Commentaire.
 - Tout est possible :
 - Equilibres en position quelconque.
 - En nombre quelconque (impair..)
 - Propriétés locales quelconques....(pas tout à fait..)
 - Questions théoriques et questions empiriques...

Qu'en penser?

- Tout peut arriver : c'est la faillite de la théorie...
 - Propriétés qualitatives valables dans tous les mondes possibles
 : nbre impair, efficacité ...
 - Ce qui montrerait que la théorie n'est pas bonne....?
 - Qu'elle est trop simple, trop compliquée...trop générale?
- Une bonne interprétation.
 - Réfutation spectaculaire du « simplisme » parfois reproché au modèle
 - SMD aurait surpris la plupart des constructeurs de la théorie.
 - Beaucoup des questions sont des questions empiriques.
 - Et traitées comme telles....
 - La difficulté à faire dériver des propriétés attendues ou relativement plausibles empiriquement (la vertu algorithmique du marché) de propriétés amont est une question conceptuellement et opérationnellement importante/