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I will address two time scales of sampling in  

neural networks: 

Part I: Neural Sampling 

 

Time scale of spikes up to short term dynamics of  

synapses and neurons 

 

Question:   On which of these two time scales can  

(and does) the brain implement probabilistic  inference 

through sampling ? 

. 

 

 

Part II: Synaptic Sampling 

 

Time scale of synaptic plasticity and rewiring 



 

Part I: Neural Sampling      

Inspiration from data:   Berkes et al. recorded the distribution of „network states“   

with 16 electrodes in area V1 of ferrets: 
 

P. Berkes, G. Orban, M. Lengyel, and J. Fiser. Spontaneous cortical activity reveals hallmarks of an  

optimal internal model of the environment. Science, 331:83-87, 2011  

Their interpretation:  

This distribution of network states becomes during development  an 

internal model for visual inputs 



 

Assume for example that         =                            is the stationary distribution over K  
binary random variables, each represented by one neuron, of a brain network C. 

If concrete values e („evidence“) are plugged in for some of these variables 

then the posterior marginal                                                       can be estimated by  

 

observing the firing rate of the neuron       that is associated with the binary random 
variable       . 

 

 

. 

 

 

 

 

• K. Friston, “A theory of cortical responses, 2005 

 

• E. Vul and H. Pashler, “Measuring the crowd within”, 2008 

 

• S. Denison, E.B. Bonawitz, A. Gopnik, T.L. Griffiths,  “Preschoolers sample from 

probability distributions”, 2010,  

 

Some of this work suggests furthermore, that the brain carries out probabilistic 

inference from distributions p through MCMC sampling from p. 

 

. 

 

Such stochastic internal models in brain networks 

have in fact been proposed by many researchers 



These studies suggest the analysis of stationary 

distributions of neural networks 

Stumbling block for theory:  

 

The Markov chains that are defined by networks of spiking neurons are 

nonreversable, both because of their inherent dynamics (a spike causes 

temporally extended changes in other neurons), and because of non-

symmetric synaptic connections.  

 



Theorem: Virtually any network C of spiking neurons with noise has a unique 

stationary distribution       of network states, to which it  converges exponentially fast 

from any initial state. 

 
                                                     Two relevant notions 

                                                      of network state: 

 

 

 

 

 

• A biological neural network can only be viewed as a MC if one moves to temporally extended 

notions of network state 

 

• These are MCs with continuous time and continuous state spaces 

 

• This Theorem  is one of few that also hold for data-based nonlinear models of neurons and 

synapses. 

 

     
Habenschuss, Jonke, Maass, PLoS Comp. Biol. 2013 

General theoretical result 

 



What types of probability distributions can arise as 

stationary distribution of a network of spiking neurons? 

I am considering here the same 

convention as Berkes et al. for relating 

spikes to bits: 
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.  
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Theorem:  The Neural Computability Condition (NCC) provides a sufficient 

condition for representing  p through a network of spiking neurons: 

For each RV      there is some neuron      whose membrane potential at time t is 

 

We cannot use the common detailed balance criterion for verifying that a 

particular distribution p is the stationary distribution, 

but the Neural Computability Condition (NCC) is a replacement 

Büsing, Bill, Nessler, Maass. PLoS Comp. Biology, 2011 

Note:  
This result holds rigorously only for an idealized type of spiking neuron with firing probabilty  

 

 

 

and step functions as PSPs  

 

But numerical simulations suggest that the error is not large for biologically more realistic 

models. 

 



 
     

     Neural Computability Condition 
(NCC)    

 
 

For  p with only  2nd-order 
dependencies, i.e.: Boltzmann 
distributions   
 
 
 
 
 
A network of spiking neurons with 
symmetric weights automatically 
satisfies the NCC. 

For p with arbitrary higher-order 
dependencies: 
 
Such p can be represented directly via 
networks of spiking neurons with 
asymmetric connections. 
 
In fact, such networks can learn to 
approximate any discrete distribution p  
from examples (drawn from p).  

D. Pecevski, L. Büsing, W. Maass, PLOS Comp. 

Biol.,.2011 

  

D. Pecevski, W. Maass, 2015 (under review) 

 

 

 

 

L. Büsing, J. Bill, B. Nessler, and W. Maass. PLOS Comp. Biol.  

2011 

 

Neural sampling is structrally different from Gibbs  

sampling, also  for this case ! 

 (Jonke, Habenschuss, Maass, Arxiv 2015) 



Some open questions about neural sampling 

• What is the speed (rhythm) of neural sampling in the brain? 

 

Apparently fastest known sampling-like dynamics (Jezek et al, Nature 

2011): 

 

 

 
Blue and red colors indicate strong correlation with the place map  

of the blue or red maze („context“),  Hardly any theta cycles with 

mixed „contexts“ were found 

 

• To what extent does the brain use results of neural sampling for 

decision making etc? 

 

• Can stationary distributions be learnt from examples (that are 

generated by some external distribution p*) by networks of spiking 

neurons? 

 

• How are behaviourally relevant random variables encoded? 

 

 



Part II: Synaptic Sampling 
 

Many biological network parameters are fluctuating (more or less) all the time: 

 
A postsynaptic density consists of over 1000 different 

types of proteins, many in small numbers. 

 

Since these molecules have a lifetime of only weeks 

or months, their number is subject to permanent 

stochastic fluctuations. 

  

Receptors etc. are subject to Brownian motion within 

the membrane. 

 

Furthermore axons sprout and dendritic spines come 

and go on a time scale of days (even in adult cortex, 

perhaps even in the absence of neural activity) 

 

Data from Svoboda Lab 



Longterm recordings show that neural codes drift on 

the time-scale of weeks and months 

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., ... & Schnitzer, M. J.. 

Long-term dynamics of CA1 hippocampal place codes. Nature Neuroscience, 2013  

 

See also: 

 

Rokni, U., Richardson, A. G., Bizzi, E., & Seung. Motor learning with unstable neural 

representations. Neuron, 2007 

 

 

and forthcoming new data. 



Mathematical framework for capturing these phenomena: 

 „Synaptic Sampling“ 

• We model the evolution of network parameters through Stochastic 

Differential Equations (SDEs):  𝑑𝜃𝑖 = 𝑏
𝜕

𝜕𝜃𝑖
log 𝑝∗(𝜽) 𝑑𝑡 + 2𝑇𝑏 ∙ 𝑑𝒲𝑖   

 

 

 

 

• The diffusion term 𝑑𝒲𝑖 in the SDE  

denotes an infinitesimal step of a  

random walk („Brownian motion),  

whose temporal evolution from  

time s to time t satisfies  

𝓦𝒊
𝒕 −𝓦𝒊

𝒔~𝐍𝐎𝐑𝐌𝐀𝐋 𝟎, 𝒕 − 𝒔 . 

time t 

drift diffusion 



Mathematical framework for capturing these phenomena: 

 „Synaptic Sampling“ 

Integration of this SDE yields infinitely many different solutions for the evolution of 

the parameters.  

 

But the evolution of their probability density is given by a deterministic PDE 

(Fokker-Planck equation):  

 

𝜕

𝜕𝑡
𝑝𝐹𝑃(𝜽, 𝑡) =   −

𝑖

𝜕

𝜕𝜃𝑖
 𝑏
𝜕

𝜕𝜃𝑖
log 𝑝∗ 𝜃𝑖 𝐱, 𝜽\𝒊  𝑝𝐹𝑃 𝜽, 𝑡  +

𝜕2

𝜕𝜃𝑖
2  𝑇𝑏 𝑝𝐹𝑃 𝜽, 𝑡  

 

By setting the left-hand side to 0, this FP-equation makes the resulting stationary 

distribution 
1

𝑍
𝑝∗(𝜽)

1

𝑇  for the vector 𝜽 of all network parameters 𝜃𝑖   explicit.   

 

Implication:   One can program into stochastic plasticity rules 

                       𝑑𝜃𝑖 = 𝑏
𝜕

𝜕𝜃𝑖
log 𝑝∗(𝜽) 𝑑𝑡 + 2𝑇𝑏 ∙ 𝑑𝒲𝑖   

desired target distributions   
1

𝑍
𝑝∗(𝜽)

1

𝑇    of the parameters. 



synaptic sampling 
 with prior 𝑝𝑆 𝜽  

reinforcement learning 
   
 
      
𝑝∗ 𝜽 ∝ 𝑝𝑆 𝜽 ∙ 𝑝𝒩 R = 𝑚𝑎𝑥 𝜽) 
 
where R signals reward  
 
This integrates policy gradient RL 
with probabilistic inference. 

 

D. Pecevski, L. Büsing, W. Maass, PLOS Comp. 

Biol.,.2011 

  

D. Pecevski, W. Maass, 2015 (under review) 

 

 

 

 

unsupervised learning (generative 
models)  
 
       𝑝∗ 𝜽 𝒙 ∝ 𝑝𝑆 𝜽  𝑝𝒩 𝒙 𝜽  
 
where  
• x are repeatedly occurring network inputs 

 
•  𝑝𝒩 𝒙 𝜽  is the generative model provided 

by a neural network 𝒩  with parameters 𝜽 

Kappel, Habenschuss, Legenstein, Maass;  

Reward-based network plasticity as Bayesian inference,  

RLDM 2015 

Hence synaptic sampling can implement sampling from  

a posterior distribution of network parameters 

Kappel, Habenschuss, Legenstein, Maass;  

Network plasticity as Bayesian inference, PLoS Comp Biol, 

in press, and NIPS 2015 



Functional implications of synaptic sampling  

for learning 

 

1. Better generalization  (predicted by 

MacKay, 1992) 

 

2. Structural plasticity can easily be integrated 

with synaptic plasticity in a principled 

manner 

 

3. Automatic self-repair capabilities of the 

network (without requiring a clever 

supervisor that switches learning back on 

after a perturbation) 

 

 

 
 

. 

 



Spine dynamics and synaptic plasticity can easily be 

integrated into a SDE for a parameter that regulates both 

Ansatz:  A single parameter 𝜃𝑖 controls the spine volume and – once a synaptic 

connection has been formed –  the weight of this synaptic connection. 

 

 

Not only STDP, but also experimentally 
observed power-law survival curves for 
synaptic connections are reproduced by this 
combined rule: 
 

 

 

Experimental data from  

(Löwenstein, Kuras, Rumpl,  

J. of Neuroscience, in press) 



• some slides with unpublished results are 
deleted 



Summary of part II: Synaptic sampling 
One arrives at a new understanding of network learning 

• The parameter vector permanently wanders around 

(with varying speed) n some very high-dimensional 

space of parameter values 𝜽 

 

• It spends most of its time in a low-dimensional sub-

manifold where both the prior and the performance 

(likelihood of inputs, or reward probability)  are high  

 

• Hence changes in the input distribution or lesions are 

no big deal, since the parameter vector 𝜽 does not have 

a „permanent home“ anyway 

 

• Priors enable the network to combine experience 

dependent learning with structural rules in a 

theoretically optimal way (Bayesian inference) 
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