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Behavioral Learning — and synaptic plasticity
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Synaptic Plasticity =Change in Connection Strength



Hebbilan Learning
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When an axon of cell | repeatedly or persistently

takes part in firing cell I, then j's efficiency as one

of the cells firing 1 Is increased
Hebb, 1949

Is Hebbian learning useful? —
Developmental learning/rec. field development

Is Hebbian learning linked to experiments?




Experimental Induction Protocols

Markram et al. 1997, Bi an Poo 1998, Sjostrom et al. 2001
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Three factor rules (schematic)
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- Reinforcement learning: success = reward — (expected reward)




Three factor rules (schematic)
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Three-factor rules in theory
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R-STDP

(Izhikevich, 2007;
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Neuromodulated STDP experiments
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Figure 2: Fit of experimental neuromodulated STDP data with a simple phenomeno-
logical model. A: Fit of the data shown in Figure 3 in [Zhang et al., 2009]. Dots show the data
(same as in Figure 1C), lines show the model fit, with parameters as in Table 2. B: Fit of the
data in Figures 2B, 3C and 4B in [Seol et al., 2007]. Dots show the data, lines show the model
fit, with parameters as in Table 2. Cyan points refer to a protocol using single postsynaptic

action potentials for STDP induction, all the other points correspond to postsynaptic burst
induction.
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Conclusion:
STDP experiments are unconclusive
Lot’s of things possible
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Spiking Neural Network

all neurons are
V ‘visible’
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Observed
neurons



The task:

- ‘'slow’ sequence

lullaby, children song’

frere Jacques, ....



Task: Sequence learning and Sequence Generation

Target pattern (sample)
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Integrate-and-fire neurons
Neuronal time constant; 10ms

Duration of each step in sequence: 30ms +/- 20ms
- Network must keep ‘memory’

Rezende and Gerstner,
Frontiers Comp. Neurosci. 2014



Task: Sequence learning and Sequence Generation

Target pattern (sample)

30 neurons

400ms
After learning, sequence generation, network with
30 visible neurons
50 hidden neurons
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Rezende and Gerstner,
Frontiers Comp. Neurosci. 2014



Hidden neurons

- Memory

- Hidden causes

- Compressed explanation

... all well known in machine learning, Bayes theory,
artificial neural networks, deep learning etc

Big question:
-How can we learn the hidden representation?

-Biologically plausible?
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Neuron model: Spike response model with
stochastic firing. Spike emission
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Spike generation (probabilistic)

The higher the potential,

p(tju;) = p(u(t)) ccexp(Fu(t)) e more liely the
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Likelihood of a spike train
Spike Response Model with escape noise
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Pillow et al. 2008, Paninski 2004, Pfister et al. 2006



Derivation of learning rule

« Maximize likelihood that (observed) spikes
could have been generated by model

d d Pfister, Barber, Gerster. 2006
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Optimization is Convex

Work of Paninski
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Learning rule for fully observable network
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Math 2: Learning rule for network with hidden units

Hidden units Aim: visible units
+ memory — P(observed Spiketrain
+ hidden causes L ( P )
+ compact representations =P(X,)

all hidden states



Trick: Variational Learning (a.k.a: Free Energy)
e.g. Friston 2005

Q Approximate complicated network M,
by simpler network Q

Minimize KL — divergence

N a(Xy|X,)
o KL@p)= | a(X,|X,)log p(XH|XV)dXH

KL(g; p) = F +log p(X,)

F :<Iog q(X, |XV)—|09 p(Xy, |xv)>q(xH\Xv)
!

average over samples from simple network



Trick: Variational Learning (aka: Free Energy)
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Math 2: Learning rule for network with hidden units
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Biological implementation of learning rule

novelty/surprise
Hebbian learning leaves trace:
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post, i
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dt ij

novelty/surprise

lA_ j

Nov=F —-F _
weights updated
online estimate - running average when we are more
of surprised then normally

free energy
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Surprise/novelty

Neuromodulator Ach

See: Gu 2002, Ranganath and Rainer 2003, Yu and Dayan, 2005
Neuromodulators act on:
- Activity of neurons
- Synaptic plasticity

Our proposition: neuromodulator signal

Novelty = surprise —expected surprise

compare: reinforcement learning
Success = reward — expected reward



Surprise/novelty
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Free Energy ‘measures’ mismatch of model to data
F >—log p(X,)

F = Online-single-sample estimate of F

F ‘measures’ surprise of present input

Our proposition: neuromodulator signal

Novelty = surprise —expected surprise

Nov=F —

>

weights updated

1]

when we are more
surprised then normally




Conclusions
Aw; oc F(pre, post,3rd factor)

Nov=F -F |\ %

pre

input

-Hidden neurons/network structure to form memories
-Hebb-rule/STPD for feedback connections
-3-factor rule with ‘novelty’ for feedforward connections
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Classification

R-max Xie&Seung 2004, Pfister et al. 2006, Florian 2007, ...

w = R x (H(pre, post) — (H (pre, post)|pre)) .

_ (w) = Cov(R, H(pre, post)).

R-STDP
Florian 2007, Farries&Fairhall 2008, Legenstein 2008, ...

w = (R — (R|pre)) x H(pre.post).
—  (w) = Cov(R. H(pre, post)).

R-STDP with gating effect Izhikevich 2007

(w) = Cov(R, H(pre, post)) + <

TD-STDP Fremaux et al. 2013, to appear, PLOS Comput. Biol.

w =0 x H(pre,post).
38



M = {

Classification

post, i

M
w = M x H(pre,post)
covariance-rule
pre
TD learning j

const

| A

gated Hebbian learning
surprise/novelty-modulated STDP

non-modulated STDP
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