Controlling individual atoms in a dipole trap: Towards quantum information processing with neutral atoms

Stefan Kuhr Institut für Angewandte Physik *Universität Bonn* and Laboratoire Kastler-Brossel École Normale Supérieure

Collège de France, June 2, 2004

Qubits

Interaction via photon exchange

Transporting atoms into an optical resonator:

Outline

I. Trapping and observation of single atoms

II. Decoherence of qubit states

III. A neutral atom quantum register

A source of cold atoms

A source of cold atoms

A source of cold atoms

Imaging a single atom...

Standing wave dipole trap

Nd:YAG-Laser (λ = 1064 nm, P = 4 W) \rightarrow population relaxation time T₁ > 4 s

Imaging a single atom...

Four atoms in the dipole trap

<u>CCD camera:</u> measures position

photon counter: measures number of atoms

An optical conveyor-belt

S. Kuhr *et al.*, Science **293**, 278 (2001) D. Schrader *et al.*, Appl. Phys. B. **73**, 819 (2001)

An optical conveyor-belt

Transportation of a single atom

Three moving atoms

Y. Miroshnychenko et al., Optics Express 11, 3498 (2003)

Absolute position control

"position feedback"

- take camera picture
- calculate distance to target position
- take second camera picture

Deterministic source of cold atoms:

- number of atoms exactly known
- position control
- diffraction limited imaging

II. Manipulation of the Qubit states

State selective detection

survival probability: P(F = 3) > 95%P(F = 4) < 1%

Ramsey spectroscopy

Dephasing due to thermal distribution

Spin Echo

 $\pi/2$

π

 $\pi/2$

Analysis of decoherence

S. Kuhr et al., Phys. Rev. Lett. 91, 213002 (2003)

Quantum state transportation

S. Kuhr et al., Phys. Rev. Lett. 91, 213002 (2003)

Transport maintains coherence

Summary Part II

measured coherence times of qubits
T₂* > 20 ms, T₂' > 200 ms

decoherence mechanisms understood

 coherence is maintained during transportation

III. A neutral atom quantum register

Selective addressing of atoms

- take camera picture
- determine position of all atoms

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom
- prepare atoms in | F = 4, $m_F = -4 >$

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom
- prepare atoms in
 - | F = 4, m_F = -4 >
- apply microwave pulse

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom
- prepare atoms in | F = 4, $m_F = -4 >$
- apply microwave pulse
- apply push-out laser

- take camera picture
- determine position of all atoms
- calculate resonance frequency of center atom
- prepare atoms in | F = 4, $m_F = -4 >$
- apply microwave pulse
- apply push-out laser
- take camera picture

some typical pictures

Addressing resolution

Addressing resolution

Preparation of state superpositions

Preparation of state superpositions

Coherence time $T_2 > 600 \ \mu s$

Outlook: Two conveyor belts

Outlook: Transport of atoms into a resonator

Outlook: Transport of atoms into a resonator

Entanglement scheme via four-photon resonance

L. You et al., Phys. Rev. A 67, 032308 (2003)

Entanglement scheme via four-photon resonance

$$\pi/2$$
-pulse: $\psi_{ent} = \frac{|a,i,0\rangle + |i,a,0\rangle}{\sqrt{2}}$

Summary

A controlled quantum system of individual neutral atoms:

- control of all degrees of freedom of a single atom (position + internal states)
- measured coherence times
- addressing of a single atom

next steps:

- insert cavity into current setup
- achieve deterministic atom-field coupling

The team

Wolfgang Alt **Dominik Schrader Stefan Kuhr** Yevhen Miroshnychenko Igor Dotsenko Wenjamin Rosenfeld Mika Khudaverdyan Victor Gomer **Arno Rauschenbeutel Dieter Meschede**

