
Database Queries - Logic and Complexity

Moshe Y. Vardi

Rice University

Logic in Computer Science

During the past fifty years there has been extensive, continuous,
and growing interaction between logic and computer science. In
many respects, logic provides computer science with both a unifying
foundational framework and a tool for modeling computational
systems. In fact, logic has been called “the calculus of computer
science”. The argument is that logic plays a fundamental role in
computer science, similar to that played by calculus in the physical
sciences and traditional engineering disciplines. Indeed, logic plays
an important role in areas of computer science as disparate as
machine architecture, computer-aided design, programming languages,
databases, artificial intelligence, algorithms, and computability and
complexity.

1

Why on Earth?

Basic Question: What on earth does an obscure, old intellectual
discipline have to do with the youngest intellectual discipline?

Cosma R. Shalizi, Santa Fe Institute:

“If, in 1901, a talented and sympathetic outsider had been called upon
(say, by a granting-giving agency) to survey the sciences and name the
branch that would be least fruitful in century ahead, his choice might
well have settled upon mathematical logic, an exceedingly recondite
field whose practitioners could all have fit into a small auditorium. It
had no practical applications, and not even that much mathematics
to show for itself: its crown was an exceedingly obscure definition of
cardinal numbers.”

2

Back to The Future

M. Davis (1988): Influences of Mathematical Logic on Computer
Science:

“When I was a student, even the topologists regarded mathematical
logicians as living in outer space. Today the connections between
logic and computers are a matter of engineering practice at every level
of computer organization.”

Question: Why on earth?

3

Birth of Computer Science: 1930s

Church, Gödel, Kleene, Post, Turing: Mathematical proofs have to be
“machine checkable” - computation lies at the heart of mathematics!

Fundamental Question: What is “machine checkable”?

Fundamental Concepts:

• algorithm: a procedure for solving a problem by carrying out a precisely
determined sequence of simpler, unambiguous steps

• distinction between hardware and software

• a universal machine: a machine that can execute arbitrary programs

• a programming language–notation to describe algorithms

4

Leibniz’s Dream

An Amazing Dream: a universal mathematical language, lingua
characteristica universalis, in which all human knowledge can be expressed,
and calculational rules, calculus ratiocinator, carried out by machines, to
derive all logical relationships.

“If controversies were to arise, there would be no more need of
disputation between two philosophers than between two accountants.
For it would suffice to take their pencils in their hands, and say to
each other: Calculemus–Let us calculate.”

5

Getting Closer to Leibniz’s Dream

Friedrich Ludwig Gottlob Frege, Begriffsschrift, 1879: a universal
mathematical language – first-order logic

• Objects, e.g., 2

• Predicates (relationships), e.g., 2 < 3

• Operations (functions), e.g., 2 + 3

• Logical operations (a lá Boole), e.g., “and” (∧), “or” (∨), “implies” (→)

• Quantifiers, e.g., “for all” (∀), “exists” (∃)

6

Example: Aristotle’ Syllogisms

• “All men are mortal”

• “For all x, if x is a man, then x is mortal”

• (∀x)(Man(x)→Mortal(x))

7

First-Order Logic

A formalism for specifying properties of mathematical structures, such as
graphs, partial orders, groups, rings, fields, . . .

Mathematical Structure:

A = (D,R1, . . . , Rk, f1, . . . , fl),

• D is a non-empty set – universe, or domain

• Ri is an m-ary relation on D, for some m (that is, Ri ⊆ Dm)

• fj is an n-ary function on D, for some n (that is, fi : Dn → n)

8

Examples

Graph G = (V,E)

• V : nodes

• E ⊆ V 2: edges

Groups G = (V, ·)

• V : elements

• · : V 2 → V : product

9

First-Order Logic on Graphs

Syntax:

• First-order variables: x, y, z, . . . (range over nodes)

• Atomic formulas: E(x, y), x = y

• Formulas: Atomic Formulas + Boolean Connectives (∨, ∧, ¬) +
First-Order Quantifiers (∃x, ∀x)

10

Examples:

• “node x has at least two distinct neighbors”

(∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧ E(x, z))

Concept: x is free in the above formula, which expresses a property of
nodes.

• “each node has at least two distinct neighbors”

(∀x)(∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧ E(x, z))

Concept: The above is a sentence, that is, a formula with no free
variables; it expresses a property of graphs.

11

Semantics of First-Order Logic

Semantics:

• First-order variables range over elements of the universes of structures

• To evaluate a formula ϕ, we need a graph G and a binding α that maps
the free variables of ϕ to nodes of G

Notation: G |=α ϕ(x1, . . . , xk)

Fundamental Distinction: Syntax vs. semantics (Tarski, 1930)

12

From Model Theory to Relational Databases

• A sentence ψ is either true or false on a given graph G. In particular,
sentences specify classes of graphs: models(ψ) = {G : G |= ψ}

Model Theory: Logic provides a metatheory for mathematical modeling.

• E.F. Codd, 1970: Formulas ϕ(x1, . . . , xk) define queries:
ϕ(G) = {〈α(x1), . . . , α(xk)〉 : G |=α ϕ(x1, . . . , xk)}

Example: (∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧ E(x, z)) – “List nodes that
have at least two distinct neighbors”

Relational Databases: $30B+ industry

13

Relational Databases

Codd’s Two Fundamental Ideas:

• Tables are relations: a row in a table is just a tuple in a relation; order
of rows/tuples does not matter!

• Formulas are queries: they specified the what rather then the how –
declarative programming!

14

Algorithmic Problems in First-Order Logic

Truth-Evaluation Problem (Model Checking): Given a first-order

formula ϕ(x1, . . . , xk), a graph G, and a binding α, does
G |=α ϕ(x1, . . . , xk)?

Satisfiability Problem: Given a first-order formula ψ, is there a graph G
and binding α, such that G |=α ψ?

Facts:

• Satisfiability is undecidable.

• Truth evaluation, which is query evaluation, is decidable.

15

Beyond First-Order Logic

Fagin, 1976: graph connectivity is not expressible in first-order logic!

• There is no first-order formula ϕ(x, y) that says there is a path in
graph G from node x to node y.

Aho&Ullman, 1980: Augment FO with fixpoints.

Path(X,Y)← E(X,Y)

Path(X,Y)← Path(X,Z)&E(Z,W)

Aho&Ullman, 1980: FO<FP.

16

Complexity Theory

Key CS Question, 1930s: What can be mechanized?

Next Question, 1960s: How hard it is to mechanize it?

Hardness: Usage of computational resources

• Time

• Space

Complexity Hierarchy:

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ . . .

17

Nondeterminism

Intuition: “It is easier to critic than to do.”

P vs NP:

PTIME: Can be solved in polynomial time

NPTIME: Can be checked in polynomial time

Example: 2-colorability – PTIME, 3-colorability – NP-complete

18

The Complexity Hierarchy

Complexity Hierarchy:
LOGSPACE ⊆ NLOGSPACE ⊆ PTIME ⊆ NPTIME ⊆ PSPACE =
NPSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆ . . .

Known: exponential gaps matter, e.g., LOGSPACE<PSPACE,
PTIME<EXPTIME, PSPACE<EXPSPACE

Open: Which containment is strict?

19

Complexity of Relational Queries

Observation: Mismatch in Chandra&Harel, 1979

• Evaluating FO quries is PSPACE-complete.

• Evaluating FP queries is in PTIME.

V., 1981: “Perhaps the theory of relational queries is not fully
developed”.

• Needed: complexity theory specifically for relational queries

20

Standard Complexity Theory

Standard Complexity Analysis – Scaling Behavior

• Focus on decision (yes/no) problems to eliminate dependence on
output size.

• Measure how run time/memory usage grows as function of input size.

Database Context:

• Focus on Boolean (yes/no) queries to eliminate dependence on output
size.

• Input size: database size plus query size.

21

Failure of Standard Complexity Theory

Difficulty:

• Typical input size is 109 + 100

• Which size is more challenging? 2 · 109 + 100 or 109 + 200?

Intuition: Database size and query size play very different roles! This
is not reflected in standard complexity theory.

22

Relational Complexity Theory – 1982

Basic Principle: Separate the influences of data and query on
complexity

• Influence of Query: Fix data

• Influence of Data: Fix query

Real-Life Motivation:

• Census Data Analysis: data fixed for 10 years, multiple queries

• Technical Trading: price-arbitrage fixed query, data changes
momentarily

23

Separate Influence of Data and Query

A Tale of Two Complexities:

• Query Complexity of query language L: Fix B, study

{Q ∈ L : Q(B) is nonempty}

• Data Complexity of query language L: Fix Q ∈ L, study

{B : Q(B) is nonempty}

24

From Query Complexity to Expession Complexity

Observation:

• Data complexity is insensitive to syntax of queries, as queries are
fixed.

• Query complexity is highly sensitive to syntax of queries, e.g.,

– R×R×R×R×R×R×R×R×R×R

– R10

Conclusion: Change “Query Complexity” to “Expression Complexity”.

25

Data vs Expression Complexity

Basic phenomenon: exponential gap!

Query Lang. Data Comp. Expression Comp.
FO LOGSPACE PSPACE
FP PTIME EXPTIME
∃SO NP NEXPTIME
PFP PSPACE EXPSPACE

Theory justifies intuition: Characteristics of queries matter much more
than size of data!

26

Codd’s Relational Algebra

Intuition: Bottom-up evaluation of queries

Relational Algebra (RA):

• ∪,∩,− correspond to ∨,∧,¬.

• E1 12=1 E2: E1(x, y) ∧ E2(y, z)

• Π1(E): (∃y)(E(x, y)

Codd, 1971: FO≡RA

• FO;SQL

• RA: Foundations for SQL query evaluation

27

Relational Complexity Theory – 1995

Question: Why is expression complexity so high? How do databases
evaluate queries in practice?

Intuitive Answer: Large intermediate results!

• How much is 1× 2× 3× 4× 5× 6× 8× 9× 0?

• Example: R1 1 R2 1 R3 1 R4 1 R5 can be empty, even when
R1 1 R2 1 R3 is very large.

Question: Can we formalize this intuition?

Answer: Variable-confined queries

28

Projection Pushing

Example: Compare two joins of ternary relations

• π1,6(R1 13=1 R2) – 6-ary intermediate relation

• π1,4(π1,3(R1) 1 π1,3(R2)) – 4-ary intermediate relation

Observations:

• Projection pushing in RA corresponds to variable re-use in FO.

• Bounding width of intermediate relations corresponds to bounding
number of variables.

29

Variable-Confined Queries

Definition: Lk consists of formulas of logic L with at most k variables

Example: “There exists a path of length 2”

• FO3: (∃x)((∃y)(∃z)(R(x, y) ∧R(y, z))

• FO2: (∃x)((∃y)(R(x, y) ∧ (∃x)R(y, x))

Key Result: Variable-confined queries have lower expression complexity!

Query Lang. Data Compl. Expression Comp. VC Expr. Comp.

FO LOGSPACE PSPACE PTIME

FP PTIME EXPTIME PTIME

∃SO NP NEXPTIME NP

PFP PSPACE EXPSPACE PSPACE

30

Variable-Confined Queries Are Easier

Conclusion: Exponential gap between data complexity and expression
complexity shrinks or vanishes for variable-confined queries.

Optimization Problem: Find smallest k such that given FO query Q
in is FOk.

Answer: Undecidable!

31

Conjunctive Queries

Conjunctive Query: First-order logic without ∀,∨,¬; written as a rule
Q(X1, . . . , Xn) : − R(X3, Y2, X4), . . . , S(X2, Y3)

Significance: most common SQL queries (Select-Project-Join)

Example: GrandParent(X,Y) : − Parent(X,Z), Parent(Z, Y)

Equivalently: (∃Z)(Parent(X,Z) ∧ Parent(Z, Y))

32

Complexity of Conjunctive Queries

Chandra&Merlin, 1977: Expression complexity of CQ is NP-complete.

Precise Complexity Analysis: ||B|||Q||, for evaluating query Q, over
database B.

Yannakakis, 1995: ||B||||Q|| is much worse than c||Q|| · ||B|d for fixed
c, d, which is fixed-parameter tractable (FPT) – parameterized complexity
analysis

Papadimitriou&Yannakakis, 1997: CQ evaluation is W[1]-complete –
unlikely to be FPT.

33

Variable-Confined CQ

V., 1995: CQk – CQ using at most k variables.

• If Q is in CQk, then query can be evaluated over database B in time
||Q|| · ||B||k - FPT!

Example: Contrast

(∃x, y, z)(R(x, y) ∧R(y, z))

and
(∃x)((∃y)(R(x, y) ∧ (∃x)R(y, x))

34

Hardness of CQs

Observation: The critical parameter is number of variables, not size of
query!

Question: Characterize smallest k such that a given conjunctive query
Q is in CQk.

35

Figure 1: Tree Decomposition of Width 2

36

Treewidth

Treewidth: “width” of best tree decomposition – measures “tree-
likeness” of graphs

• A tree has treewidth 1.

• A cycle has treewith 2.

• An m×m grid has treewidth m.

37

CQs Treewidth

Query Graph: graph of a conjunctive query

• Nodes: variables

• Edges: connect nodes that co-occur in an atom

Definition: treewidth(Q) is treewidth(graph(Q)).

Kolaitis&V., 1998: Q is in CQk iff treewidth(Q) < k.

Corollary: Bounded treewidth CQs are fixed-parameter tractable.

38

Theory and Practice

Question: Can theory be used to optimize CQs?

Partial Answer: Not easily!

• Finding treewidth of a graph is NP-hard!

39

CQ Evaluation I

Hard problem for databases: evaluation of large conjunctive queries

• Corresponds to evaluating a long sequence of joins and projections.

• Many possible evaluation orders possible.

• Query optimizer has to search a very large space.

40

CQ Evaluation II

An Alternative Approach: (McMahan&V., 2004)

• Consider the problem as a constraint-satisfaction problem (CSP).

• Apply CSP heuristics for constraint propagation.

• Minize the size of intermediate relations via treewdith minimization

• Essentialy, minimize number of variables, heuristically.

Question: Does it work?

Answer: Exponential improvement for large CQs.

41

5 10 15 20 25 30 35 40
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Order

T
ot

al
 T

im
e

(s
ec

)

Straightforward
Early Projection
Reordering
Bucket Elimination (MCS)

Figure 2: Experimental Results
42

In Conclusion

Role of Theory:

• Clarify conceptual framework

• Suggest experimental possibilties

Paradigmatic Example: Codd’s Relational model

This Talk:

• Conceptual Framework: data and expression complexity

• Optimization Heuristics: treewidth minimization

43

