The genetic basis of dyslexia:

The KIAA0319 gene

Silvia Paracchini

Wellcome Trust Centre for Human Genetics University of Oxford

Summary

- Overview about the genetics of dyslexia
- Focus on the chromosome 6p locus and the KIAA0319 candidate: the gene and the protein
- The role of the dyslexia candidates in brain development

Dyslexia-definition

- Specific difficulty in learning to read that cannot be explained by deficits in intelligence, learning opportunity or any evident neurological or sensory handicap.
- Reading ability is a continuous measure; there is no an universally accepted threshold to classify an individual for being affected.

Reading

Two component processes:

- Phonological Processing
 - Breakdown of words into their constituent phonemes or speech sounds through the use of a set of pronunciation rules
 - AUTOMATIC "Ah-toe-Mah-tik"
- Orthographic Processing
 - Holistic recognition of words based on the memorised spatial appearance of letters. Requires previous word exposure
 - YACHT

Dyslexia - genetic component

- Risk in population: 5-10%
- Male / famale : 3/2
- Risk in sibling of affected individuals: 38-43%
- Twin studies
 - Concordance rate: 68% in MZ versus 38% in DZ
- Complex trait, influenced by both environmental and multiple genetic factors (quantitative trait loci = QTL)

Theories of dyslexia

The biological and cognitive causes underlying the development of dyslexia are not clear.

Several theories have been proposed:

- Phonological deficit
- Auditory processing
- Visual processing
- Motor control
- Magnocellular theory

We expect the dyslexia susceptibility genes to be expressed in the brain but we don't have a functional model

Overview of genetic analysis results

- Regions identified by linkage analysis that might contain QTLs for dyslexia susceptibility
- Candidate genes identified by association analysis or translocation breakpoint refinement

Our Dyslexia Samples

Genetic samples from 264 nuclear UK families:

- Divided in sample 1 (89 families) and sample 2 (175 families)
- All contain at least one dyslexic child (scoring on single-word reading test at least 2 SD below what predicted by test of verbal and non-verbal reasoning).
- At least 68% contain another child with reading-related problems.
- Total of 1153 individuals:

٠

٠

 \Rightarrow including 630 siblings measured for reading and language related quantitative traits.

Genetic samples from 155 twin-based nuclear US families from the CLDRC:

- Families selected for having at least one member with documented reading difficulty.
- Total of 675 individuals:
 - ⇒ including 365 siblings measured for reading and language related quantitative traits.

Our sample -Quantitative phenotype

- Essentially 6 core traits tested for:
 - Orthographic coding: Irregular words recognition OC-irreg
 Example: Yacht
 - Phonological Decoding: Non-word recognition PD
 - Example: Siglop
 - Orthographic coding: Forced Choice OC-choice
 - Example: Rain versus rane
 - Word reading READ
 - Spelling ability SPELL
 - Phonological Awareness PA (Spoonerisms)
 - Example: lazy dog -> daisy log
- High correlation between measures: 0.3-0.8

Chromososme 6

linkage analysis in 89 UK families, 224 siblings - SAMPLE 1

Initial SNP association analysis

5.8 Mb

OC-irreg IQ adjusted

Statistical analysis by QTDT - Test of association for quantitative traits in nuclear families

Association analysis and LD evaluation in 89 UK families

Association P-values in the UK and US most severe cases

			UK SAMPLE								U	S SAM	PLE		
				313 siblings, 126 families							310 siblings, 131 families				
	Marker	LD region	Risk allele	OC- irreg	OC- choice	PD	READ	SPELL	PA	Ris k alle le	OC- choice	PD	READ	SPELL	PA
	rs699463	А	1	0.0032		0.0231	0.0279	0.0153	0.0112						
(rs4504469	В	11	0.0011		0.0082	0.004		0.01						
	rs2179515	В	1	0.0012		0.0131	0.0004	0.0232							
	rs761101	В	1	0.0025		0.0057	0.0006	0.0325							
	rs6456624	В	1	0.0005		0.0045	0.0003	0.0157							
	rs2328846	В	1	0.0007		0.0017	0.0003	0.0155							
	rs2235676	В	2	0.0023	0.0009		0.0041			2			0.0127		
$\langle \rangle$	rs2038137	В	1	0.0013		0.0026	0.0002	0.0061							
	k_pr_del	В	1	0.0011		0.0032	0.0002	0.0086							
	k_pr_1	В	2	0.0006	0.0003	0.0373	0.0003	0.0016		2			0.0022		0.0446
	rs1555090	В	1	0.001		0.0029	0.0003	0.0131							
	rs3033236	В	2	0.0134	0.0104		0.0073			2		0.0295	0.0014	0.0090	0.0252
	rs2143340	В	2	0.01	0.0003		0.0115			2		0.0404	0.0032	0.0141	0.0102
	rs1061925	В	2	0.0009	0.0005		0.0008			2			0.0040	0.0256	
	tt_th_del	С								2					0.0182
	rs926529	С	1			0.0132									
	rs1885211	С													
	th_ex_3	С													
	rs3756814	С	2	0.0332											
	rs6456632	С	1				0.0415								

Colour-coded *P*-values:

P < 0.001

0.01 < *P* < 0.05 0.001 < *P* < 0.01 A study in a completely independent sample detected association with 2 SNPs located in block B (AJHG Apr 2005)

Block B

Haplotype analysis

MUTATION SCREENING DID NOT REVEALED ANY OBVIOUS DISRUPTIVE MUTATION

Allele-specific quantitative gene expression assay

Select cell lines heterozygous for the risk haplotype

Measure of relative quantitative differences in gene expression using:

HaploChIP principle

The risk haplotype is associated to a reduced expression of the *KIAA0319* gene

The DCDC2 gene

Two studies found association within *DCDC2*, less than 200kb away from KIAA0319:

• Meng et al., 2005: Association with 2 SNPs + identification of an intronic deletion somehow link to dyslexia in 153 US families from CLDR

• Schumacher et al., 2006: Two-SNPs haplotype within intron seven associated in two independent German trio samples. Association is stronger in severe sub-groups

KIAA0319 v DCDC2

Oxford/Cardiff collaboration

Harold et al, Mol Psychiatry 2006

				Selected	sibships	from the	Oxford s	ample		Cardiff cor	cases and ntrols	
		-		n =	= 313 sit	blings, 120	5 families			n = 350 / n = 2/3		
				P value for trait								
Marker	Gene	Location	Risk allele ^a	OC-irreg	PD	OC- choice	READ	SPELL	PA	Risk allele ^a	P value	
rs793862_rs807701	DCDC2	Intron 7										
rs793862	DCDC2	Intron 7										
rs807701	DCDC2	Intron 7										
rs807724	DCDC2	Intron 6										
DCDC2 deletion	DCDC2	Intron 3	2	0.0298			0.0428		0.0478			
rs1087266	DCDC2	Intron 2										

Chromosome 6p: result summary

Chromosome 6p: result interpretation

- Associations are different signals of a unique causal mutations
- Different association are the results of different ascertainment and analysis criteria.
- Each gene contribute to a specific sub-group of dyslexia
- Definitive answer would come from the identification of the causal genetic variants

The Colorado case

Reference	Number of families	Selection criteria	
Deffenbacher et al. (2004)		A sib with severe score in at least one trait	DCDC2 KIAA0319
Francks et al. (2004)	126	A sib with severe score on a composite measure of traits contributing to the linkage	KIAA0319
Meng et al. (2005)	153	No selection	DCDC2

Each gene contribute to specific subgroup of dyslexia

The analysis is very sensitive to sample selection

KIAA0319: In situ expression

Andy Copp, UCL

Mouse brain E13.5

KIAA0319

Positive control

Negative control

Mouse brain E15.5

Positive control

Paracchini et al, HMG 2006

KIAA0319: In situ expression

Early fetal human brain

AS

Paracchini et al, HMG 2006

Neuronal migration and dyslexia

- Description of different dyslexic brains revealed cortical malformations mainly in the frontal region and in the left language areas consistent with abnormal neuronal migration (Galaburda's work):
 - Ectopias (small neuronal congregations in an abnormal layer location)
 - Dysplasia (loss of cortical neurons organisation)
- The neuronal migration disorder of periventricular nodular heterotopia has been found to be associated with an impairment in reading skills in presence of otherwise normal intelligence (Chang et al., 2005).

Neuronal migration and KIAA0319

- KIAA0319 is a transmembrane protein exposing PKD domains outside the cell.
- PKD domains have cell adhesion properties.
- It is possible that KIAA0319 is required for appropriate cell adhesion between migrating neurons and the glial fibers during the development of the neocortex.

Other candidate genes

Gene	Independent replications	Functional variants	Functional mechanism	Brain expression	Reference
KIAA0319	At least 3	NO	Gene expression	YES	Francks (2004) Cope (2005) Harold (2006) Paracchini (2006)
DCDC2	2	NO		YES	Meng (2005) Schumacher (2006)
DYX1C1	?	NO		YES	Taipale (2003)
ROBO1	None	NO	Gene expression	YES	Hannula-Jouppi (2005)
MRPL19	2 (same study)	NO	Gene expression	YES	Anthoni (2007)
C2ORF3	2 (same study)	NO	Gene expression	YES	Anthoni (2007)

DYX1C1: replication attempts

			Most sig	nificantly repor	rted P-values ^a for		
			individual SNPs or haplotypes within DYX1C1				
	Proband's	Country					
Reference	disorder	of origin	$-3 \mathrm{G} > \mathrm{A}$	1249G > T	-3G > A:1249G > T		
Taipale et al. (95)	Dyslexia	Finland	0.002 (A)	0.006 (T)	0.015 (A:T)		
Scerri et al. (81) ^b	Dyslexia	U.K.	n/s	0.0076 (G)	0.0140 (G:G)		
					0.0182 (G:T)		
Wigg et al. (105)	Dyslexia	Canada ^c	0.021 (G)	n/s	0.026 (G:G)		
Cope et al. (17)	Dyslexia	U.K.	n/s	n/s	n/s		
Marino et al. (62)	Dyslexia	Italy	n/s	n/s	n/s		
Meng et al. (65)	Dyslexia	U.S. ^c	n/s	n/s	n/t		
Bellini et al. (4)	Dyslexia	Italy	n/s	n/s	n/t		
Ylisaukko-Oja	Autism	Finland	n/s	n/s	n/s		
et al. (110)							
Wigg et al. (106)	ADHD	Canada ^c	n/s	n/s	n/t		

Paracchini et al, ARGG in press

Dyslexia candidates and brain development

 KIAA0319, DCDC2 and DYX1C1 have been implicated in neuronal migration

 ROBO1 is a receptor for the chemorepellent SLIT. The SLIT-ROBO system controls axon branching, commissural axon pathfinding and neuronal migration

The million dollar question

How can neuronal migration genes specifically affect reading skills?

Are these genes specifically expressed in reading-related cortical regions?

Brain expression profile

Paracchini et al, ARGG in press

Brain expression profile

Paracchini et al, ARGG in press

EXPRESSION PROFILES IN DIFFERENT TISSUES

Tissue	

BMR	Bone marrow
SPL	Spieen
TMS	Thymus
BRN	Brain
SPC	Spinal cord
HRT	Heart
MSL	Skeletal muscle
LVR	Liver
PNC	Pancreas
PST	Prostate
KDN	Kidney
LNG	Lung

DCDC2

ROBO1

KIAA0319

DYX1C1

Genes and reading skills

- The candidates are not expressed in reading-specific cortical area. They are also expressed in tissues different from the brain.
- WE DON'T EXPECT TO FIND THE GENE FOR READING (as FOXP2 in not the gene for language!!)
- Suboptimal neuronal migration may result in cortical abnormalities that affect reading-related regions. The same genes may also affect other cognitive functions.
- Cortical abnormalities in specific regions would depend on multiple gene-gene, gene-environment interactions.

The NeuroDys Project

- Multidisciplinary project grouping 13 research groups from 10 European countries with different expertise
- Access to ~4000 samples
- Major goals:
 - Identify the dyslexia susceptibility genetic variants
 - Link genetic background to sub-groups of dyslexic phenotypes
 - Link genetic background to specific neurological markers

Conclusion

- The KIAA0319 gene is a strong candidate for dyslexia susceptibility, supported by association data in at least three independent samples
- A specific haplotype associated to dyslexia is also associated to reduced expression of the KIAA0319 gene
- The *KIAA0319* is required for neuronal migration during the development of the neocortex
- The other dyslexia candidates are also involved in cortex development
- GENETICS IS PLAYING A CRUCIAL ROLE IN UNCOVERING THE CAUSES OF DYSLEXIA

Acknowledgements

Genetic analysis

Functional analysis

University of Oxford

Clyde Francks Tom Scerri Laurence MacPhie Simon Fisher Angela Marlow Janet Walter Alex Richardson Lon Cardon John Stein Anthony Monaco

University of Oxford

Antonio Velayos Brendan Keating Julian Knight Claudio Toma Mēgan Dennis Jerome Nicod Tara Caffrey Jennifer Taylor Richard Wade-Martins Anthony Monaco

Joe LoTurco Thomas Ankur Marugan Paramasivan Yu Wang

Andy Copp Sandra Castro Cecilia Lai

Colorado Study

Shelley Smith Bruce Pennington Richard Olson John DeFries

Cardiff University

Denise Harold Julie Williams