Reasoning on Web Data Semantics

Oui. Peut-on préciser l'heure et le lieu ?

Marie-Christine Rousset

Université de Grenoble (UJF) et Institut Universitaire de France Amicalement

Marie-Christine

UNIVERSITÉ DE GRENOBLE

Lesson learnt from the example

- Answering queries over the web of knowledge requires reasoning
 - Ontological statements can be used to infer new facts and deduce answers that could not be obtained otherwise
 - They are constraints used as deductive rules that infer new facts
 - Subtlety: some inferred facts can be partially known
 From the constraint "a professor teaches at least one master course"
 ∀x (Professor(x) => ∃ y Teaches(x,y), MasterCourse(y))
 and the fact:

Professor(dupond) (RDF syntax: <dupond, type, Professor>) it can be inferred the two following incomplete "facts" :

Teaches(dupond, v), MasterCourse(v)

i.e, in RDF notation, two RDF triples with blank nodes:

<dupond, Teaches, _v> , <_v, type, MasterCourse>

Finding inconsistent information on the Web

- **Reasoning**: a tool for checking consistency
 - Some ontological statements can be used as integrity constraints
 - "a professor cannot be a lecturer"; "a course must have a responsible"
 - $\forall x (Professor(x) => \neg Lecturer(x))$
 - $\forall x (Course(x) => \exists y ResponsibleFor(y,x))$
 - "a master course is taught by a single teacher"
 - "only professors can be responsible of the courses they have to teach"
 - ∀x ∀y (Course(x), ResponsibleFor(y,x) => Professor(y), Teaches(y,x))
 - Subtlety: showing data inconsistency may require intricate reasoning on different rules, constraints and facts
 - The facts: Lecturer (jim), Teaches(jim, ue431), MasterCourse(ue431)
 - + the above integrity constraints
 - + the rule $\forall x (MasterCourse(x) => Course(x))$ leads to an inconsistency

Automatic Reasoning

- Not a novel problem
 - Many decidability and complexity results coming from decades of research in the KR&R community
 - Several inference algorithms and implemented reasoners
- The key point
 - first-order-logic is appropriate for knowledge representation
 - but <u>full</u> first-order-logic is not decidable

no general algorithm that, applied to two any FOL formula, determines whether the first one implies the second one

- \Rightarrow the game is to find restrictions to design:
 - decidable fragments of first-order-logic
 - expressive enough for modeling useful knowledge or constraints

Description Logics

- A family of class-based logical languages for which reasoning is decidable
 - Provides algorithms for reasoning on (possibly complex) logical constraints over unary and binary predicates
- This is exactly what is needed for handling ontologies
 - in fact, the OWL constructs come from Description Logics
- A fine-grained analysis of computational complexity with surprising complexity results
 - **ALC** is EXPTIME-complete
 - =>any sound and complete inference algorithm for reasoning on most of the subsets of constraints expressible in OWL may take an exponential time (in the worst-case)

"only professors or lecturers may teach to undergraduate students"
\[
\forall x \[
\forall y (TeachesTo(x,y), UndergraduateStudent(y) => Professor(x) \[
\substack Lecturer(x))

∃TeachesTo.UndergraduateStudent ⊑ Professor ⊔ Lecturer

The same game again...

- Find restrictions on the logical constructs and/or the allowed axioms in order to:
 - design sublanguages for which reasoning is in P

EL, DL-Lite

- expressive enough for modeling useful constraints over data
- DL-Lite: a good trade-off
 - captures the main constraints used in databases and in software engineering
 - extends RDFS (the formal basis of OWL2 QL profile)
 - specially designed for answering queries over ontologies to be FOL-reducible

FOL-reducibility

Query answering and data consistency checking can be performed in two separate steps:

- a query reformulation step
 - reasoning on the ontology (and the queries)
 - independent of the data
- \Rightarrow a set a queries: the reformulations of the input query
- an evaluation step
 - of the (SPARQL) query reformulations on the (RDF) data
 - independent of the ontology
- \Rightarrow Main advantage
 - makes possible to use an SQL or SPARQL engine
 - thus taking advantage of well-established query optimization strategies supported by standard relational DBMS

Illustration

ontological constraints

DL-Lite by example

Professor ⊑ ∃ Teaches $\forall x (Professor(x) \Rightarrow \exists y Teaches(x,y))$ ∃ Teaches⁻ ⊑ Course $\forall x \forall y (Teaches(x,y) \Rightarrow Course(y))$ ResponsibleFor ⊑ Teaches $\forall x \forall y (ResponsibleFor(x,y) \Rightarrow Teaches(x,y))$

(funct ResponsableFor⁻)

 $\forall x \forall y \forall z (ResponsibleFor(y,x) \land ResponsibleFor(z,x) \Rightarrow y=z)$ Lecturer $\sqsubseteq \neg (\exists ResponsibleFor)$

 $\forall x \forall y (Lecturer(x) \land ResponsibleFor(x,y) \Rightarrow \bot)$

DL-Lite: a frontier for FOL reducibility

- The reasoning step is polynomial in the size of the ontology
- The evaluation step has the same data complexity as standard evaluation of conjunctive queries over relational databases
 - in ACo (strictly contained in LogSpace and thus in P)
- The interaction between relation inclusion constraints and functionality constraints makes reasoning in DL-Lite P-complete in data complexity
 - DL-Lite_A is FOL-reducible
 - full DL-Lite is not FOL-reducible
 - reformulating a query may require recursion (Datalog)

Decentralized ontology-based data access

Conclusion

- The scalability of reasoning on Web data requires light-weight ontologies
- RDFS is not expressive enough to express useful constraints
- Forget about (most of fragments) of OWL
 ⇒extend RDFS with constraints expressible in a logic for which data management is FOL reducible
 - **DL-Lite_A** is an example of such a logic
 - (some fragments of) Datalog⁺⁻ too

References

Web data management, Abiteboul, Manolescu, Rigaux, Rousset, Senellart webdam.inria.fr/Jorge

Decentralized reasoning in DL-Lite Abdallah, Goasdoué, Rousset IJCAI 2009

Reasoning for reference reconciliation Sais, Pernelle, Rousset IJCAI 2007

Trust for resource finding in semantic P2P networks Atencia, Euzenat, Pirro, Rousset ISWC 2011

MERCI

UNIVERSITÉ DE GRENOBLE

