IMPLEMENTATION D'UN BIT QUANTIQUE DANS UN CIRCUIT SUPRACONDUCTEUR

QUANTUM ELECTRONICS GROUP A. AASSIME A. COTTET M. DEVORET D. ESTEVE P. JOYEZ H. POTHIER C. URBINA D. VION et précédemment: V. BOUCHIAT P. LAFARGE avec à la technique: P. ORFILA

SPEC CEA-Saclay

Quantum computing in a nut

Quantum algorithms AND error correcting codes (Shor,...,1996)

the art of quantum distillation

Factorisation : O[(Log N)³] (Shor, 1994)

unstructured data base search O[N^{1/2}] (Grover, 1995)

Quantum processor?

Microscopic objects vs mesoscopic systems

(NIST,...)

Rydberg atoms

(ENS)

Quantum, but not easily scalable

nuclear spins

(Stanford, IBM,...)

superconducting circuits

(T.U. Delft)

Scalable, but not easily quantum

Energy spectrum of a superconducting electrode

All states paired

Superconducting Condensate Ground state

The Josephson junction

Josephson qubits

Current-biased large junction

Coupled medium-size junctions

Small junction

The Cooper-pair box

Energy levels of the Cooper pair box $(E_J/E_C=1)$

Measuring the Cooper pair box

1996 charge of ground state $|0\rangle$ **1999** coherent superpositions $\alpha |0\rangle + \beta |1\rangle$ (Bouchiat et al., Quantronics) (Nakamura, Pashkin & Tsai, NEC)

2001

The charge-noise issue

The splitted Cooper-pair box

with persistent current

Write on Read charge current

(Note: similar idea by A.Zorin)

Energy levels of the splitted Cooper pair box

Effective box : $E_{Jeff} \simeq E_{J} \left| \cos(\delta/2) \right|$

Transition frequency

Measurement strategy

Entangling the qubit with an extra junction

The "Quantronium" circuit

Preparation and readout

Estimated readout sensitivity

Level spectroscopy close to the saddle point

Line-width close to the saddle point

Line-shape at the optimal point

The Bloch sphere in the rotating frame

Fictitious spin 1/2 representation of a 2-level system:

Rotation vector in the rotating frame

Rabi oscillations

controlled rotations around an in-plane axis

Relaxation at the optimal point

Ramsey interferences

Observations of Ramsey "fringes"

On and off resonance Ramsey experiment

controlled rotations around Z axis

Many other possibilities: atoms on chips, spintronics,...