Les grands problèmes de la politique climatique.

Rappel : le long terme et les arbitrages intergénérationnels.

Conception et outils de la politique climatique.

Rappel.

La spécificité du problème climatique.

Actualisation comme arbitrage inter-générationnel

Le calcul économique des politiques climatiques, rappel.

- Ingrédients :
 - l'analyse des coûts.
 - la monétarisation des dommages évités.
- Caractéristiques,
 - Coûts proches et dommages lointains.
 - Questions sur le taux d'actualisation
 - Dommages <u>d'ampleur aléatoire</u>, <u>voire difficile à estimer</u>.
 - Questions sur l'incertitude
 - Concerne des biens marchands, mais aussi des biens « collectifs », comme les biens environnementaux.
 - Questions sur la spécificité de l'environnement...

Rappel:

logique des transferts inter-générationnels.

- Point de vue normatif.
 - Inévitable/ nature, dimension d'équité (arbitrage) intergénérationnel
 - Pourquoi / sacrifices pour des générations futures plus riches ?
 - Comparer 1 unité de consommation aujourd'hui 1 unité de cons. / 1 siècle,
 - Deux effets: « Toutes choses égales par ailleurs », « Effet richesse ».
- Comparaison toutes chose égales par ailleurs
 - Degré d'altruisme, mesuré / coefficient « préférence pure pour le présent ».
 - Une unité de bien être de la génération présente en T
 - Equivalent à .. $[1-\delta]^T$ unités (ou $[1/(1+\delta)]^T$) de bien-être/génération actuelle.
- Effet richesse (satiété).
 - « Intensité » de la satisfaction des besoins/ l'idée de satiété (utilité marginale plus faible).
 - Dépend des ratios de « l'utilité marginale sociale » de la consommation pour la génération présente et de la génération future.
 - Lesquels dépendent des différences de consommation entre les générations....

Logique des transferts inter-générationnels Suite

- L'effet satiété relative,
 - Supposons que C(T)= C(0)[e]gT
 - Utilité Log C, utilité marginale 1/C,
 - donc l'utilité marginale demain égale)[e]-gT
 - Si je perds 1 unité aujourd'hui, (investissement), récupérer)[e]gT demain.
 - Le taux de rentabilité de l'investissement doit être r=g

Suite

- Si l'utilité marginale est en ¹/_{C²} ,
- alors il faut remplacer dans le raisonnement [e]-gT par)[e]-2gT
- Et r=2g.
- Si 2 est remplacé par η, remplacer 2g par r=ηg.
- Si l'on réintroduit dans l'argument $r = \delta + \eta g$

Rappel:

discussion sur l'actualisation.

- Reprise de la discussion précédente
 - $V(C_t) = [1-\delta]^t [1/(1-\eta)][C_t]^{(1-\eta)}$, $\eta = 1$, Log
 - $r = \eta g + \delta$;
 - Vaut pour la société toute entière
 - mais explique aussi dans une certaine mesure les choix individuels.
- Peu de satiété et altruisme fort : 0,1, 1,3, 1
 - Un taux d'actualisation faible.
 - Je transfère bcp/attentif à l'avenir, (altruiste) et non rassasié (mes descendants).
- Satiété et altruisme faible : 2,2,2
 - Un taux d'actualisation fort.
 - Transfère peu/ peu attentif à l'avenir, (peu altruiste) et rassasié (descendants).
- Noter que si l'effet de satiété est important,
 - Alors à altruisme donné, je fais plus pour éviter les risques
 - dans Stern $\eta=1$, implique une bienveillance sans doute excessive pour les générations futures
 - Mais implique une attention insuffisante aux risques lourds auxquels elles font face.

Parenthése...

- Où en est on ?
 - On est revenu sur la logique du taux d'actualisation
 - On est revenu sur l'incertitude lourde. (distribution de température à queue épaisse)
 - Nous allons revenir sur la spécificité de l'environnement.
- Autre illustration de la logique du taux d'actualisation.
 - Prenons le cas de ce Keynes appelait une perpétuité :
 - Une perpétuité est un actif qui donne 1 jusqu'à la fin des temps
 - Quelle est la valeur d'une perpétuité (hyp. taux constant r)
 - Réponse 1/r.
 - 2, 2, 2, ---16, ..., 0,1, 1,3, 1, ----70...
- Question : quelle est la valeur d'une perpétuité écologique (capital naturel)
 - Une première réponse. x/r,
 - x bénéfice vu de la première année associé à l'utilisation écologique ?
 - Ou autre chose..

Une incursion dans le modèle à 2 biens.

Le modèle.

Taux écologiques le long d'un sentier de croissance.

L'optimum et la valorisation du capital naturel.

Réconcilier intuition écologique, raisonnement économique et éthique ?

- Un cadre à deux biens.
 - Le bien standard et le bien environnement, (qualité)
 - Deux prix à chaque période...
 - Un taux d'actualisation et un prix relatif du bien environnement
 - Deux taux d'actualisation, standard et écologique
- Une discussion à 4 paramètres.
 - La capacité de l'économie à multiplier les biens standards...
 - Le degré de substituabilité entre consommation standard et environnement. (incertain..)
 - Le taux pur de préférence pour le présent.
 - L'élasticité de l'utilité marginale (une mesure de la satiété relative).

Conclusion

- Ne fait pas disparaître les désaccords mais les localise..
- Conduit à énoncer un principe de précaution bien formulé.
- Conduit à réconcilier (largement ?) intuition écologique et raison économique sur le problème climatique

Actualisation et calcul économique

- > Le cadre.
 - > Au voisinage d'une trajectoire, g donné et y donné.
 - Taux d'équivalence entre bien privé et bien environnemental entre deux périodes
 - r, le taux d'actualisation standard:
 - > 1- Abandonner une unité de bien privé et donner 1+r à la période (génération) suivante
 - B est le taux d'actualisation écologique
 - > 2- Baisser de 1 unité de qualité d'environnement de la période, (génération) t et hausser de 1+B ladite qualité pour la génération suivante.
- Le calcul économique associé.
 - Calcul économique standard entre t et t+1 :
 - ➤ 1 unité de richesse privée apportée à t+1 a une valeur actuelle t de (1/1+r)
 - ➤ Investissement si coût inférieur à (1/1+r)
 - Calcul économique écologique :
 - ➤ Une unité de qualité apportée à t+1 a une valeur actuelle de (1/1+B) unités de qualité.
 - ➤ Je fais l'investissement si coût <u>inférieur à (1/1+B)D</u>
 - > où D = consentement à payer pour l'environnement à t.

L'argument de prix relatif.

- > Le cadre.
 - Comparer au voisinage d'une trajectoire.
 - > 1- Abandonner D unités de biens privé (D consentement à payer pour la qualité environnementale) et donner (1+r)D à la génération suivante
 - r est le taux d'actualisation standard
 - 2- Transférer 1 unité de qualité d'env. génération t et donner 1+B à la suivante.
 - B est le taux d'actualisation écologique
- L'équivalence des arbitrages inter-temporels.
 - Les deux opérations équivalentes pour le bien-être en t, doivent l'être en t+1
 - Soit (1+B)D'=(1+r)D, D' disposition à payer de t+1.
 - Par ailleurs D'=(1+(ag))D, où g est le taux de croissance des biens privés, .
 - (1+B)(1+ag)D=(1+r)D
 - *▶ B= r-ag,*

$$B = r - (g/\sigma)$$

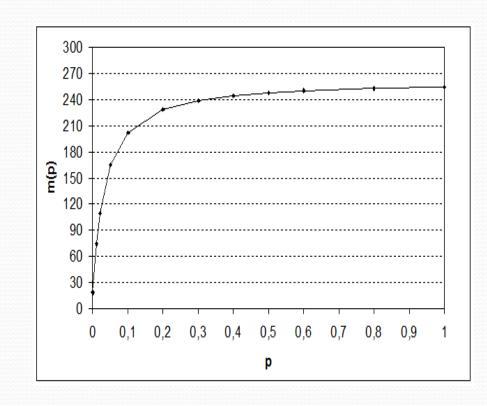
- > Interprétations.
 - Si la consommation croît de 1%, le consentement a payer croît de a%
 - Empiriquement, a <1, mais voisin?</p>
 - Un première explication de la courbe de Kuznetz..

Un modèle à deux biens.

- > Le modèle :
 - **2** biens :
 - Bien de consommation agrégé : quantité x
 - « qualité environnementale » y
- \triangleright Les paramètres de préférences de la génération $t : \underline{\sigma}', \underline{\sigma}$
 - **▶** Fonction d'utilité :
 - $V(x_t, y_t) = \{ [x_t^{(a)((\sigma-1)/\sigma)} + y_t^{((\sigma-1)/\sigma)}] (\sigma/(\sigma-1)) \}$
 - $V(x_t, y_t) = [1/(1-\eta)][v(x_t, y_t)]^{(1-\eta)}$
 - > Commentaire, (a=1)
 - \rightarrow y/x décroît de 1%, le consentement à payer s'accroît de $(1/\sigma)$ %
 - Ecologiste σ <1, radical ou modéré. σ >1
 - Utilité cardinale iso-élastique generation t, aversion relative au risque σ ', élasticité de l'utilité marginale.
- \triangleright Bien être (social) intergenerationnel): $\underline{\delta}$
 - $V = [1/(1-\sigma')] \sum_{t=0}^{infini} {(exp(-\delta t))[v(x_t,y_t)]^{(1-\sigma')}}$
 - > Taux pur de préférence pour le présent. utilitariste. $\delta \rightarrow 0$.

Le taux écologique à la marge d'une situation de référence.

- > Le point de vue :
 - Qualité environnementale fixée, croissance des biens privés donnée.
 - Accent mis sur le long terme : résultats asymptotiques., taux implicites.
- Résultats : l'écologiste modéré.
 - \rightarrow Taux standard: r=g η + δ , (a=0),
 - > Taux écologique long terme : $\lim \rho(T) = g [\eta (1/\sigma)] + \delta$
- **Commentaires**
 - \rightarrow Min{g}[Min{ $\underline{\sigma}$ '}-1/{Min $\underline{\sigma}$ }: (1) (1,4 0.9) = 0,5 pour cent!
 - > Des intuitions essentielles : effet substituabilité et effet altruisme.
- > Application : valorisation dommage irréversible à l'environnement, ou valorisation du capital naturel
 - > y---y-e.
 - > *Une* perpétuité écologique
 - > Génération 0 prête à payer x pour l'éviter pour elle-même
 - Combien devrait elle être prêt à payer pour empêcher qu'il devienne irréversible


La valorisation d'un dommage irréversible à l'environnement

- Dommage irréversible, suite.
 - > y---y-e. Sorte de perpétuité écologique
 - > Génération 0 prête à payer x pour l'éviter pour elle-même
 - > Combien devrait elle être prêt à payer pour empêcher qu'il devienne irréversible
 - La réponse est mx, m>1, trouver une borne inférieure sur m,
 - > Réponse : $m > 1/\lim \rho(T)$?
 - évaluée comme une perpétuité à la Keynes, avec un taux d'intérêt écologique.
- > Autre réponse plus sophistiquée.
 - Consommation est optimisée, Taux d'intérêt standard donné r*.
 - > Intuitivement on aura g*=(r*- δ)/ η

 - Fraux écologique asymptotique : **lim** ρ (**T**) = B*=[1-1/(η σ)]**r**+ 1/(η σ)] δ.
 - Qui est limite d'une suite croissante.
- Réponse : m>1/B*,
 - Actualisée avec le taux écologique si le dommage prend place plus tard
 - \rightarrow m>exp(-B(T)/B*.
 - évaluée comme une perpétuité à la Keynes, avec un taux d'intérêt écologique.
 - Actualisé avec le taux d'actualisation «écologique »

La valorisation d'un dommage irréversible à l'environnement

- Dommage irréversible à l'environnement incertain on ne connaît pas σ et à horizon lointain :
 - Il faut faire en un certain sens comme si le cas le plus dramatique se produisait et ce d'autant plus que le dommage prend place tard.
 - Principe de précaution assez fort.
- **Conclusion.**
 - Retournement partiel de l'argument richesse des générations futures.
 - Nous n'avons qu'une planète et la leur laisser en bon état est quelque chose dont éventuellement elles nous seront reconnaissants.
 - Et l'argument de précaution vaut..
- > Application climat
- > Ingrédient forme d'altruisme.

AUTRES QUESTIONS DE LA POLITIQUE CLIMATIQUE.

Assiette,

Taxe ou marché de droits, organisation internationale. ...

Assiette de la politique climatique. Amont ou aval ?

> Les solutions.

- Assiette naturelle de l'intervention : les émissions CO2 en site propre.
 - > En fait , on mesure souvent les inputs carbonés...
- Autre assiette possible : le carbone extrait ou importé.
 - > A priori beaucoup plus simple (proposition de Bradford).
- Pourquoi faire compliqué quand on pourrait faire simple ?
 - Les bons arguments et leur limites.
 - Permet la transition douce et les exemptions...
 - > Exemptions requièrent mesure aval, mais pas impossibles.
 - Le problème de la séquestration.
 - Volontaire, pas de vrai problème...
 - > Non intentionnelle.. 2 questions.
 - libération progressive...
 - Séquestration longue, quelle part ?

Taxe ou Marché Kyoto.

- > Kyoto: ancienne capitale
 - > Le temple d'or.
- > L'équation Kyoto :.
 - > Une option forte:
 - une politique de quantités,(quotas)
 - Des quotas d'émissions
 - > pour chaque pays participant,
 - (référence1990)
 - > Alternative : taxe carbone internationale harmonisée.
 - Mécanismes de flexibilité : Un marché des quotas ou permis.
 - Globalement positif, l'échange de permis fournit de l' « assurance »,
 - différencie l'effort selon le coût de l'effort, abaisse le coût global

Le marché des droits d'émissions : Comment cela fonctionne ?

Les points de vue :

- > L'entreprise émettrice de CO2:
 - > Reçoit un « quota » ou permis.
 - Gratuit : alloué administrativement
 - > ou Payant : mis aux enchères.
- L'industrie
 - Somme des quotas est fixée décision administrative
 - Politique de quantités.

Comment sont affectés les choix de l'entreprise ?

- Les quotas sont échangés sur un marché, (achetés) : Prix.
- > Plusieurs conséquences :
 - réduction des émissions si coût < prix.</p>
 - > Coût de production d'une unité supplémentaire
 - coût habituel
 - > + coût des permis nécessaire à la production de cette unité (coût d'opportunité).
 - > Que le permis ait été initialement donné gratuitement ou non.

Prix augmenté du prix des permis

- Réduit la demande
- Fait décroître le profit de l'entreprise si permis payant (mis aux enchères)
- > Le fait accroître sinon !!!

Le marché des permis : le cas européen.

- **ETS SCEOE**
 - > (European Trading Scheme),
 - « Système Communautaire d'Echange de Quotas d'Emission »
 - Qui est concerné ?
 - · L'industrie européenne : énergie, métaux, ind. Minérale, raffinage
 - · 12000 installations, 1200 en France
 - Des quotas *gratuits* sur base historique (droits du grand père)
- Un début très chahuté.

Un champ limité: à peu près 50/cent émissions totales des participants.

Une solution, la taxe carbone?

- > Taxe carbone dans le principe :taxer le carbone utilisé.
 - Un principe simple : si carbone est un « mal public », pénaliser son utilisation.
 - Remarque : taxe additionnelle, spécifique/climat.
 - Pétrole, (essence, fioul), charbon et gaz sont déjà taxés pour toute une série de raisons...
 - Facile à mettre en œuvre.. prélèvement à l'entrée
 - Si généralisée
 - > Et appliquée sans exemption partielle.
- ➤ La taxe carbone dans les faits : Suède et France.
 - > Expérience suédoise :
 - des taux très éventuellement élevés.
 - Le projet de taxe carbone à la française:
 - Complément du marché de droits pour l'industrie.
 - > Aménagements pour limiter les impacts redistributifs
 - Un niveau (relativement modeste) 17^E /Tco2