Mécanismes de décohérence dans les boîtes quantiques de semiconducteur G. Bastard ENS (Paris)

RÉSUMÉ

Les *boîtes quantiques* de semiconducteur

Le modèle du *macro - atome* et ses conséquences

Vérifications *expérimentales*.

Nouvel aspect du couplage électron-phonon dans les boîtes quantiques: *les polarons*

L'instabilité des *polarons* comme source de *décohérence*

Autre source de décohérence: la *nature* de l'excitation *interbande*; les *transitions* « croisées»

La décohérence d'origine *extrinsèque*: les fluctuations électrostatiques

Conclusion

Cécile Kammerer Guillaume Cassabois

Claude Delalande Philippe Roussignol LPMC-ENS

Angela Vasanelli Aleksandar Jankovic Olivier Verzelen

Robson Ferreira

Sophie Hameau Louis Anne de Vaulchier Jean - Noël Isaia

Y. Guldner

L'invariance par translation conduit aux *bandes*. Pour avoir des états *discrets*, il faut des matériaux massifs *imparfaits* \Rightarrow *DOPAGE*, *LACUNES* et autres *DEFAUTS*.

ou REDUIRE LA DIMENSION DES CONTINUUMS

Les macro - atomes

Boîte quantique de semiconducteur

Atome monovalent

Dans une boîte quantique de semiconducteur les électrons et les trous sont confinés à trois dimensions, juste comme les electrons le sont dans les atomes monovalents. On en a conclu que l'on pouvait manipuler les états propres des boîtes comme les physiciens atomistes manipulent les états atomiques. ⇒ intrication, q-bit, calcul quantique

Boîtes quantiques InAs/GaAs

L'effet *dominant* dans les boîtes quantiques de semiconducteurs

est la quantification spatiale par effet de taille

 $\lambda_{dB} \approx L$ $\Delta x \Delta p \ge h/2$

MAIS

Il existe aussi des continuums d'états électroniques associés

à la couche de mouillage (2D)

à la *barrière (3D)*

Excitations dans une boîte quantique

Conséquence de la distribution de taille

Les expériences d'optique sur des boîtes uniques

Pour se débarrasser de l'élargissement inhomogène, on doit utiliser des masques etc..pour sélectionner *quelques* boîtes ou, à la limite, *une seule boîte*.

Ces expériences exhibent les caractéristiques « atomiques »

des boîtes HWHM ≈ qq µeV

C. Kammerer et al 2001

Les limites du modèle du Macro - atome

I: le couplage aux autres degrés de liberté

intrincéques

Dans un atome pour des énergies comparables à la transition de résonance (≈ eV) il n'existe *que des degrés de libertés électroniques*: les noyaux sont gelés.

₩

La *desexcitation* atomique est *principalement radiative*

Systèmes *simples* Long temps de cohérence ⇒ manipulations « aisées » Dans les boîtes quantiques il existe d'autres excitations élémentaires, les vibrations, les magnons,..... Les excitations électroniques y sont couplées.

> ↓ La *desexcitation* des boîtes n'est pas *nécessairement radiative*.

> > Système complexes Cohérences *brèves??* Manipulations *aisées??*

Avant de transposer mécaniquement ce que l'on sait faire avec des atomes, il est *nécessaire* de s'assurer que les couplages entre les électrons et les autres excitations sont *en effet négligeables*.

En réalité nous montrerons que ce n'est possible qu'aux températures cryogéniques.

Dans les semiconducteurs (massifs, puits quantiques) on *oublie presque* l'interaction electron-phonon et l'on raisonne en termes d'états *factorisés* $|\Psi_{elec}\rangle \otimes |\Psi_{phon}\rangle$. L'interaction électron - phonon (Fröhlich,...) *diffuse les états* factorisés.

On dit « l' électron *émet (absorbe) (irréversiblement)* des phonons».

k' q

k

Ou, pour les *propriétés optiques*, « l'électron absorbe (émet) un photon », sous - entendant que la partie phonon de Ψ n 'est pas concernée par le processus optique

Ce *même raisonnement* de COUPLAGE FAIBLE a été appliqué aux boîtes quantiques de semiconducteur \Rightarrow *phonon bottleneck*

k

Couplage faible: dilution irréversible et règle d'or de Fermi

Dans les matériaux massifs, puits et fils quantiques Les états factorisés électrons ⊗ phonon forment un *continuum composite large*. Continuum électronique ⇒ *large* (≈ 1 eV) Continuum phonon acoustique ⇒ *étroit* (≈ 20 meV) Continuum phonon optique ⇒ *très étroit* (≈ 3-4 meV)

La probabilité que le système électron - phonon retourne à l'état initial (*probabilité de survie*) decroit exponentiallement avec le temps:

$$P_{n\mathbf{k},\nu\mathbf{q}}(t) = \left| < n\mathbf{k} \right| \otimes < \nu \mathbf{q} \left| \exp(-i(H_e + H_{ph} + H_{e-ph})t / \hbar) \right| \nu \mathbf{q} > \otimes |n\mathbf{k}|^2$$
$$P_{n\mathbf{k},\nu\mathbf{q}}(t) \approx \exp(-t / \tau_{n\mathbf{k},\nu\mathbf{q}}) \quad quand \quad t \to \infty$$

On a une *dilution irréversible* de l'état initial dans le *continuum* des états finaux. *D'une manière équivalente*, chaque état factorisé $|n\mathbf{k}\rangle\otimes|v\mathbf{q}\rangle$ acquiert un *temps de vie* fini donné par la règle d'or de Fermi :

$$\hbar / \tau_{n\mathbf{k},\nu\mathbf{q}} = 2\pi \sum_{n'\mathbf{k}',\nu'\mathbf{q}'} \left| < n\mathbf{k} \right| \otimes < \nu \mathbf{q} \left| H_{e-ph} \right| \nu' \mathbf{q}' > \otimes \left| n'\mathbf{k}' > \right|^2 \delta(\varepsilon_{n\mathbf{k},\nu\mathbf{q}} - \varepsilon_{n'\mathbf{k}',\nu'\mathbf{q}'})$$

Taux de perte d'énergie: le triomphe du couplage faible entre electrons et phonons

Figure adaptée de: J. Shah Hot carriers in semiconductor nanostructures Physics ans Applications. Academic Press, 1992, p.290

En calculant les *taux de transition* au moyen de la *règle d'or* de *Fermi*, il est possible de calculer les *taux de perte d'énergie* des porteurs excités. La comparison avec les expériences est *excellente*.

Pour des *phonons sans dispersion* ($h\omega_{LO}$) et des porteurs *maxwelliens*, on trouve:

ELR $\approx (1/\tau) h\omega_{LO} exp(-h\omega_{LO}/kT_c)$ T_c est la température des porteurs *chauds*

Energy Loss Rate / hole (Watts)

Phonon bottleneck

Bockelmann et al, Phys. Rev.**B42**, 8947 (1990); H. Benisty, Phys. Rev.**B51**, 13281 (1995)

Dans les boîtes quantiques les niveaux d'énergie sont discrets Les phonons *optiques* n'ont pas de *dispersion*. ⇒ leur émission est impossible (sauf miracle: $\varepsilon_{e} - \varepsilon_{g} = h\omega_{LO}$) Les branches *acoustiques* sont plus *larges*. *Mais* les éléments de matrice de l'interaction electron - phonon sont *très petits* si: $h\omega_{ph} > 1-2 \text{ meV}$ Phonon bottleneck

Les expériences de magnéto-absorption dans l'IR lointain sondent: * $E_{<P>}$ - E_{S} , la masse effective dans le plan ($\omega_{c} = eB/m^{*}$). *L'*anisotropie* des boîtes *pourvu que* toutes aient la *même* anisotropie. *L'anisotropie peut être dûe à la *forme* (ex. ellipse) ou aux champs *piézo-électriques*.

Transitions magnéto-optiques dans l'IR lointain des boîtes InAs

S. Hameau et al, PRL83, 4152 (1999)

Qu'est ce qu'un *polaron électronique* dans une boîte quantique? Le modèle le plus simple (branche Ω_{-} des spectres M.O.)

On part avec des électrons et des phonons *découplés* : $H_0 = H_e + H_{ph}$ On ne retient qu'<u>un</u> niveau électronique $|P_{,0}\rangle$ et <u>un</u> continuum $|S_{,1_q}\rangle$

H_{e-ph} est diagonalisé dans cette base limitée. Ceci conduit à 2 états de polaron discrets et à N - 1états non couplés

Un polaron est une *superposition cohérente* de *différents* états *électroniques* et de *différentes* occupations de phonons.

Il en résulte une *fenêtre* de *relaxation* pour les polarons

Elle est égale à la *largeur* du *continuum* à *deux phonons*

Phonons acoustiques

Couplage X-phonons *acoustiques* dans le premier état *excité* du cristal.

 $h\omega_q \ll X_n - X_0 \Rightarrow$ Huang - Rhys (= bosons indépendants) *exact*

Les limites du modèle du Macro - atome II: la nature de l'excitation optique

Dans un atome monovalent l'electron *pré existe* à l'excitation. \Rightarrow Modèle à *un porteur*. *Spectre discret* suivi d'un *continuum*.

Dans une boîte, il n 'y a *pas de porteur* avant excitation ⇒ Un modèle de paires est nécessaire. *Spectre discret* superposé à un *continuum* suivi d'un *continuum*.

 $h\omega$

Les *transitions excitées* des boîtes quantiques apparaissent souvent superposées à un *fond continu* qui est *inexplicable* dans un modèle de *macro-atome*.

Le fond continu dépend de la boîte (position, intensité) et peut recouvrir la transition P-P

C. Kammerer et al Phys. Rev. B65, 033313 (2001)

Evidence de grandes largeurs de raie pour des boîtes uniques

L 'étude par corrélations nterférométriques de la *largeur des raies* de boîtes quantiques uniques montre une *croissance* des Γ avec la *température*.
Pour les *états excités* cette croissance est *linéaire* (⇒phonons *acoustiques*)
Γ peut être aussi important que dans des puits quantiques
(⇒ *continuum d 'états finaux* ???).

C. Kammerer et al Phys. Rev. B65, 033313 (2001)

Apparition d'un continuum « croisé » superposé aux transitions discrètes

Elargissement d'un niveau de paire *discret dégénéré* avec un *continuum de dissociation*

A. Vasanelli et al, Phys. Rev. Lett. (2002)

$$|\psi_{i}\rangle = a|P_{e}P_{h}\rangle + b|S_{e}S_{h}\rangle \qquad |P_{e}P_{h}\rangle = \frac{1}{\sqrt{2}}\left[P_{e+}P_{h-}\rangle + |P_{e-}P_{h+}\rangle\right] \qquad |\psi_{f}\rangle \approx |S_{e}C_{h}\rangle$$

 $\frac{\hbar}{\tau_{nh}} \approx 4\pi |b|^2 C_0 k_B T D_P(\varepsilon_i) \qquad D_P(\varepsilon_i) = \sum_{n,l} \int d^3r |C_{h,n,l}(\vec{r})|^2 |S_h(\vec{r})|^2 \delta(\varepsilon_i - E_{h,n,l})$

Dans un atome alcalin un électron n'interagit qu'avec le champ électromagnétique: l'élargissement des états excités est *essentiellement radiatif*.

 \mathbf{P}_{CM} + h \mathbf{k}_{ph} est un *bon nombre quantique*

Dans une boîte quantique de semiconducteur, l'environnement électrostatique *change constamment*. Les impuretés résiduelles *se chargent* et *se déchargent*, perturbant une paire électron-trou de la boîte. L'énergie de la paire liée est différente suivant que l'impureté est *vide* ou *occupée* par un électron. Ces perturbations *aléatoires* élargissent les transitions liées-liées et *raccourcissent* le temps de vie des *cohérences*.

Décalages et élargissements dus à des fluctuations électrostatiques

A. Jankovic et al, 2002

Soit une boîte contenant une paire e-h.

Un *défaut* de la couche de mouillage (R = 5nm) peut capturer une paire e'-h'(\Rightarrow interaction *dipole -dipole* $\Rightarrow \Delta$) ou la relâcher etc....

Le signal de photoluminescence de la boîte est calculé en présence d'une perturbation *dipolaire* aléatoire (présence ou absence d'une paire e'-h' sur le défaut).

Décalages plus *importants* avec des *impuretés chargées*: Δ (charge-dipole) > Δ (dipole-dipole). \Rightarrow Corrélation avec les *dopages résiduels*

Evidemment les véritables boîtes sont plus compliquées et donc décohérentes que le rêve du macro - atome.

Pouvait il en être autrement ?

En pratique

Travailler sur les états excités? NON car

*Désintégration des polarons *Effet Auger + décohérence partielle dûe aux phonons acoustiques *fuite vers les continuums croisés \downarrow Même à basse température $\tau_{coh} \approx qq \ ps$

Travailler sur le *fondamental* (X_{pol0})

*En excitation *résonante* Pas de perte de cohérence lors de la relaxation

> *à *basse* (T < 50K)température Pic élastique Pas de décohérence thermo-activée

> * Sur des échantillons *« purs »* Pas de fluctuations électrostatiques