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the human genome at ten (nature, 4/2010)
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scientific data grows much faster than technology

1998 2000 2002 2004 2006 2008 2010 2012

WinterCorp Survey, www.wintercorp.com



scientific data management now

e|legacy software
°in main memory of supercomputers
edatabases too rigid to use

As data grows, problem changes
edifficult and slow
esome data discarded

bridge CS and domain sciences
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meeting domain scientists

“Hello, we’re SO HAPPY to meet you. We have SO
MUCH data! PLEASE come visit!”

visit lab, pretty pictures (we have SO MUCH data)
“Let’s have lunch!” (we have SO MUCH data)
revisit lab, receive promise to get some data

ask for data, no reply

play DBA (design/normalize schema, design data,
write queries, rewrite queries, talk to tech staff)

ask for data, receive 2GB
repeat (6), then ask again for data, receive 4GB
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why collaboration is hard

e Data is their achievement

— They do not understand what we will do with it
— They are afraid of what we may do with it
— They think that we will put it on the internet

e They are not sure how we will help them

— Do not recognize their problems in our demos

e They have been “burned” before

support work builds foundation!



It takes around 18 months of
discussing and learning about a
scientific application and dataset
(while providing DBA services)
until a problem which calls for
true innovation reveals itself.



ORGANIZING SCIENTIFIC DATA



hydrological cycling, 1997
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enactment from within DBMS
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PARINDA DB designer
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IMPLEMENTING PHYSICAL MODELS
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earthquake simulation/analysis

Quake Group [www.cs.cmu.edu/~quake]
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tetrahedral mesh models
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R ree indexing
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tight mesh connectivity hurts performance



directed local search
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e Point queries
— Step 1: Find a “nearby” element eff}:
— Step 2: Follow path of adjacent ele
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e Range queries are similar
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brain simulation

> neo images courtesy of the Blue Brain Project

cortex
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3D reconstruction
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morphologies

single euron,
modeled with 3D cylinders

human brain: ~86 billion neurons



brain data deluge

before
# of neurons 1692
1 Layer
segment 4.5M
representation 140MB
mesh 173M
5.8GB

representation

now future
100K 100B

10 Columns Full Brain
450M 4.5x10%
13.4GB 14PB
17.3B 1.7x1016

580GB

molecular representation more fine grained
simulation trace = infinite data



spatial range

morphometric
analysis

model

Goal: execute efficiently 3D spatial range queries.
e even if data no longer fits into main memory

e even if density of dataset increases
21



traditional spatial indexing
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FLAT: insensitive to density

e Indexing
—group spatially close objects on disk pages R-Tree
—add links between neighboring groups
—use traditional R-Tree to index disk pages
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e Queryin B
ying A R ™
—seed phase: find random element inside f‘%xﬁ% ;
range in R-Tree (not affected by overlap) e V&> ¢ G@rouping
—crawl phase: use seed element and
recursively traverse all neighbors FLAT indexing

from 10K to 1 million neurons!



SCOUT: moving range queries

Neural tissue density analysis:

User issues stream of queries

/O too costly

even with spatial index ~

Predict next query

e

s sue Sample
smart&efficient prefetching “ - (1692 neurons)

query history, density, or content



touch detection

Model Synapses

electrical connections between
axons and dendrites

Data Challenge
100K neurons => 5B synapses

30GB addl space to store synapse
data

Human Brain => 100B neurons ~PB
space

Need efficient spatial proximity

gueries and precise distance
caleinilatinn

a major bottleneck in brain S|mulat|on




simulation trace analysis

Need accurate data statistics to
e Discover and explore neuro-circuit behavior
e Compare to behavior of biological tissue
e Understand plasticity
Typical trace file ~¥0.8TB
for 100K neurons
for only 1 second of simulation J

}ime

In-memory efficient access method limit use of
complex query analysis

Storage capacity limits longer simulation time

need aggressive spatial compression



vision: the human brain project, 2021

knowledge §

S dato e the Blue Brain Pjc &, GREL

from molecules to cognition:
a (big) data integration problem



BROADER IMPACT
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data-driven science

Past:

e theory

e simulation

® experiments
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The “fourth paradigm”

scientific breakthrough through
computing on massive data
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ATLAS experiment (simplified)

~ Events from
detector

Event Summary

Analysis Object

(Data>

Event
reprocessing

Event
filter
Event -
simulation W
Search for 5 Find 5 Locate
Physics Attributes Dataset Dataset
Metadata Dataset A DDM | DQ2
0 0 |
=p—j— T —> | CERN /
| File n |
—== BNL || CNA RAL
Database | Flen | (UsA) || F gm (UK)

—> Access Data Files

/castor/atlas/dataset.A/filel.vl
/castor/atlas/dataset.A/file2.v1

/castor/atlas/dataset.A/filel.v2

/castor/atlas/dataset.B/filel.v1
/castor/atlas/dataset.B/file2.v1

31



ATLAS-Amsterdam tier-1 re-processing data flow

AODmM2

500 MB/file

0.0052 H oYf—»
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not your everyday transaction



DB: extract, transform, load, query

time

any alternative

approach?

“overhead”

... lack of trust in database vendors
... databases “forever owning” the data



NoDB: query, query, query, query

ldea: Queries run in-situy, i.e., over raw data files

4 Large collections of files

4 Multiple data formats

4 Integration with existing tools

\/Changing areas of interest

New technology: fast queries on raw data



lessons learnt

e Be patient
— Aim at solving the scientist’s problems, not ours
— Go back to the lab and apply findings

e Many solutions necessary, one* does not fit all

— *query language, data model, data type, index

e Open our minds to build many bridges to sciences

35



key to turn data into information

...an endless source of inspiration



Thank you'

Martha Anderson, Yannis loannidis, Miron Livny
Jim Gray, Alex Szalay, Randal Burns, Tanu Malik
Andy Connolly, Bob Nichol, Jeff Gardner
Gerd Heber, Dave O’Hallaron, Julio Lopez
Henry Markram, Felix Schuermann

...and to everyone who collects data



