Interplay of synaptic plasticity and probabilistic brain theories

Wulfram Gerstner EPFL, Lausanne

Joint work with: Danilo J. Rezende

Funding acknowledged: ERC, BrainScales, HBP, Swiss Natl. Sci. Foundation, Probabilistic Brain Inference, Sampling

Machine Learning Optimal learning rules

Probabilistic Brain, Sampling, Bayesian Brain

Kording and Wolpert 2004; Berkes et al. 2011; Knill and Pouget 2004

Nessler et al. 2013

Machine Learning Optimal learning rules

Dayan 2000 Friston and Stephan, 2007 Beal and Gahrahmani, 2006

Pfister et al. 2006 Brea et al. 2013

Synaptic plasticity STDP

Markram et al. 1997; Bi and Poo 2001 Artola and Singer 1993

Behavioral Learning – and synaptic plasticity

Synaptic Plasticity = Change in Connection Strength

Hebbian Learning

When an axon of cell **j** repeatedly or persistently takes part in firing cell **i**, then j's efficiency as one of the cells firing i is increased Hebb, 1949

Is Hebbian learning useful? – Developmental learning/rec. field development

Is Hebbian learning linked to experiments?

Experimental Induction Protocols

Markram et al. 1997, Bi an Poo 1998, Sjostrom et al. 2001

Three factor rules (schematic)

→ Reinforcement learning: success = reward – (expected reward)

Three-factor rules in theory

 $\Delta w_{ij} \propto F(pre, post, 3rd factor)$

Neuromodulated STDP experiments

Figure 2: Fit of experimental neuromodulated STDP data with a simple phenomenological model. A: Fit of the data shown in Figure 3 in [Zhang et al., 2009]. Dots show the data (same as in Figure 1C), lines show the model fit, with parameters as in Table 2. B: Fit of the data in Figures 2B, 3C and 4B in [Seol et al., 2007]. Dots show the data, lines show the model fit, with parameters as in Table 2. Cyan points refer to a protocol using single postsynaptic action potentials for STDP induction, all the other points correspond to postsynaptic burst induction.

Probabilistic Brain Sampling

Machine Learning Optimal learning rules

Interplay of synaptic plasticity and probabilistic brain theories

- Introduction
- Network and Task
 - Math1: Likelihood in Spiking Neurons
 - Math 2: Learning rule for network with hidden units

Spiking Neural Network

Observed neurons

The task:

- 'slow' sequence

'lullaby, children song'

frere Jacques,

Integrate-and-fire neurons Neuronal time constant: 10ms Duration of each step in sequence: 30ms +/- 20ms → Network must keep 'memory'

> Rezende and Gerstner, Frontiers Comp. Neurosci. 2014

Task: Sequence learning and Sequence Generation

After learning, sequence generation, network with

Rezende and Gerstner, Frontiers Comp. Neurosci. 2014

Hidden neurons

- -- Memory
- -- Hidden causes
- Compressed explanation

... all well known in machine learning, Bayes theory, artificial neural networks, deep learning etc

Big question:

-How can we learn the hidden representation? -Biologically plausible?

Interplay of synaptic plasticity and probabilistic brain theories

- Introduction
- Network and Task
- Math1: Likelihood in Spiking Neurons
- Math 2: Learning rule for network with hidden units
- Surprise

Neuron model: Spike response model with stochastic firing. Spike emission

Spike generation (probabilistic)

$$\rho(t \mid u_i) = \rho(u(t)) \propto \exp(\beta u(t))$$

The higher the potential, the more likely the neuron is to fire

Pillow et al. 2008, Paninski 2004, Pfister et al. 2006

Derivation of learning rule

• Maximize likelihood that (observed) spikes could have been generated by model

$$\frac{d}{dt}w_{ij} = \eta \frac{d}{dw_{ij}} \log \langle L \rangle$$

Pfister, Barber, Gerster. 2006

spiking neurons

$$\frac{d}{dt} w_{ij}(t) \propto \varepsilon (t - t_j^{pre}) [\delta(t - t_i^f) - \rho(u(t))]$$

EPSP Post

Optimization is Convex

Work of Paninski

Learning rule for fully observable network

$$\frac{d}{dt}w_{ij} = \eta \frac{d}{dw_{ij}} \log \langle L \rangle$$

$$\frac{d}{dt} W_{ij}(t) \propto \varepsilon(t - t_j^{pre}) [\delta(t - t_i^f) - \rho(u_i(t))]$$

Pfister et al. 2006

Interplay of synaptic plasticity and probabilistic brain theories

- Introduction
- Network and Task
- Math1: Likelihood in Spiking Neurons
- -> Math 2: Learning rule for network with hidden units
 - Surprise/novelty

Math 2: Learning rule for network with hidden units

Hidden units

- + memory
- + hidden causes
- + compact representations
- hard to train

Aim: visible units

$$L = P(observed Spiketrain)$$

$$= P(X_v)$$

$$= \int P(X_{v}, X_{H}) \, dX_{H}$$

all hidden states

Trick: Variational Learning (a.k.a: Free Energy)

e.g. Friston 2005

Approximate complicated network *M*, by simpler network *Q*

Minimize KL – divergence

$$KL(q;p) = \int q(X_H | X_v) \log \frac{q(X_H | X_v)}{p(X_H | X_v)} dX_H$$

$$KL(q; p) = F + \log p(X_v)$$

$$F = \left\langle \log q(X_H | X_v) - \log p(X_H | X_v) \right\rangle_{q(X_H | X_v)}$$

average over samples from simple network

Trick: Variational Learning (aka: Free Energy)

Minimize $F \rightarrow$ maximize (upper bound of) log p

 $-\log p(X_v) \le F$

$$KL(q; p) = F + \log p(X_v) \ge 0$$

e.g., Dayan 2000 Friston, 2005 Friston and Stephan, 2007 Beal and Gahrahmani, 2006

$$F = \left\langle \log q(X_H | X_v) - \log p(X_H | X_v) \right\rangle_{q(X_H | X_v)}$$

average over samples from simple network

Math 2: Learning rule for network with hidden units

$$\frac{d}{dt}w_{ij} = -\eta \frac{d}{dw_{ij}} \log \langle F \rangle$$

 \rightarrow M network takes Q network as teacher

Biological implementation of learning rule

novelty/surprise

Hebbian learning leaves trace:

$$\frac{d}{dt}Hebb_{ij}(t) = \varepsilon(t - t_j^{pre})[\delta(t - t_i^f) - \rho(u_i(t))] - Hebb_{ij}$$

$$\frac{d}{dt} w_{ij}(t) = \eta \cdot Nov \cdot Hebb_{ij}$$

$$\uparrow$$
novelty/surprise

$$\downarrow$$

$$Nov = \hat{F} - \overline{F}$$

online estimate - running average of free energy

weights updated when we are more surprised then normally

Interplay of synaptic plasticity and probabilistic brain theories

- Introduction
- Network and Task
- Math1: Likelihood in Spiking Neurons
- Math 2: Learning rule for network with hidden units
- -> Surprise/novelty

Surprise/novelty

Neuromodulator Ach

See: Gu 2002, Ranganath and Rainer 2003, Yu and Dayan, 2005

Neuromodulators act on:

- Activity of neurons
- Synaptic plasticity

Our proposition: neuromodulator signal

Novelty = surprise – expected surprise

compare: reinforcement learning

Success = reward – expected reward

Surprise/novelty

Target maze

Maze of 16 **MNIST** pixel patterns 28x28 visible neurons 30 hidden neurons, Actions are random, every second

novelty

 $Nov = \hat{F} - \overline{F}$

3

(2,4) (1,4)

4

5

Expected surprise (free energy)

Learning Time(s)

Free Energy 'measures' mismatch of model to data

$$F \ge -\log p(X_v)$$

 \hat{F} = Online-single-sample estimate of F

 \hat{F} 'measures' surprise of present input

Our proposition: neuromodulator signal

Novelty = surprise – expected surprise

$$Nov = \hat{F} - \overline{F}$$

weights updated when we are more surprised then normally

Conclusions

-Hidden neurons/network structure to form memories -Hebb-rule/STPD for feedback connections -3-factor rule with 'novelty' for feedforward connections

Thanks to Danilo REZENDE Daan WIERSTRA Johanni BREA

Jimenez-Rezende, Wierstra, Gerstner, NIPS 2011 Brea, Senn, Pfister, J. Neuroscience 2013 Rezende and Gerstner, Frontiers Comp. Neurosci. 2014

Classification

R-max Xie&Seung 2004, Pfister et al. 2006, Florian 2007, ... $\dot{w} = R \times (H(\text{pre}, \text{post}) - \langle H(\text{pre}, \text{post}) | \text{pre} \rangle)$,

$$\longrightarrow \langle \dot{w} \rangle = \operatorname{Cov}(R, H(\operatorname{pre, post})).$$

R-STDP

Florian 2007, Farries&Fairhall 2008, Legenstein 2008, ...

$$\dot{w} = (R - \langle R | \text{pre} \rangle) \times H(\text{pre, post}).$$

$$\rightarrow \langle \dot{w} \rangle = \operatorname{Cov}(R, H(\operatorname{pre, post})).$$

R-STDP with gating effect Izhikevich 2007

$$\langle \dot{w} \rangle = \operatorname{Cov}(R, H(\operatorname{pre, post})) + \langle R \rangle \langle H(\operatorname{pre, post}) \rangle.$$

TD-STDP Fremaux et al. 2013, to appear, PLOS Comput. Biol. $\dot{w} = \delta \times H(\text{pre}, \text{post})$.

Classification

