Stefan Weis², Samuel Deleglise², Remi Riviere², Dr. Olivier Arcizet ² Georg Anetsberger², Johannes Hofer and Emanuel Gavartin¹

Cavity optomechanics using microresonators

Tobias J. Kippenberg^{1,2}

Collaborators

EPFL-CMI K. Lister

J. P. Kotthaus

W. Zwerger

I. Wilson-Rae

A. Marx

J. Raedler

R. Holtzwarth (Menlo System) 1) Tenure Track Assistant Professor, EPFL

2) Independent Max Planck Junior Research Group Leader MPQ, (Division of T. W. Hänsch)

College de France, Paris, 18th January 2010

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

MP-IIRG

European Research Council

ERC StG

MC-EXT

DFG-NIM

GSC

Mechanical Effects of Light

Photons carry momentum which leads to *radiation pressure*

$$p = \hbar \cdot k$$

In the 16th century Keppler proposed that radiation pressure is responsible for comet tails pointing away from the sun

> MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

Mechanical Effects of Light on Atoms

atom

velocity

 $\omega_{\rm atom}$

 $\omega_{\rm laser}$

detuned laser beam

 $p = \hbar \cdot k$

1950: Kastler "Effet luminorefrigorifique et luminocalirofique"

1970: Ashkin Trapping of Particles in Laser Light

1975 Hänsch and A. Schwalow, Dehmelt and Wineland "Cooling gases by laser radiation"

1989: "Laser Cooling to the Zero Point Energy of Motion" (Wineland)

• • • • •

Is it also possible observe radiation pressure effects on mesoscopic system?

Studied first by Braginsky, Manukin (1967)

MAX-PLANCK-INSTITUT

Braginsky, Manukin: Measurement of Weak Forces in Physics Experiments (1977)

Principle of parametric motion transduction

Braginsky, Manukin: Measurement of Weak Forces in Physics Experiments (1977)

Observation of Radiation Pressure

MPQ 1983:

There is a discernible effect of radiation pressure in a high-finesse cavity with a suspended mirror.

Dorsel, Meystre, Walther et al., PRL 51, 1550 (1983)

Radiation Pressure Limits Position Sensitivity: Standard Quantum Limit

$$S_{SQL} = \sqrt{\frac{\hbar}{2m\Omega_m\gamma}}$$

Braginsky, Manukin: Measurement of Weak Forces in Physics Experiments (1977)

n Limit MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

 $H_{int} = \frac{\hbar\omega}{L} a a^{\dagger} x$

Standard Quantum Limit of Motion Detection

Caves, Phys. Rev. D (1980)

Braginsky, Manukin: Measurement of Weak Forces in Physics Experiments (1977)

Coupling light with mechanical oscillators

Gravitational wave interferometric Detection (VIRGO)

Weak force detection (IBM, San Jose)

Radiation Pressure Quantum Fluctuations limit Position Sensitivity:

Standard Quantum Limit

$$S_{SQL} = \sqrt{\frac{\hbar}{m\Omega_m\gamma_m}}$$

Quantum effects with macroscopic mechanical oscillators ? $n = \frac{k_B T}{\hbar \Omega} \quad \Omega = 1 M H z, T_Q = 50 \mu K$

Dynamical Backaction

The mutual coupling of optical and mechanical modes was first theoretically studied by V.B. Braginsky, "Measurement of Weak Forces"

Braginsky, Manukin: Measurement of Weak Forces in Physics Experiments (1977)

MAX-PLANCK-INSTITUT FÜR OUANTENOPTIK

GARCHING

Dynamical Backaction

The mutual coupling of optical and mechanical modes was first theoretically studied by V.B. Braginsky, "Measurement of Weak Forces"

V. B. BRAGINSKII, A. B. MANUKIN, and M. Yu. TIKHONOV Moscow State University Submitted October 17, 1969

Dynamical Backaction

The mutual coupling of optical and mechanical modes was first theoretically studied by V.B. Braginsky, "Measurement of Weak Forces"

Structures Fabricated at CMI-EPFL

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Nature 421, 925-928 (2003).

Optical Finesse can exceeds 1 million

Optical fiber coupling

M. Cai, O.J. Painter, K. J. Vahala. Phys. Rev. Lett. (2002).

Optical Microresonators with Giant Photon Lifetimes

S. M. Spillane, T. J. Kippenberg, O.J. Painter, K. J. Vahala. Phys. Rev. Lett. (2003). T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Optics Letters, (2002).

Ultra-high Q Physics

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer and K.J. Vahala Physical Review Letters 95, Art. No. 033901 (2005)

Optomechanical Coupling

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

$$\begin{aligned} H_{int} &= \hbar \omega a^{\dagger} a (1 - g_m x) \\ g_m &= \frac{\omega}{R} \approx 10 \text{GHz/nm} \\ F_{rad} &= \hbar \cdot g_m \end{aligned}$$

$$T_{eff} = \frac{1}{k_B} \int m_{eff} \delta \Omega \cdot x[\Omega]^2 \cdot \Omega^2$$

Quantitative Analysis of Noise Spectra

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

Quantitative Analysis of Noise Spectra

Thermore fractive noise caused by temperature fluctuations

T,V
$$\left\langle \Delta T^2
ight
angle ~=~ rac{k_B T^2}{
ho C_p V}$$

V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, "Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae," Phys. Lett. A 264, 1–10 (1999).

Schliesser, Anetsberg, Riviere, Arcizet, Kippenberg NJP, 10, 095007 (focus issue)

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK I GARCHING

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

Mechanical Modes

measured mechanical spectrum

zoom on individual peaks

mode patterns obtained from finite element modeling

From signal to background one can deduce that the sensitivity is *below* the SQL

MAX-PLANCK-INSTITUT FÜR OUANTENOPTIK

GARCHING

Nano-Optomechanics

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

Anetsberger, Arcizet, Weig, Unterreithmeyer, Kotthaus, Kippenberg, arXiv:0904.4051 (Nature Physics Dec. 2009)

Optomechanical near-field interaction

Anetsberger, Arcizet, Weig, Unterreithmeyer, Kotthaus, Kippenberg, arXiv:0904.4051 (Nature Physics Dec. 2009)

High Q SiN nanomechanical beams

Parameters $g_m = \frac{d\omega}{dx} \approx 10 \text{MHz/nm}$ $m_{\text{eff}} \approx 1 \text{pg}$ $Q_{\text{m}} > 100,000$ $\Omega_m \approx 10 \text{MHz}$ $\kappa < 10 \text{MHz}(\text{F} > 250,000)$

Cooling by Dynamical Backaction at MPQ

Braginsky, Manukin, "Ponderomotive effects of electromagnetic radiation", JETP Letters 52, 986 (1967) Hänsch, Schawlow, "Cooling of gases by laser radiation", Opt. Commun.13, 68 (1975) Wineland, Dehmelt, "Proposed 10¹⁴ $\Delta v < v$ laser fluorescence spectroscopy on TI⁺ ion mono-oscillator, Bull APS 20, 637 (197

ÉCOLE POLYTECHNIQUI FÉDÉRALE DE LAUSANNI

Demonstration of Backaction Cooling @ MPQ

Similar mechanism to cavity cooling of atoms and molecules (coherent scattering)

V. Vuletic, S. Chu, *Phys. Rev. Lett.*, Vol. 84, No. 17 (2000) P. Maunz, Puppe, Schuster, Syassen, Pinkse, Rempe, *Nature* (2004) MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

Similar mechanism to cavity cooling of atoms and molecules (coherent scattering)

V. Vuletic, S. Chu, *Phys. Rev. Lett.*, Vol. 84, No. 17 (2000) P. Maunz, Puppe, Schuster, Syassen, Pinkse, Rempe, *Nature* 428, 50 (2004). MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

Recent Experiments in cavity Optomechanics (2006-2009

$$H_{int} = g_m \hbar a^{\dagger} a (a_m^{\dagger} + a_m)$$

MAX-PLANCK-INSTITUT

Quantum regime of mechanical oscillators

Prerequisites to be able observe e.g. zero point motion or quantum back-action of the measurement

-Imprecision at the zero point motion level $S_{SQL}=\sqrt{rac{\hbar}{m\Omega_m\gamma_m}}$

•Mechanical oscillators in which thermal noise is sufficiently reduced (close to quantum ground state)

$$n \approx \frac{k_B T}{\hbar \Omega}$$
 $\Omega_m = 1 \text{MHz}, \text{T}_Q = 50 \mu \text{K}$

Difficult! e.g. Science Magazine, A. Cho:

Physics

Researchers Race Quantum Into Me

"We don't see quantum behavior in our ble motion. At least four groups hope to reach the quantum limit of motion within months. The feat could open

sense we're nics," says physicist at wer, New To find out. butting proevices into to observe ARCHING

October 17, 20

5

cemag.org

Physics 2, 40 (2009) DOI: 10.1103/Physics.2.40 F. Marquardt, Girvin, Optomechanics

Quantum Limits of Radiation Pressure Cooling

Quantum Limits of radiation pressure cooling – photon shot noise perspective

$$S[\Omega]_{NN} = n \cdot \frac{\kappa}{\frac{\kappa^2}{4} + (\Omega - \Delta)^2}$$

Spectrum of Photon Number Fluctuations

$$S_{FF}[\Omega] = \left(\frac{2\hbar k}{T_{rt}}\right)^2 S_{NN}[\Omega]$$

Spectrum of Radiation Pressure Fluctuations

$$n_f = \frac{1}{\hbar\Omega_m} \int_{-\infty}^{\infty} S_{FF}[\Omega] \cdot \chi(\Omega)^2 \Omega^2 m_{eff} d\Omega$$

Final temperature due to Radiation Pressure Fluctuations

I. Wilson-Rae, Nooshi, Zwerger, T.J. Kippenberg, PRL **99**, 093901 (2007) F. Marquardt, Chen, Clerk, Girvin, PRL **99**, 093902 (2007)

Quantum Limits of Radiation Pressure Cooling

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

"Doppler" limit ground-state cooling impossible resolved sideband cooling ground-state cooling possible

Wilson-Rae, Nooshi, Zwerger, Kippenberg, PRL 99, 093901 (2007) Marquardt, Chen, Clerk, Girvin, PRL 99, 093902 (2007)

Resolved Sideband Cooling

Lead to ground state cooling of ions:

F. Diedrich, J. C. Bergquist, W. M. Itano, D. J. Wineland, *Physical Review Letters* 62, 403 (Jan, 1989).

EL 9 Proposed 10¹⁴ Av<v Laser Fluorescence Spectroscopy on Tl⁺ Mono-Ion Oscillator III. D. WINELAND and H. DEHMELT, U. of Washington. $/1\sigma$ oscillation parallel the λ_2 beam. Then the MIO predominantly absorbs $(v_2 - v_y)$ photons. As it emits photons at all side bend frequencies $v_2 + nv_v$, |n| = 0, 1, 2..., butof average energy hv2 the balance hvy has to come from the oscillatory motion. The maximum cooling rate is $hv_{\pi}/2\tau_{0} \approx .2eV/s!$ This only drops off for $v_{\pi} << v_{\pi}^{*}$, promissing oscillatory temperatures $hv_v/2k \approx 10^{-4}$ oK $\leq T_i < Mv_m *^2/2k \approx .004$ °K, $-\delta_D < 7$ mHz, $-\delta_S < 3$ mHz and no Doppler side bands on the λ_0 resonance: Directing the λ_2 beam along $(-1 + \hat{j} + \hat{k})$ makes the cooling 3-dimensional¹.-H.D. thanks H. Walter and coworkers for We thank the National Science stiumlating discussions. Foundation for it's generous support. INSTITUT ¹Dehmelt, Bull. APS <u>18</u>, 1521 (1973) & <u>20</u>, 60 (1975). **WOANTENOPTIK** GARCHING

D. Wineland, H. Dehmelt, Bulletin of the American Physical Society 20, 637 (1975).

Demonstration of Resolved Sideband Cooling

A. Schliesser, Rivière, Anetsberger, Arcizet, T.J.Kippenberg, Nature Physics 4, 415-419 (2008)

The challenge of ground state cooling

Anetsberger et. al Nat. Photon. 2, 627 (2008)

Acc.V

2.00 kV

High Finesse and Mechanical Q factor in <u>one and the same device</u>

Characteristics He Buffer gas cooling $\Omega_m = 62 {
m MHz}$ T = 1.6 K

$$n = rac{k_B T}{\hbar\Omega} pprox 500$$

http://arxiv.org/abs/0901.1292 Arcizet, Riviere, Schliesser, TJK (Phys. Rev. A).

Cryogenic Cavity Optomechanics @ MPQ

Cryogenic Cavity Optomechanics @ MPQ

Approaching the SQL using a cryogenic microresonator

Schliesser, et al. Nature Physics (2009)

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

Anomalous Low-temperature Thermal Properties of Glasses and Spin Glasses

By P. W. ANDERSON[†], B. I. HALPERIN and C. M. VARMA

Bell Laboratories, Murray Hill, New Jersey 07974

[1] Arcizet, Rivière, Schliesser, Anetsberger, Kippenberg, PRA (2009)
[2] U. Bartell et al., J. Phys. (Paris) Colloq. 43, C9 (1982)11
[3] Vacher, Courtens, Forêt, PRB 72, 214205 (2005)

Optomechanics at Helium-3 Temperatures (600 mK)

$$\begin{split} T_i &= 600 \mathrm{mK}: \mathrm{Q_m} > 10^4, \Omega_\mathrm{m} = 75 \mathrm{MHz} \\ n_i &= \frac{k_B T_i}{\hbar \Omega_m} \approx 150 \end{split}$$

Experiments fulfills are prerequisites to achieve cooling to below n=10 and possess imprecision close to SQL. (O. Arcizet, S. Weis, R. Riviere unpublished)

Evidence for direct phonon absorption (Quantum friction)

Observation: Driving of mechanical oscillator (pm amplitudes) *increases* the mechanical Q factor

Explanation: Saturation of Two Level Systems due to mechanical oscillator also termed "Quantum friction"

L. G. Remus, M. P. Blencowe, Y. Tanaka Phys. Rev. B 80, 174103 (2009)

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK

GARCHING

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK GARCHING

Ground-State Cooling – true quantum mechanics of a macroscopic object Analog to: Diedrich et al. PRL, 1989....

Laser Cooling to the Zero-Point Energy of Motion

F. Diedrich, ^(a) J. C. Bergquist, Wayne M. Itano, and D. J. Wineland

Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80303 (Received 28 July 1988)

Applied Side: Radiation Pressure Driven Quartz Oscillators– Novel form of photonic oscillators for metrology and timekeeping

Conclusions

Sideband Cooling

PRL, Dec. 2008 Nature Physics 4, 415 - 419 (2008) Nature Physics, 5, 509-514, (2009)

Low dissipation optomechanics

Nature Photonics 2, 627 (2008)

SQL for Nanomechanics

Future Directions...

Ground state cooling of a mechanical oscillator

Measurement of Zero Point Motion

Study of Quantum Friction

Developed crystalline resonators

Acknowledgements

Thank you for your attention www.mpq.mpg.de/k-lab

- Prof. T. Hänsch (MPQ)
- Dr. T. Becker
 (MPQ, cryostat support)
- Prof. J. Kotthaus (LMU, clean room access)
- **F. Bürsgens** (LMU, clean room access)
- P. Thoumany (MPQ, cryostat support)
- **K. Predehl** (EDFA and ESA support)

GSC

FG-NIM

