

DECOHERENCE ET LA MESURE DE L'ETAT DU CHAMP EN OPTIQUE QUANTIQUE

Luiz Davidovich
Instituto de Física
Universidade Federal do Rio de Janeiro
Brésil

SOMMAIRE

- Introduction à la décohérence
- Expériences sur la décohérence avec des champs en cavités
- Mesure de l'état du champ électromagnétique: la distribution de Wigner – théorie et expériences récentes
- Prochaines étapes?

COLLABORATEURS

Brésil: N. Zagury, R.L. de Matos Filho (Pos-Doc)

Etudiants: M. Abanto, A.R.R. Carvalho, M.

França, L.G. Lutterbach, P. Milman

France: M. Brune, S. Haroche, V. Lefèvre, J.M. Raimond (cavités, laser) + étudiants

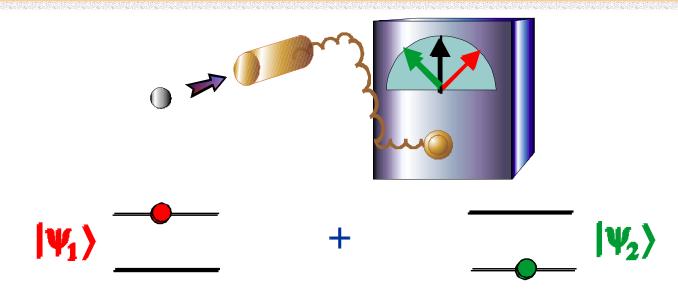
C. Fabre, E. Giacobino, M. Kolobov (laser)

Y. Castin (décohérence)

DECOHERENCE

- Schrödinger (1935): Existence de la interférence quantique au niveau microscopique implique nécessairement que le même phénomène doit exister entre deux états macroscopiques différents.
- Einstein (Lettre à Born, 1954): Un problème fondamentale de la mécanique quantique est l'inexistence au niveau classique de la majorité d'états permis par la mécanique quantique (superpositions cohérentes de deux ou plus états macroscopiques localisés).
- Postulat du collapse de von Neumann: Deux tipes différents d'évolution quantique: (I) évolution déterministe et unitaire (équation de Schrödinger); (II) processus probabiliste et irréversible associé à la mesure.

MESURE QUANTIQUE



Evolution linéaire:

$$|\text{AVANT} \rangle = (|\Psi_{1}\rangle + |\Psi_{2}\rangle)|\uparrow\rangle/\sqrt{2}$$

$$|\text{APRES} \rangle = (|\Psi_{1}'\rangle|\nearrow\rangle + |\Psi_{2}'\rangle|\nearrow\rangle)/\sqrt{2}$$

$$|\nearrow\rangle' \qquad |\nearrow\rangle'$$

POURQUOI ON NE PEUT PAS VOIR L'INTERFERENCE?

- 1. Règle de super-sélection: absence d'observables non locales avec des éléments de matrice entre les deux états de l'aiguille
- 2. Décohérence: intrication avec l'environnement.
- Temps de décohérence: échelle de temps importante en mécanique quantique.
- Electrodynamique quantique en cavité: possibilité de surveiller la décohérence entre positions différentes d'une aiguille.

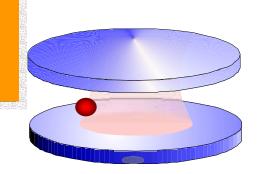
ELECTRODYNAMIQUE EN CAVITÉ

Domaine des Micro-

ondes: Haroche,

Walther

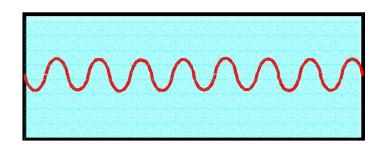
Optique: Kimble, Rempe



Cavités supraconductrices: τ jusqu'à ≅ 1 s

Manipulation et mesure du champ: atomes de Rydberg planétaires ($n \approx 50$, $l \approx n-1$) – longue durée de vie, ≈ 30 ms

INTERACTION DISPERSIVE

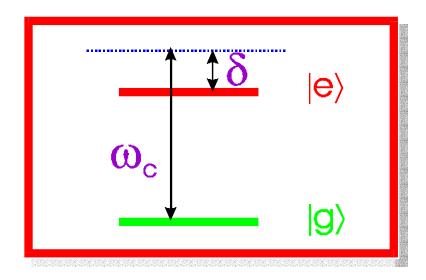


$$\lambda = \frac{C'}{f'}$$

Matériel transparent (interaction dispersive): changement de fréquence

⇒ changement de phase

INTERACTION DISPERSIVE D'UN ATOME



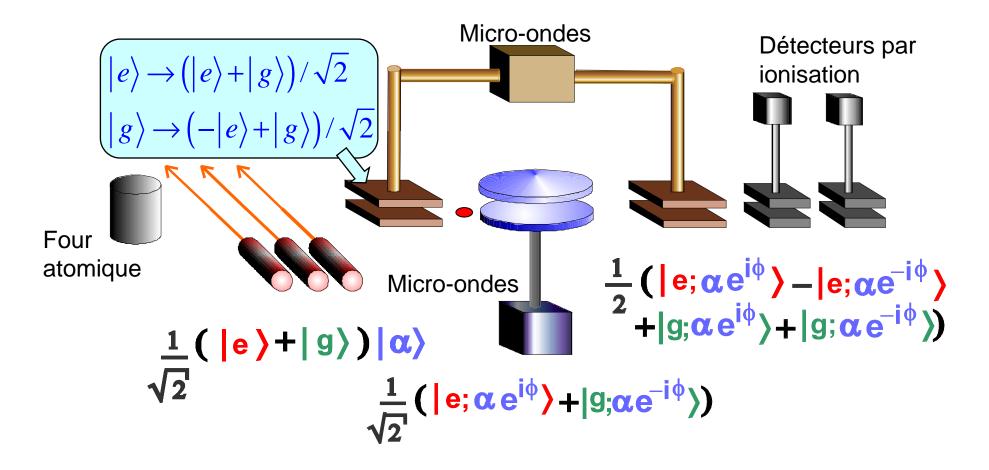
Déplacement Stark de l'état |e>

 $|\alpha e^{i\phi}\rangle$

$$|e\rangle|\alpha\rangle = |e\rangle \otimes \exp(-|\alpha|^2/2) \sum_{n=0}^{\infty} \frac{e^{in\phi} \alpha^n}{\sqrt{n!}} |n\rangle$$

 $\phi \rightarrow$ déphasage par photon ∞ temps d'interaction

PRODUCTION D'UN ETAT "CHAT DE SCHRÖDINGER"



M. Brune, J.M. Raimond, S. Haroche, L.D. et N. Zagury, PRA 45, 5193 (1992)

$$|\psi\rangle\propto|\alpha e^{i\phi}\rangle+e^{i\psi}|\alpha e^{-i\phi}\rangle$$

$$e \Rightarrow \Psi = \pi$$

$$g \Rightarrow \psi = 0$$

Comment détecter la cohérence?

Il suffit d'envoyer un deuxième atome, et de mesurer la corrélation entre les l'états des deux atomes! [L.D., A. Maali, M. Brune, J.M. Raimond, et S. Haroche, PRL 71, 2360 (1993); L.D., M. Brune, J.M. Raimond, et S. Haroche, PRA 53, 1295 (1996)].

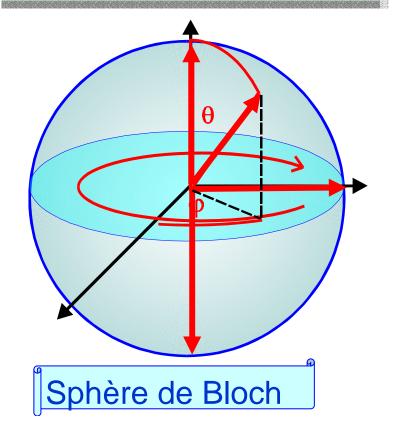
Résultats pour une déphasage de π : $|\psi\rangle \propto |\alpha\rangle + |-\alpha\rangle$

- •Superposition cohérente : atomes de préparation et de sonde détectés dans le même état $\rightarrow P_{ee}=1$
- •Mélange statistique: deuxième atome détecté dans $|e\rangle$ ou $|g\rangle$ avec 50 % de chance \rightarrow $P_{ee}=1/2$

INTERPRETATION PHYSIQUE: DETECTION DE LA PARITE DU CHAMP

$$|\psi\rangle = \cos(\theta/2)e^{-i\varphi/2}|e\rangle$$

 $+\sin(\theta/2)e^{i\varphi/2}|g\rangle$



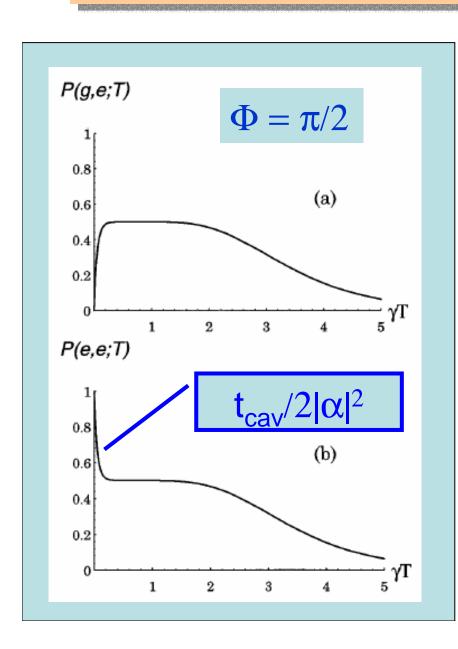
$$|\alpha\rangle + |-\alpha\rangle \propto \sum_{k=0}^{\infty} \frac{\alpha^{2k}}{(2k)!} |2k\rangle$$
$$|\alpha\rangle - |-\alpha\rangle \propto \sum_{k=0}^{\infty} \frac{\alpha^{2k+1}}{(2k+1)!} |2k+1\rangle$$

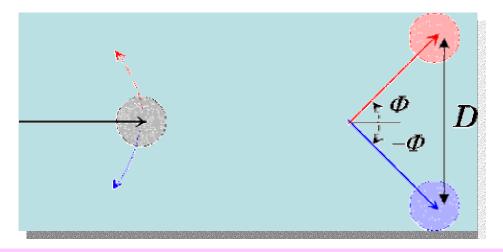
Rotation de $\pi/2$

Nombre pair de photons: rotation de $2k\pi$ (interaction dispersive)

Rotation de $\pi/2$

EFFET DE LA DISSIPATION





Temps de décohérence: = t_{cav}/D

→ intrication avec des états orthogonaux de l'environnement

 $\alpha=0$: Deux pulses $\pi/2 \Rightarrow$ état atomique change.

Pas très sensitive à l'efficience de détection!

RESULTATS EXPERIMENTAUX

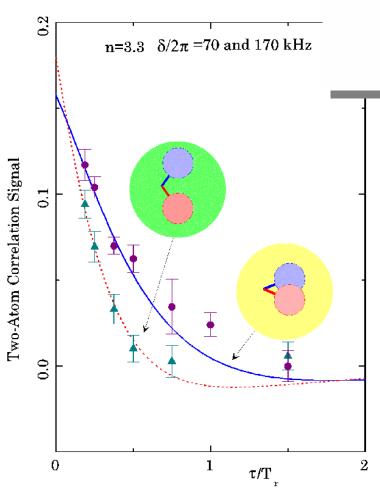
VOLUME 77, NUMBER 24

PHYSICAL REVIEW LETTERS

9 DECEMBER 1996

Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement

M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche Laboratoire Kastler Brossel,* Département de Physique de l'Ecole Normale Supérieure, 24 Rue Lhomond, F-75231 Paris Cedex 05, France (Received 10 September 1996)



 $P_{ee} - P_{eg}$

Angle maximale $2\phi \cong \pi/2$

REPRESENTATION DANS L'ESPACE DE PHASE

On cherche une représentation avec les propriétés suivantes:

$$\int dp W(q,p) = \langle q | \hat{\rho} | q \rangle, \int dq W(q,p) = \langle p | \hat{\rho} | p \rangle$$

Etat pure:

$$\langle q | \hat{\rho} | q \rangle = |\psi(q)|^2, \langle p | \hat{\rho} | p \rangle = |\tilde{\psi}(p)|^2$$

Cette propriété doit rester valable si les axes sont soumis a une rotation:

$$\int W (q_{\theta} \cos \theta - p_{\theta} \sin \theta, q_{\theta} \sin \theta + p_{\theta} \cos \theta) dp_{\theta}$$

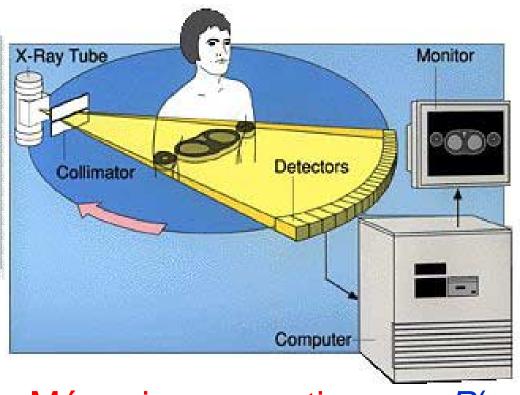
$$= P(q_{\theta}) = \langle q | \hat{U}^{\dagger}(\theta) \hat{\rho} \hat{U}(\theta) | q \rangle$$

TRANSFORMÉE DE RADON (1917)

 $P(q_{\theta})$ détermine W(q,p) d'une manière unique! \rightarrow transformée inverse de Radon

→ tomographie

Cormack and Hounsfield: prix Nobel de Medicine (1979)



Mécanique quantique:

 $P(q_{\theta})$

⇒ fonction de Wigner

(Bertrand et Bertrand, 1987)

LA DISTRIBUTION DE WIGNER

Wigner, 1932: Corrections quantiques à la mécanique statistique classique

Recanique statistique classique
$$\hat{x}|x\rangle = x|x\rangle$$

$$W(x,p) = \frac{1}{\pi\hbar} \int \langle x+x'|\hat{\rho}|x-x'\rangle e^{-2ipx'/\hbar} dx'$$

Moyal, 1949: Moyenne d'opérateurs en forme

symétrique:

$$Tr\left[\hat{\rho}(\hat{x}\hat{p}+\hat{p}\hat{x})/2\right] = \int dxdpW(x,p)xp$$

Matrice densité à partir de W:

$$\langle x + x' | \hat{\rho} | x - x' \rangle = \int W(x, p) e^{2ipx'/\hbar} dp / \hbar$$

LA QUESTION DE PAULI

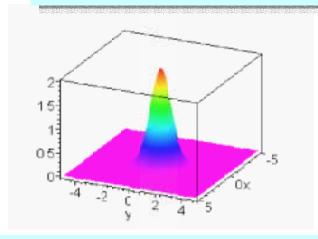
Handbuch der Physik, 1933 – "The mathematical problem, as to whether for given functions W(x) and W'(p) [position and momentum probability densities], the wave function ψ , if such a function exists, is always uniquely determined has not been investigated in all its generality."

Reponse:
$$W(x) = |\psi(x)|^2$$
 et $W'(p) = |\psi'(p)|^2$

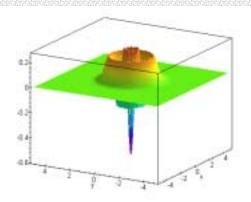
ne forment pas un ensemble tomographique complet!

EXAMPLES DE DISTRIBUTIONS DE WIGNER

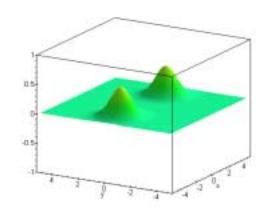
État fondamentale

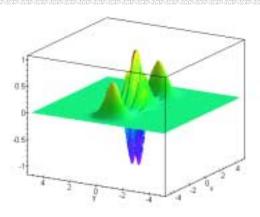


État de Fock n=3



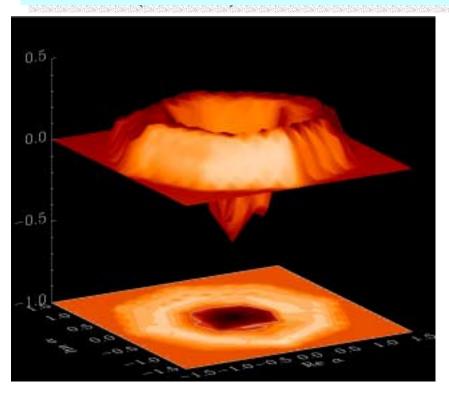
Mélange ($|\alpha\rangle\langle\alpha|+|-\alpha\rangle\langle-\alpha|$)/2

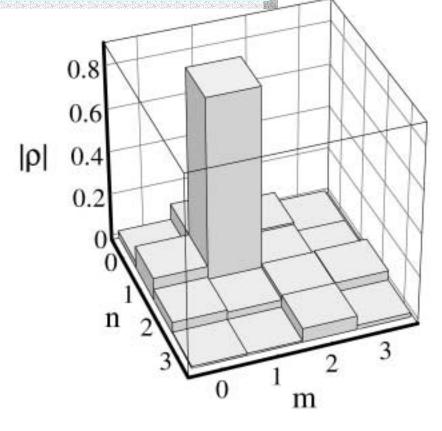




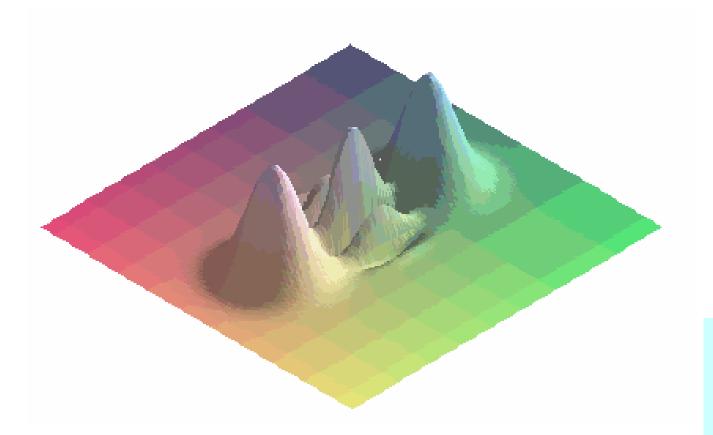
MESURE DE L'ETAT QUANTIQUE DE MOUVEMENT D'UN ION PIEGE

Groupe de Wineland - NIST – PRL **77**, 4281 (1996)





LA DISTRIBUTION DE WIGNER ET LA LIMITE CLASSIQUE DE LA MECANIQUE QUANTIQUE



Dissipation
amène à la
disparition
des franges!

Evolution d'une superposition cohérente d'états cohérents

CHAMP ELECTROMAGNETIQUE ET L'ESPACE DE PHASE

Champ électromagnétique monomode:

$$E = E_0 \left[q_1 \cos \left(\vec{k} \cdot \vec{r} - \omega t \right) + q_2 \sin \left(\vec{k} \cdot \vec{r} - \omega t \right) \right]$$
quadratures

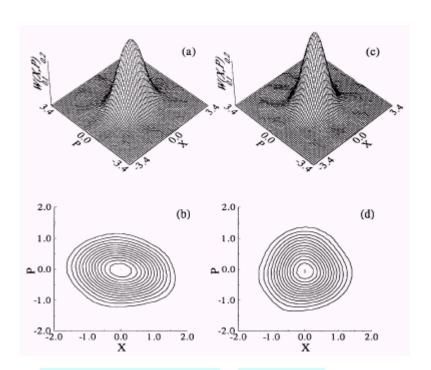
Analogues de la position et du momentum à t = 0 d'un oscillateur harmonique: $\hat{\rho}(0)$

ateur narmonique:
$$\hat{x}(t) = \hat{x}(0)\cos \omega t + \frac{\hat{p}(0)}{m\omega}\sin \omega t$$

Risken et Vogel, 1989: mesure homodyne $\to P(q_{\theta}) \to$ distribution de Wigner pour le champ EM

RESULTATS EXPERIMENTAUX

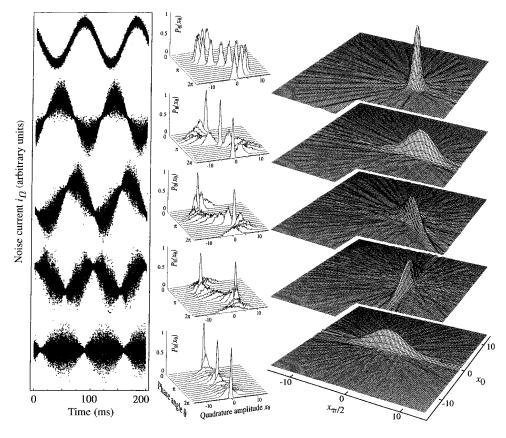
Smithey *et al.*, PRL **70**, 1244 (1993)



Comprimé

Vide

Breitenbach *et al,* Nature **387**, 471 (1997)



MESURE DE L'ETAT QUANTIQUE D'UN SEUL PHOTON

PHYSICAL REVIEW A, VOLUME 62, 054101

Measurement of a negative value for the Wigner function of radiation

G. Nogues,¹ A. Rauschenbeutel,¹ S. Osnaghi,¹ P. Bertet,¹ M. Brune,¹ J. M. Raimond,¹ S. Haroche,¹ L. G. Lutterbach,² and L. Davidovich²

¹Laboratoire Kastler Brossel,* Département de Physique de l'Ecole Normale Supérieure,

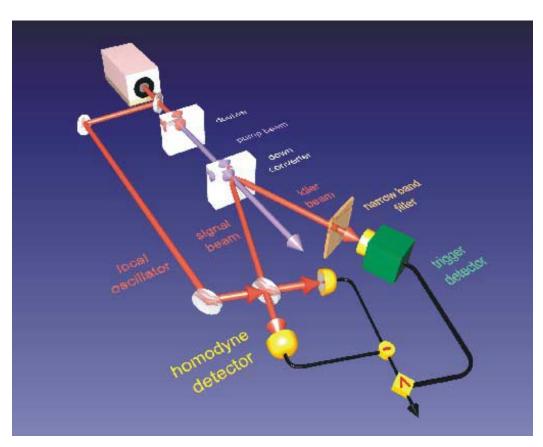
24 rue Lhomond, F-75231 Paris Cedex 05, France

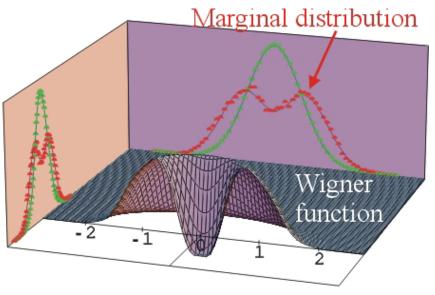
²Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postale 68528, 21945-970 Rio de Janeiro, RJ, Brazil (Received 2 December 1999; published 11 October 2000)

Following a proposal by two of us [L. G. Lutterbach and L. Davidovich, Phys. Rev. Lett. 78, 2547 (1997)], we have measured the Wigner function at the origin of phase space for a single photon field. Its value is negative, exhibiting the nonclassical nature of this state. The experiment is based on the absorption-free detection of the microwave field stored in a superconducting cavity [G. Nogues et al., Nature (London) 400, 239 (1999)]. Extension to a measurement of the Wigner function over the complete phase space is discussed.

MESURE COMPLETE DE LA DISTRIBUTION DE WIGNER POUR UN PHOTON

Lvovsky et al, PRL 87, 050402 (2001)





MESURE DIRECTE DE LA DISTRIBUTION DE WIGNER

L.G. Lutterbach et L.D., PRL 78, 2547 (1997)

Basée sur l'expression suivante pour la distribution de Wigner (Cahill and Glauber, 1969):

$$W\left(\alpha,\alpha^{*}\right) = 2Tr\left[\hat{D}^{-1}\left(\alpha,\alpha^{*}\right)\hat{\rho}\hat{D}\left(\alpha,\alpha^{*}\right)\exp\left(i\pi\hat{a}^{\dagger}\hat{a}\right)\right]$$

$$\exp\left(\alpha\hat{a}^{\dagger}-\alpha^{*}\hat{a}\right)$$
Opérateur de déplacement
$$W\left(\alpha,\alpha^{*}\right) \leq 2$$

$$\left|\hat{P}\hat{a}\hat{P}=-\hat{a}\right|$$

$$Tr\left[\hat{\rho}\left(\hat{a}\hat{a}^{\dagger}+\hat{a}^{\dagger}\hat{a}\right)/2\right]=\int d^{2}\alpha W\left(\alpha,\alpha*\right)\alpha\alpha*$$

OPERATEUR DE DEPLACEMENT

 Translation de la position et du momentum dans l'espace de phase

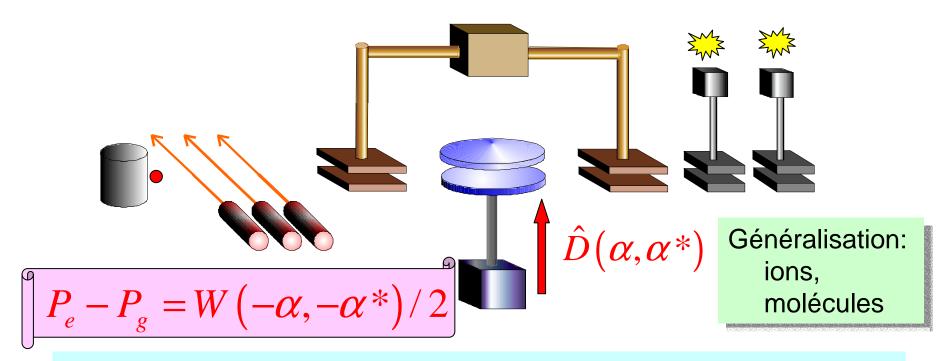
$$\hat{D}(\alpha, \alpha^*) = \exp(\alpha \hat{a}^{\dagger} - \alpha^* \hat{a})$$

$$\hat{a} = (\hat{x} + i\hat{p}) / \sqrt{2\hbar}, \quad \hat{a}^{\dagger} = (\hat{x} - i\hat{p}) / \sqrt{2\hbar}$$

 Correspond à l'action d'une force externe sur un oscillateur harmonique, ou d'un courant externe sur un champ EM

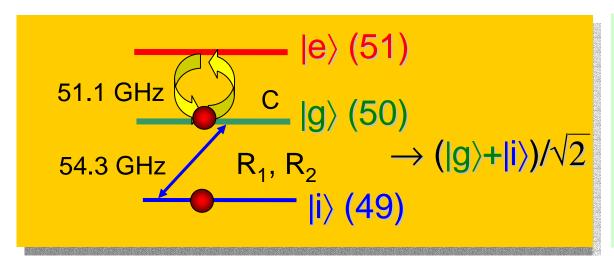
$$H_I = \int \vec{j} \cdot \vec{A} d^3 x \propto \alpha \hat{a}^{\dagger} - \alpha * \hat{a}$$

PROPOSITION EXPERIMENTALE



- 1. Déplacer champ à mesurer (brancher micro-onde)
- 2. Envoyer atome: phase du champ déplacée par π
- 3. Détecter l'état atomique
- 4. Produire encore le champ, répéter la procédure

ALTERNATIVE POUR DES ETATS A UN ET DEUX PHOTONS



Valeur négative de la distribution de Wigner à l'origine de l'espace de phase!

Porte de phase!

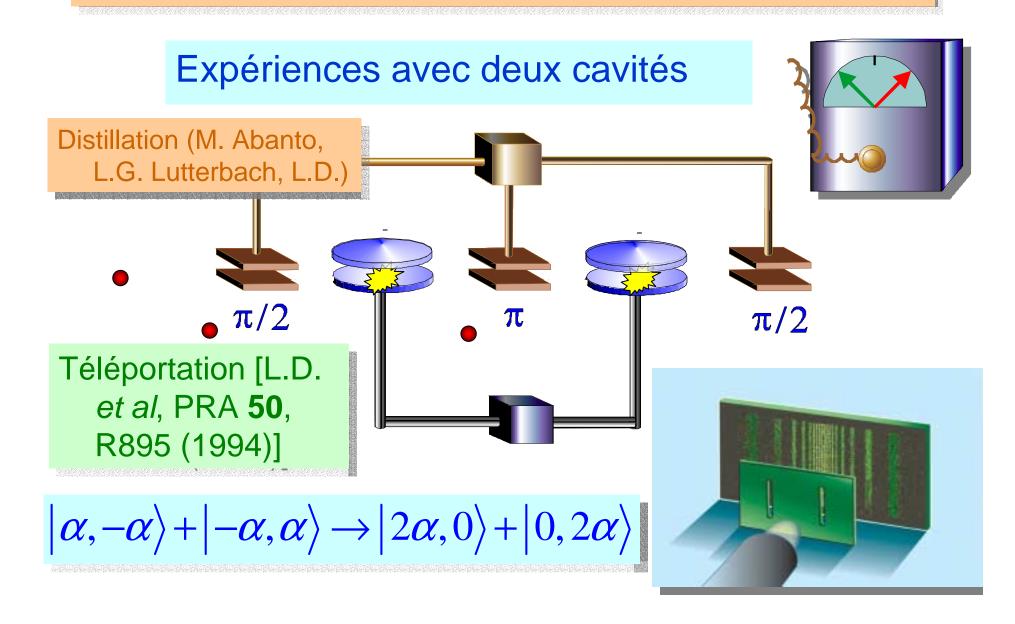
A la place d'un déplacement de phase dispersive:

- $|g\rangle \Rightarrow$ rotation de 2π , s'il y a un photon dans la cavité \Rightarrow changement de signe (spin ½)
- |i⟩ ⇒ pas de rotation

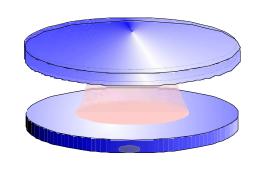
$$W_0(0) = 1.12$$

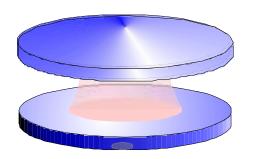
$$W_1(0) = -1.32$$

PAS SUIVANTS?



DISTILLATION AVEC DEUX CAVITÉS





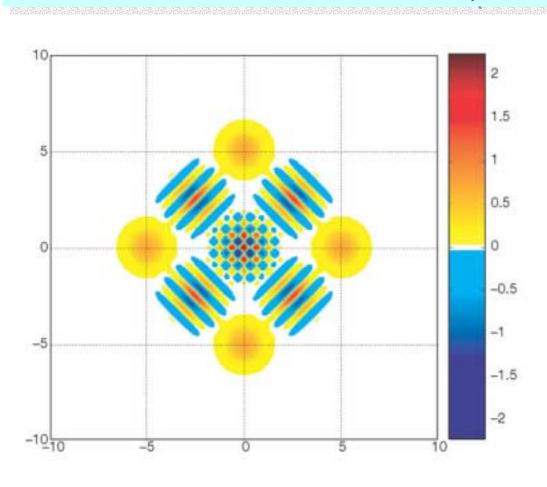
Deux modes dans chaque cavité \rightarrow deux pairs dans l'état ($|10\rangle+|01\rangle$)/ $\sqrt{2}$

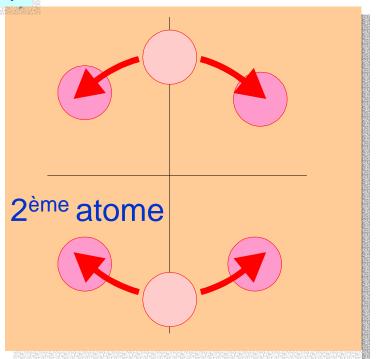
Si les deux atomes sont détectés dans l'état $|e\rangle$: état singulet récupéré

$$\rho(t) = \frac{e^{-2\lambda t}}{2} (|10\rangle + |01\rangle) (\langle 10| + \langle 01|) + (1 - e^{-2\lambda t}) |00\rangle \langle 00|$$

STRUCTURES SUB-PLANCK DANS L'ESPACE DE PHASE

W. Zurek, Nature **412**, 712 (2001)





Carrés avec des surfaces < ħ

QUELQUES QUESTIONS ENCORE

- Théorie détaillée de la décohérence champ+électrons dans le miroirs+l'environnement
- Mesure de la distribution de Wigner des modes intriqués ($|01\rangle+|10\rangle/\sqrt{2}$) caractérisation de l'intrication
- Comment contrôler la décohérence?

CONCLUSIONS

- Electrodynamique quantique en cavité permet un étude détaillé de la décohérence
- On peut mesurer directement la distribution de Wigner du champ dans la cavité, ce qui permet de suivre le procès de décohérence
- Nouvelles propositions pour l'investigation de champs non locales, pour faire des démonstrations de téléportation et de distillation, et pour mesurer des structures sub-Planck dans l'espace de phase