

Micro-résonateurs et pression de radiation : vers l'optomécanique quantique

Antoine Heidmann Pierre-François Cohadon, Tristan Briant

Thomas Antoni, Michaël Bahriz, Aurélien Kuhn, Chiara Molinelli, Alexandros Tavernarakis, Pierre Verlot

Vers l'optomécanique quantique...

- 1 Mesure optique ultra-sensible des déplacements d'un résonateur mécanique
 - → Voir l'influence de la pression de radiation

2 – Couplage optomécanique entre la lumière et un système mécanique

→ Action en retour dans les mesures, contrôler le bruit de la lumière

→ Agir au niveau quantique sur un système mécanique macroscopique

Premier système optomécanique quantique en 1920 ?

Débat Bohr – Einstein sur les interférences par fentes d'Young

Mesure du chemin suivi par le photon grâce au recul dû à la pression de radiation

→ Les interférences disparaissent-elles ?

Expérience difficile à réaliser...

Nécessite une mesure très sensible du recul, et un système très mobile !

Mesure optique avec une cavité de grande finesse

Mesure de la longueur de la cavité

Largeur de la résonance : $\lambda/2\mathcal{F}$

 \mathcal{F} : finesse de la cavité

L'effet du déplacement d'un miroir est amplifié par la finesse :

$$\delta \varphi_{\mathsf{out}} \simeq \mathcal{F} rac{\delta L}{\lambda}$$

Expériences au LKB

Mesure des déplacements d'un miroir avec une cavité de grande finesse ($\mathcal{F} > 300\ 000$)

Sensibilité $\simeq 10^{-20} \, m/\sqrt{Hz}$

Représente 1/100 000 de la taille d'un noyau !

Phys. Rev. Lett. **83**, 3174 (1999) *Phys. Rev. Lett.* **99**, 110801 (2007)

Mesurer au-delà de l'attomètre, pour quoi faire ?

→ Les miroirs bougent !

→ Détecter les ondes gravitationnelles

→Voir les fluctuations quantiques d'un objet macroscopique

Les miroirs bougent !

L'analyse en fréquence des déplacements fait apparaître des résonances

- → Modes de vibration d'un miroir cylindrique
- → Agitation thermique

Evolution d'un mode dans l'espace des phases

Amplitude

Un mode est équivalent à un oscillateur harmonique :

Fréquence $\Omega_m/2\pi$, masse *M*, facteur de qualité *Q*

Oscillation avec une amplitude et une phase variant lentement

Trajectoire dans l'espace des phases :

 $\begin{aligned} x(t) &= \overline{x}(t) \cos\left(\Omega_{\rm m} t + \varphi(t)\right) \\ &= X_1(t) \cos\left(\Omega_{\rm m} t\right) + X_2(t) \sin\left(\Omega_{\rm m} t\right) \end{aligned}$

→ Mouvement Brownien 2D

Evolution d'un mode dans l'espace des phases

Un mode est équivalent à un oscillateur harmonique :

Fréquence $\Omega_m/2\pi$, masse *M*, facteur de qualité *Q*

→ Distribution thermique Gaussienne :

Détecter les ondes gravitationnelles

Détecter les ondes gravitationnelles

Bruits quantiques dans les antennes gravitationnelles

La prochaine génération sera limitée par les bruits quantiques :

- Bruit du laser (shot noise)
- Déplacements induits par la pression de radiation

- → Etude des limites quantiques
- → Possibilités de dépasser ces limites Etats comprimés, mesures QND, …

Pas de mise en évidence expérimentale du bruit quantique de pression de radiation !

Régime quantique du couplage optomécanique

Pression de radiation : $F_{rad}(t) = 2\hbar k \times I(t)$

I(t): flux de photons

Ordres de grandeur : $\overline{F}_{rad} \sim 5 \, nN, \, \delta F_{rad} \sim 1 \, aN$ pour 1 W

→ Induit un déplacement parasite du miroir
Principe général de la mesure en mécanique quantique : la mesure perturbe la quantité mesurée !

Une cavité avec un miroir mobile est équivalente à une cavité avec un milieu non linéaire

Longueur optique $n(I)L \Leftrightarrow$ Longueur physique L(I)

- → Réalisation d'expériences d'optique quantique
- → Intrication entre la lumière et le résonateur

Voir les effets de pression de radiation ?

Un challenge expérimental :

$$\left(\frac{\delta x_{\mathsf{rad}}}{\delta x_T}\right)^2 \simeq \left(\frac{\mathcal{F}}{300\,000}\right) \left(\frac{P}{100\,\mathsf{W}}\right) \left(\frac{1\,\mathsf{MHz}}{\Omega_\mathsf{m}/2\pi}\right) \left(\frac{1\,\mathsf{mg}}{M}\right) \left(\frac{Q}{10^6}\right) \left(\frac{1\,\mathsf{K}}{T}\right)$$

- Grande sensibilité (finesse \mathcal{F} , puissance intracavité P)
- Réponse mécanique (fréquence Ω_m , masse M, facteur de qualité Q)
- Basse température T

Des systèmes optomécaniques de grande finesse

Masse ~ kg Longueur ~ km Fréquence ~ Hz

Antennes gravitationnelles Grande sensibilité aux déplacements

2 µm

Même physique (quantique) :

- Action en retour (limites quantiques dans les mesures)
- Expériences d'optique quantique (squeezing, corrélations, mesure QND)
- Systèmes mécaniques en régime quantique (état fondamental, intrication, décohérence)

Des systèmes optomécaniques de grande finesse

Masse ~ kg Longueur ~ km Fréquence ~ Hz

Modes de vibration interne de miroirs de taille centimétrique

Masse ~ µg à g Longueur ~ mm Fréquence ~ MHz

Micro-miroirs (MEMS)

> Masse ~ pg Longueur ~ nm Fréquence ~ GHz

Des systèmes optomécaniques de grande finesse

Voir les effets de pression de radiation...

Comment corréler les déplacements observés à la pression de radiation ?

Voir les effets de pression de radiation...

2 faisceaux envoyés dans la cavité :

- Les fluctuations d'intensité du signal font bouger le miroir
- Les déplacements résultants sont mesurés par la phase de la sonde

Détection

Corrélations optomécaniques intensité – phase

→ Mesure Quantique Non Destructive (QND) de l'intensité du signal

Montage expérimental

Source laser stabilisée, asservie sur la résonance de la cavité

Phys. Rev. Lett. 99, 110801 (2007)

Montage expérimental

Un bruit classique simule le bruit quantique, avec $\delta x_{rad} > \delta x_T$

Résultats : bruits dans l'espace des phases

Bruit d'intensité signal : $\delta I_{out}(t) = I_1(t) \cos(\Omega_0 t) + I_2(t) \sin(\Omega_0 t)$ Bruit de phase sonde : $\delta \varphi_{out}(t) = X_1(t) \cos(\Omega_0 t) + X_2(t) \sin(\Omega_0 t)$

→ Fortes corrélations entre les 2 trajectoires :

$$\frac{\delta x_{\text{rad}}}{\delta x_T} \simeq 5 \quad \rightarrow \quad C_{I,\varphi} = \frac{|\langle \delta I_{\text{out}} \, \delta \varphi_{\text{out}}^{\star} \rangle|^2}{\Delta I_{\text{out}}^2 \Delta \varphi_{\text{out}}^2} = 0.96$$

Phys. Rev. Lett. 102, 103601 (2009)

Voir les corrélations quantiques ?

Pour le bruit quantique de pression de radiation : $\delta x_{rad} < \delta x_T$

→ L'effet est masqué par le bruit thermique

Voir les corrélations quantiques ?

Pour le bruit quantique de pression de radiation : $\delta x_{rad} < \delta x_T$

→ L'effet est masqué par le bruit thermique

Voir les corrélations quantiques ?

Pour le bruit quantique de pression de radiation : $\delta x_{rad} < \delta x_T$

→ Un moyennage temporel permet de retrouver les corrélations :

 $C_{I,\varphi} \simeq 0.03 \text{ pour } rac{\delta x_{
m rad}}{\delta x_T} \simeq 0.2$

Pour le bruit quantique : $\frac{\delta x_{rad}}{\delta x_T} \simeq 0.1$ à 1 K

→ Vers l'observation des corrélations quantiques

Vers l'optomécanique quantique...

- 1 Mesure optique ultra-sensible des déplacements d'un résonateur mécanique
 - → Voir l'influence de la pression de radiation

2 – Couplage optomécanique entre la lumière et un système mécanique

→ Action en retour dans les mesures, contrôler le bruit de la lumière

Agir au niveau quantique sur un système mécanique macroscopique

Agir au niveau quantique sur un micro-résonateur ?

Utiliser le couplage optomécanique pour atteindre et observer l'état quantique fondamental d'un résonateur mécanique macroscopique

• Observer les fluctuations quantiques résiduelles :

 $M\Omega_{\rm m}^2 \Delta x^2 = \frac{\hbar\Omega_{\rm m}}{2}$ $\Rightarrow \Delta x \simeq 10^{-17} \,{\rm m}$ $(M \simeq 100 \,\mu{\rm g}, \,\Omega_{\rm m}/2\pi \simeq 1 \,{\rm MHz})$

- Atteindre le régime quantique :
 - $k_B T \leq \hbar \Omega_{\mathsf{m}}$ 1 GHz \leftrightarrow 50 mK 1 MHz \leftrightarrow 50 μ K

→ Cryogénie et refroidissement laser

Exemples d'observation du régime quantique

Quantification du champ dans une cavité micro-onde (50 GHz, < 1 K)

Atomes de Césium dans un micro-piège dipolaire (80 kHz, 4 µK)

Salomon et al., 1998

Processus élémentaires du refroidissement laser

Transfert d'énergie entre les modes optique et mécanique par pression de radiation :

Refroidissement laser d'un micro-miroir

A température ambiante, observation du bruit thermique

Phys. Rev. Lett. 97, 133601 (2006)

Refroidissement laser d'un micro-miroir

A température ambiante, observation du bruit thermique

Refroidissement laser d'un micro-miroir

Température comprise entre 10 K et 2000 K

Nature 444, 71 (2006)

Refroidissement laser à basse température

Cavité de grande finesse dans un cryostat commercial 4 K

→ Conception d'un cryostat à dilution He₃/He₄ Température limite de 30 mK, configuration horizontale mécaniquement stable

Vers l'état fondamental...

M. Aspelmeyer, Vienna, 2009

Vers l'optomécanique quantique...

- 1 Mesure optique ultra-sensible des déplacements d'un résonateur mécanique
 - 2 Couplage optomécanique entre la lumière et un système mécanique

- → Action en retour dans les mesures, contrôler le bruit de la lumière
- → Agir au niveau quantique sur un système mécanique macroscopique

-> Amplification optomécanique d'un signal

Agir au niveau quantique sur un signal?

Force de rappel :

$$F_{\mathsf{rad}} \propto rac{dP}{dL} \; \delta x$$

Modification de la raideur du micro-miroir (ressort optique) Retard dû à la dynamique de la cavité :

Force visqueuse :
$$F_{\mathsf{rad}} \propto rac{dP}{dL} \, \delta v$$

Modification de l'amortissement

→ Refroidissement (friction froide optique)

Agir au niveau quantique sur un signal

- Signal : Onde gravitationnelle
 - Variation apparente de longueur de la cavité
 - Modulation de fréquence du laser ...

La pression de radiation est modulée par le signal

 \rightarrow Déplacement du miroir proportionnel au signal : $\delta x \propto \frac{dP}{dL} \delta L$

 \rightarrow La mesure de $\delta x + \delta L$ amplifie le signal

Amélioration de la sensibilité des antennes gravitationnelles

Effet attendu dans les futures générations d'antennes gravitationnelles

 Permet d'améliorer la sensibilité de l'antenne, de manière sélective sur une plage de fréquence

Démonstration expérimentale

Signal et mesure réalisés par un analyseur de réseau

- A résonance : aucun effet sur le signal
- Pour une cavité désaccordée, le miroir accompagne le signal
 Amplification du signal par couplage optomécanique

arXiv-0912.4085 (2009)

Limite de sensibilité attendue au niveau quantique

L'amplification du signal se produit sans modifier le bruit quantique !

- A résonance : limité par le shot noise et le bruit de pression de radiation
- Cavité désaccordée : l'amplification du signal augmente la sensibilité
 Amélioration de 5 dB au-delà de la limite quantique

Conclusion

Les systèmes optomécaniques sont proches des limites quantiques !

- Mesure optique à l'échelle de 10^{-20} m
- Observation des corrélations optomécaniques
- Action en retour dans les mesures, refroidissement laser de micro-miroirs

Coupler des résonateurs mécaniques à la lumière : Manipulation quantique du résonateur et de la lumière

- Régime quantique d'un micro-miroir Intrication et décohérence d'objets macroscopiques
- Limites quantiques dans les mesures
 Amélioration des mesures par couplage optomécanique

