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Interaction via photon exchange

Transporting atoms into an optical resonator:
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.
Trapping and observation of
single atoms

I
Decoherence of
qubit states

1.
A neutral atom quantum register



A source of cold atoms

high gradient MOT
(dB/dz = 300 G/cm)
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small trapping volume (d < 20 um)
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A source of cold atoms

Fluorescence signal of the MOT

3 atoms

photons / 100 m
o o o
o o o
o o o

photon
counter ==




A source of cold atoms

photon counting
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counter ==




Imaging a single atom...

...in the MOT
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Standing wave dipole trap

2w, =40 pm
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M2 =~ 500 nm

Nd:YAG-Laser (A = 1064 nm, P =4 W)

—> population relaxation time T, >4 s



Imaging a single atom...

...in the MOT ...In the dipole trap




Four atoms in the dipole trap

CCD camera:
measures position

photon counter:
measures

number of atoms







An optical conveyor-belt

S. Kuhr et al., Science 293, 278 (2001)
D. Schrader et al., Appl. Phys. B. 73, 819 (2001)




An optical conveyor-belt

phase synchron.
RF generators




Transportation of a single atom

time = 0.0 sec .

10 pm
]

Three moving atoms

time = 0.00 sec ,

10pm
—

Y. Miroshnychenko et al., Optics Express 11, 3498 (2003)



Absolute position control

target
position

R Initial distribution of atoms in the DT
Distribution after position feedback
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distance ? ‘P "position feedback”
_  take camera picture

» calculate distance to target position

- take second camera picture




Summary Part |

Deterministic source of cold atoms:

* number of atoms exactly known
* position control

» diffraction limited imaging



Il. Manipulation of the Qubit states




State selective detection

F=4
9.2 GHz microwave

F=3

survival probability:

"push-out” laser P(F = 3) > 95%
PF=4)<1%

F =4 expelled

—@— F =3 remains trapped




0.04 mK
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Dephasing due to thermal distribution

Distribution of
differential light shift

COLD atoms HOT atoms
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Ramsey signal
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time of second n/2-pulse [ms]
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Analysis of decoherence

Spin echo visibility (U = 0.04 mK)
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S. Kuhr et al., Phys. Rev. Lett. 91, 213002 (2003)



Quantum state transportation
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S. Kuhr et al., Phys. Rev. Lett. 91, 213002 (2003)



Transport maintains coherence

Echo signal

with Echo visibility
transport
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Summary Part |l

* measured coherence times of qubits
T, >20ms, T,' >200 ms

e decoherence mechanisms understood

* coherence is maintained during
transportation



1.
A neutral atom quantum register
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Selective addressing of atoms

magnetic field gradient dB / dx
>
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Addressing of a single atom

1  take camera picture
10um

pu.

» determine position of all atoms




Addressing of a single atom

1  take camera picture
10um
» determine position of all atoms

!I Ii ' « calculate resonance frequency
of center atom
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Addressing of a single atom

1  take camera picture
10um
» determine position of all atoms

!I I ' » calculate resonance frequency
of center atom

* prepare atoms in
|F=4 m.=-4>




Addressing of a single atom

—  take camera picture
10um
» determine position of all atoms

5 I ' » calculate resonance frequency
of center atom

* prepare atoms in
|F=4 m.=-4>

 apply microwave pulse




Addressing of a single atom

—  take camera picture
10um
» determine position of all atoms

5 I ' » calculate resonance frequency
of center atom

* prepare atoms in
|F=4, m.=-4>

 apply microwave pulse

 apply push-out laser



Addressing of a single atom

—  take camera picture
10um
» determine position of all atoms

II ' » calculate resonance frequency
of center atom

* prepare atoms in
|F=4, m.=-4>

 apply microwave pulse

 apply push-out laser

Iy - take camera picture



Addressing of a single atom

some typical pictures




Addressing resolution
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n-pulse




Addressing resolution

Numerical simulation
Gaussian fit to data
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Preparation of state superpositions




Preparation of state superpositions

Rabi oscillations of individually addressed atoms
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Coherence time T, > 600 us




Outlook:
Two conveyor belts

"sort" atoms
—> equidistant spacing

G —




Outlook:
Transport of atoms into a resonator

conveyor
belt




Outlook:
Transport of atoms into a resonator

F=120.000
g?/xl" > 20




Entanglement scheme via
four-photon resonance

L. You et al., Phys. Rev. A 67, 032308 (2003)



Entanglement scheme via
four-photon resonance

a,i,0>+ i,a,0>

V2

n/2—pulse: ¥, =




Summary

A controlled quantum system of
individual neutral atoms:

» control of all degrees of freedom of

a single atom (position + internal states)
* measured coherence times
 addressing of a single atom

next steps:

* insert cavity into current setup
» achieve deterministic atom-field coupling
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