

Atomic Physics Realizations of Quantum Logic Elements in Dissipative Environments Peter Knight Imperial College London

- Quantum resources
- Amo
- Ions
- Cavities
- Lattices
- decoherence

QUBITS EU Network: the Gang of 11

- Munich: Rempe, Walther, Weitz
- Paris: Haroche, Grangier
- Innsbruck: Blatt
- London: ICSTM
- Oxford: Steane
- NPL: Gill
- Ulm: Schleich
- Bratislava: Buzek

Computation = physical process

Hardware obeys the laws of physicsbut nature is quantum mechanical

So what would a quantum computer look like?

"Computers of the future may weigh no more than 1.5 tons"

Popular mechanics, 1949!

Moore's Law: Growth in chips and shrinking space. What when/if get to one electron/gate?

Pioneers of the Physics of Information

Alan Turing

© Copyright California Institute of Technology. All rights reserved Commercial use or modification of this material is prohibited.

Richard Feynman

David Deutsch

Peter Shor

Quantum Computing History

Initial Ideas - quantum more powerful than classical Benioff - 1982, Feynman - 1984

Quantum Parallelism - *oracles, Hadamards...* Deutsch-Jozsa (92)/ Bernstein-Vazirani (93) / Simon (93)

Quantum Factoring- explosion of interest Shor (94), Ekert (94) brings it to physics

> Implementations- *hardware, gates, decoherence* Cirac-Zoller (94) Wineland, Kimble, Haroche, Hughes, Blatt,....

> > Error Correction- the conquest of decoherence Shor, Steane

Qubits & Quantum Registers

Quantum parallel processing

Complexity Classes Tractable and Intractable problems

size L

Input size ~ number of bits required to specify input: 15 1111 in binary -> 4 bit input

Then evaluate number of steps needed as f(size)

 'P': Solution can be found in polynomial time. Multiplication of two numbers scales quadratically with the input size! Input size Comp. Time

Input size	Comp. Time
10	10 ns
100	1000 ns
1000	100000 ns

• 'NP': Solution can be checked in polynomial time, but finding it may require non-polynomial time.

Finding the factors of a product of two large prime numbers is <u>exponential</u> in the number of digits!

Input size	Computation time		
10	1 s		
100	8103 s		
1000	990 000000000 00000000 00000000 00000000		

In 1985 David Deutsch (generalization in 1992 with Jozsa) proved that in quantum mechanics the complexity of some problems can change dramatically! Then in 1994 Peter Shor discovered a quantum algorithm that allows to factor large numbers in polynomial time, ie factoring is essentially as easy as multiplying!

Power of quantum algorithms

factoring EXP NP **BQPP** 0 **BPP** Ρ

Complexity class changed!

Quantum

Why is irreversibility a problem?

Remember: Quantum mechanics is reversible!

$$- Final state at time t$$

In QM you can always reverse time evolution:

$$| \mathbf{Y}(0) \rangle = U^{-1}(t,0) | \mathbf{Y}(t) \rangle$$

From the final state we can always come back to the initial state!

Quantum Logic I

Define a quantum XOR => Quantum CNOT gate

State 1	State 2	Out 1	Out 2
0>	0>	0>	0>
0>	1>	0>	1>
1>	0>	1>	1>
1>	1>	1>	0>

Basic input |0> and |1> unit called **qubit**

Quantum Mechanics allows for **superpositions** of states!

Map superpositions of states into entangled states!

$$(|0>+|1>)|0> \rightarrow |00>+|11>$$

Quantum Logic

We need gates that make quantum superpositions.

The Hadamard gate

General single qubit rotations

 $|0\rangle \longrightarrow \cos x |0\rangle + \exp(iy) \sin x |1\rangle$ $|1\rangle \longrightarrow -\sin x |0\rangle + \exp(-iy) \cos x |1\rangle$

Quantum Parallelism

Z

Consider a k-bit string: |00|00....|00Apply one bit (Hadamard) rotation S to each bit

Quantum parallelism- 2^k states after only k operations

Quantum Logic II

Make entanglement

Measure entanglement

Timescales

• Can arrange these roughly according to strength of the qubit interactions with one another (and with the environment)

The 'DiVincenzo Checklist'

Must be able to

- Characterise well-defined set of quantum states to use as qubits
- Prepare suitable pure states within this set
- Carry out desired quantum evolution
- Avoid decoherence for long enough to compute
- Read out the results

AMO successes

- Ions: isolated qubits; arrays; gates, 4 ion entanglement; decoherence
- Cavity qed: single particle manipulation; atom-atom entanglement, nonlocality
- Atoms in lattices: loading, interaction
- Atom chips: guided; coherence?

chunky but they work!

Cavity qed: trapped photons

- Haroche group: Rydberg atoms
 & microwave cavities
- Walther group: micromasers & Rydberg atoms
- Rempe group: optical transitions and single photon switches
- Also use trapped ions: NPL, Innsbruck, MPQ as prototype quantum communicator, mapping quantum states of a memory on to the output of a quantum radiation channel.

Atom-field entanglement

Prepare atoms, inject into cavity, atom-field interaction entangles atoms

IST-1999-13021-QUBITS

Quantum Logic in a CO₂-Laser Optical Lattice

Martin Weitz, LMU Munich

atoms trapped by the ac Stark shift in a standing wave near 10.6 µm

- storage of a qubit per atom in internal atomic states

Project funded by the Future and Emerging Technologies arm of the IST Programme FET-QIPC

R. Scheunemann, F. Cataliotti, T. W. Hänsch, and M. Weitz, Phys. Rev. A 62, 051801 (R) (2000).

Project funded by the Future and Emerging Technologies arm of the IST Programme FET-QIPC

Mott transition in Lattices: Hansch last week in Nature

Atom chips

- Guided atoms
- Interferometer
- EU presence: Sussex, Hannover, Heidelberg...

FIG. 1. (a) A schematic of the chip surface design. For simplicity, only wires used in the experiment are shown. The wide wires are 200 μ m wide while the thin wires are 10 μ m wide.

Atoms can be trapped and guided using nanofabricated wires on surfaces, achieving the scales required by quantum information proposals. These *atom chips* form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.

Atomic Conveyor Belt

ions - my favourite!

String of Ca⁺ ions in a linear Paul trap

70 µm

Collective motion of ions

Centre of mass motion

Stretch motion

Quantum computer with ion traps- a vision

I. Cirac and P. Zoller, Nature 404, 579, (2000)

quantum optics and nano-technology: scalability

The solid state: pros and cons for quantum computing

- Potential advantages:
 - Scalability
 - Silicon compatibility
 - Microfabrication (and nanofabrication)
 - Possibility of 'engineering' structures
 - Interaction with light (quantum *communication*)
- Potential disadvantage:
 - Much stronger contact of qubits with environment, so (usually) much more rapid decoherence

Solid State qubits?

- Many different particles in solids (electrons *and* nuclei) whose states can be used
- There are also collective excitations that *only* occur in many-particle systems
- Possible systems for qubits include:
 - Nuclear spins
 - Nuclear (atomic) displacements
 - Electron spins
 - Electron charges
 - Correlated many-electron states

Quantum Computing Abyss

