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THE 

SEQUENCE 

EXPLOSION

the human genome at ten (nature, 4/2010)

but, benefits hindered by complexity



scientific data grows much faster than technology

1998   2000    2002   2004   2006   2008   2010   2012
WinterCorp Survey, www.wintercorp.com
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scientific data management now

•legacy software

•in main memory of supercomputers

•databases too rigid to use

As data grows, problem changes

•difficult and slow

•some data discarded
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bridge CS and domain sciences



meeting domain scientists

1. “Hello, we’re SO HAPPY to meet you. We have SO 

MUCH data! PLEASE come visit!”

2. visit lab, pretty pictures (we have SO MUCH data)

3. “Let’s have lunch!” (we have SO MUCH data)

4. revisit lab, receive promise to get some data

5. ask for data, no reply

6. play DBA (design/normalize schema, design data, 

write queries, rewrite queries, talk to tech staff)

7. ask for data, receive 2GB

8. repeat (6), then ask again for data, receive 4GB
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why collaboration is hard

• Data is their achievement

– They do not understand what we will do with it

– They are afraid of what we may do with it

– They think that we will put it on the internet

• They are not sure how we will help them

– Do not recognize their problems in our demos

• They have been “burned” before

6

support work builds foundation!
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It takes around 18 months of 

discussing and learning about a 

scientific application and dataset 

(while providing DBA services) 

until a problem which calls for 

true innovation reveals itself.



ORGANIZING SCIENTIFIC DATA
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hydrological cycling, 1997
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picture from the Sloan Digital Sky Survey, www.sdss.org

date time type category Cx Cy Cz …
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0

star proto … … … …

mon 22:1

5

star red giant … … … …

mon 22:2

0

galaxy spiral … … … …

mon 22:2

7

star dwarf … … … …

mon 23:0

0

galaxy elliptical … … … …
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tue 22:4

5

star neutron … … … …
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Fast-moving 
galaxies?

… … … … … … … …

… … … … … … … …

… … … … … … … …

… … … … … … … …

the large synoptic array telescope, 2017
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IMPLEMENTING PHYSICAL MODELS
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earthquake simulation/analysis

Simulation Output

Scientist
Simulation Model 

(mesh)Analyze time = 50sfopen(‘time050.da
t’) time030

time020

time010

100GB per time-step, 20000 time-steps

performance? access to complex structures?

Quake Group [www.cs.cmu.edu/~quake]



14

tetrahedral mesh models

Point Query Q

� Queries
� Point
� Range
� Feature

Element

Node

Range Query R

� Example: Visualization
� Show ground velocity at Q
� Draw the temperature of R

Courtesy Cornell Fracture Group

goal: efficiently process geometric queries
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directed local search
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• Point queries 

– Step 1: Find a “nearby” element efficiently

– Step 2: Follow path of adjacent elements 

• Range queries are similar

Q



J. Kozloski et al., Identifying, tabulating, and analyzing contacts between branched neuron morphologies, 

IBM Journal for Research and Development, Issue 52, Number 1/2, 2008

databasing the brain
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a spatial data management challenge



dye loading &

raster scanning

3D reconstruction

images courtesy of the Blue Brain Project

brain simulation
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neo 

cortex

a neuron



morphologies
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single neuron, 

modeled with 3D cylinders 

human brain: ~86 billion neurons



brain data deluge
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before now future

# of neurons 1692

1 Layer

100K

10 Columns

100B

Full Brain

segment 

representation

4.5M

140MB

450M

13.4GB

4.5x1014

14PB

mesh 

representation

173M

5.8GB

17.3B

580GB

1.7x1016

0.5EB

molecular representation more fine grained

simulation trace = infinite data



spatial range

21

morphometric 

analysis

morphometric 

analysis

visualizationvisualization

model 

construction

model 

construction

Goal: execute efficiently 3D spatial range queries. 

• even if data no longer fits into main memory

• even if density of dataset increases
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FLAT: insensitive to density

• Indexing

–group spatially close objects on disk pages

–add links between neighboring groups

–use traditional R-Tree to index disk pages

• Querying

–seed phase: find random element inside 

range in R-Tree (not affected by overlap)

–crawl phase: use seed element and 

recursively traverse all neighbors
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from 10K to 1 million neurons!



SCOUT: moving range queries

Neural tissue density analysis:

User issues stream of queries

I/O too costly 

even with spatial index

Predict next query

smart&efficient prefetching
Neuron Tissue Sample 

(1692 neurons)

Stream of spatial

queries

Neuron

branch

24
query history, density, or content



touch detection
Model Synapses

electrical connections between 
axons and dendrites

Data Challenge

100K neurons => 5B synapses

30GB addl space to store synapse 
data

Human Brain => 100B neurons ~PB 
space

Need efficient spatial proximity 
queries and precise distance 
calculation.

a major bottleneck in brain simulation



simulation trace analysis
Need accurate data statistics to

• Discover and explore neuro-circuit behavior

• Compare to behavior of biological tissue

• Understand plasticity

Typical trace file ~0.8TB

for 100K neurons 

for only 1 second of simulation

In-memory efficient access method limit use of 
complex query analysis 

Storage capacity limits longer simulation time

need aggressive spatial compression

time



datadata

unifying 

models

unifying 

models

patternspatterns

rulesrules

knowledgeknowledge

vision: the human brain project, 2021

a (big) data integration problem

data from the Blue Brain Project, EPFL

from molecules to cognition:



BROADER IMPACT
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data-driven science

Past:

• theory

• simulation

• experiments

The “fourth paradigm”

scientific breakthrough through 

computing on massive data
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© 2006 CERN

the CERN large hadron collider, now

27km

100M sensors/detection

40M detections/sec

15 PB/year



Event 
simulation

ATLAS experiment (simplified)
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ATLAS-Amsterdam tier-1 re-processing data flow
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complexity

software
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people
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collaborations

institutions

funding

legislation

not your everyday transaction



fast query 

execution?

time

loading

“overhead”

preparation

“overhead”

any alternative 

approach?

… lack of trust in database vendors

… databases “forever owning” the data

DB: extract, transform, load, query



�Large collections of files

� Integration with existing tools

�Multiple data formats

�Changing areas of interest

NoDB: query, query, query, query

Idea: Queries run in-situ, i.e., over raw data files

New technology: fast queries on raw data



lessons learnt

• Be patient

– Aim at solving the scientist’s problems, not ours

– Go back to the lab and apply findings

• Many solutions necessary, one* does not fit all

– *query language, data model, data type, index

• Open our minds to build many bridges to sciences
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key to turn data into information

…an endless source of inspiration

collaboration



Thank you!

Martha Anderson, Yannis Ioannidis, Miron Livny

Jim Gray, Alex Szalay, Randal Burns, Tanu Malik

Andy Connolly, Bob Nichol, Jeff Gardner

Gerd Heber, Dave O’Hallaron, Julio Lopez

Henry Markram, Felix Schuermann

…and to everyone who collects data


