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"\ | ”'j:" @ SECTION 4: CRITICAL GAPS IN MODELS

JOINING THE DOTS IN THEORETICAL NEUROBIOLOGY

Karl Friston, University College London

ABSTRACT: My treatment of critical gaps in models of probabilistic inference will focus on the potential of unified
theories to “close the gaps” between probabilistic models of perception and evidence accumulation - and how these
models can be understood in terms of embodied inference and action. Formally speaking, models of motor control
and choice behaviour can be cast in terms of (active) probabilistic inference; however, there are two key outstanding
issues. Both pertain to the implementation of active inference in the brain. The first speaks to the distinction between
discrete and continuous state-space models — and the requisite message passing schemes (e.g., variational Bayes
versus predictive coding). The second key distinction is between mean field descriptions in terms of population
dynamics (i.e., sufficient statistics) and their microscopic implementation in terms of spiking neurons (i.e., sampling
approaches to probabilistic inference). These are potentially important issues that constrain the interpretation of
empirical data — and how these data can be used to adjudicate among different models of the Bayesian brain.
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Does the brain use continuous or discrete
state space models?

Does the brain encode beliefs with ensemble
densities or sufficient statistics?



Does the brain use continuous or discrete
state-space models?
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Approximate Bayesian inference for
continuous states: Bayesian filtering

X € States and their
R Sufficient statistics

,u* =argminF (s, u)
E(s,u)=-1Inp(s|m)

Free energy Model evidence

q(x|u)=~ p(x|s,m)
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“Objects are always imagined as being present in the field of
vision as would have to be there in order to produce the same
impression on the nervous mechanism” - von Helmholtz

Hermann von Helmholtz Richard Gregory

Impressions on the Markov blanket...




Bayesian filtering and predictive coding
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What does Bayesian filtering explain?
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Hierarchical Models in the Brain

The hierarchical orgamsation of coriical areas (c.f., [39])

Each area comprises distinct neuronal subpopulations, encod-
ing expected states of the world and prediction error 72]).

® [xirinsic forward connections convey prediction error (from
superficial pyramidal cells) and backward connections mediate
predictions, based on hidden and causal states (from deep
pyramidal cells) [49)].

¢ Recurrent dynamics are intrinsically stable because they are
trying to suppress prediction error [54,64].

Message passing in neuronal hierarchies

¢ lunctional asymmetries in forwards (linear) and backwards
(nonlinear) connections may reflect their distinct roles in
recognition (c.f., [44]).

¢ Principal cells elaborating predictions (e.g., deep pyramidal
cells) may show distinct (low-pass) dynamics, relative to those
encoding error (e.g., superficial pyramidal cells)

¢ Lateral interactions may encode the relative precision of
prediction errors and change in a way that 1s consistent with
classical neuromodulation (c.f., [63,71]).

¢ The rescaling of prediction errors by recurrent connections, in

. A .. . ) ) . . Figure 9. Sch ic detailing the al architectures that encode an ensemble density on the states and parameters of

proportion to their precision, affords a form of cortical bias or hierarchical models. This schematic shows how the neuronal populations of the previous figure may be deployed hierarchically within three

. - = cortical areas (or macro-columns). Within each area the cells are shown in relation to the laminar structure of the cortex that includes supra-granular
gaimn control ["’3, '“1’] . (SG) granular (L4) and infra-granular (IG) layers.

. . .. . . doi:10.1371/joumal.pcbi.1000211.9009
® The dynamics of plasticity and modulation of lateral

interactions encoding precision or uncertainty (which optimise
a path-integral of variational energy) must be slower than the
dynamics of neuronal actvity (which optimise variational
energy per se)

& Neuronal activity, synaptic eflicacy and neuromodulation must
all affect each other; activity-dependent plastcity and
neuromodulation shape neuronal responses and:

¢ Neuromodulatory factors play a dual role in modulating
postsynaptic responsiveness (e.g., through modulating in after-
hyperpolarising currents) and synaptic plasticity [66,67].
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Haeusler and Maass (2007) Canonical micracircuit for predictive coding
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Figure 5. A Canonical Microcircuit for Predictive Coding

Left: the canonical microcircuit based on Haeusler and Maass (2007), in which we have removed inhibitory cells from the deep layers because they have very litle
interlaminar connectivity. The numbers dencte connection strengths (mean amplitude of PSPs measured at soma in mV) and connection probabilities (in
parenthesas) according to Thomson et al. (2002). Right: the proposed cortical mi i for predicti ding, in which the ias of the previous figure have
been associated with various cell types. Here, predi rror i are hig in pink. Inhibitory connections are shown in red, while excitatory
connections are in black. The dotted lines refer to connections that are not present in the microcircuit on the left (but see Figure 2). In this scheme, expectations
{about causes and statas) am assigned to (excitatory and inhibitory) interneurons in the supragranular layers, which am passed to infragranular layers. The
cormesponding prediction errors occupy granular layers, while superficial pyramidal cells encode prediction emors that are sent forward to the next hisrarchical
level. C and ‘arrors on hidden causes are associated with excitatory cell types, while the corresponding quantities for hidden
states are assigned to inhibitory cells. Dark circles indicate pyramidal cells. Finally, we have placed the pracision of the feedforward prediction errors against the
superiicial pyramidal cells. This quantity Is the postsynapti ivity or gain to fintrinsic and top-down) presynaptic inputs. We have previously discussed
this in terms of attentional modulation, which may be intimately linked to th presynaptic inputs and ensuing po: (Feldman
and Friston, 2010; Fries et al., 2001).
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Cross frequency coupling
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What does Bayesian filtering explain?

Cross frequency coupling
Perceptual categorisation
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FIGURE & | Simulated EEG data from our simulations (upper pansts) and
empirfcal EEG data (kowner paned) from Mangun and Hillyard (1921). The
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Fig. 6 A demonstration of perceptual kearning. This figure shows the results of a simulated
roving oddball paradigm, in which a stimulus is changed sporadically to elicit an oddball
(iLe, deviant) response. The stimuli used here are chirps of the same sort as those used in
Fig. 4 Left panels: The left column shows the percepts elicited in sonogram format. These
are simply the predictions of sensory input, based on their inferred causes (Le., the expecta-
tions about hidden states). The right column shows the evolution of prediction error at the
first (dotted lines) and second (solid line) kevels of a simple linear convolution model (in
which a causal state produces time-dependent amplitude and frequency modulations). The
results are shown for one learned chirp (top graph) and the first four responses to a new
chirp (lower graphs). The new chirp was generated by changing the parameters of the
underlying equations of motion. It can be seen that following the first oddball stimulus, the
prediction errors show repetition supp ion (Le., the amplitudes of the traces get smaller).
This is due to learning the model parameters over trials (see synaptic plasticity and gain in
Fig. 3). Of particular interest is the difference in responses to the first and last presentations
of the new stimulus: these cormespond to the deviant and standard responses, respectively.
Right panel: This shows the difference between standard and oddball msponses, with an
enhanced negativity at the first level early in peristimulus time (dotted lines for inferred
amplitude and frequency), and a later negativity at the higher or second level (solid line for
the causal state). These differences could correspond o phenomena like enhanced N1 effects
and the mismatch negativity (MMN) found in empirical difference waveforms. Note that
superficial pyramidal cells (see Fig, 3) dominate event related potentials and that these cells
may encode prediction error® -4,
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Fig. 5 — Omission-related responses: The left panels show the original song and responses evoked. The right panels show
the equivalent responses to omission of the last chirps. The top panels show the stimulus and the middle panels the
corresponding percept in sonogram format. The interesting thing to note here is the occurrence of an anomalous percept
after termination of the song on the lower right. This corresponds roughly to the chirp that would have been perceived in
the absence of omission. The lower panels show the corresponding (precision weighted) prediction error under the two
stimuli at both levels. These show aburst of prediction error when a stimulus is missed and at the point that the stimulus is
omitted (at times indicated by the arrows on the sonogram). The solid lines correspond to sensory prediction error and the
broken lines correspond to extrasensory prediction error at the second level of the generative model.
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Figure 4 This schematic illustrates the hierarchical anatomy we presume underiies false inference in patients with functional motor
grmptoms (both weakness and 'positive’ phenomena such as tremor). In normal movement, we propose that predictions regarding the
snsory consequences of intended movement arise at a high hierarchical level (here pre-supplementary motor area) and are propagated
down the motor hierarchy, produdng a proprioceptive prediction emor (peripherally) that is fulfiled by movement. In functional motor
symptoms we propose that an abnomal prior expectation related to the dynamics!scaling of movement is formed within an intermediate
mtor area (here the supplementary motor area) . This prior is afforded abnomal predsion by attentional processes (thick blue armow) that
cause intermediate level motor predictions (thick black arow) to elict movement and prediction ermors (thick red amow]) to report the
unpredicted content of that movement to higher cortical areas (here, pre-supplementary motor area). The secondary consequence af
these prediction erors is that prefrontal regions will try to explain them away in terms of 2 symptomatic interpretation or misattribution of
agency to external causes; in short, a failure to realize the movement was intended. Forward connections convey prediction emor (red),
backward connections convey predictions (black) and descending attentional modulatory connections (blue). pSMA = pre-supplementary
motor area; M1 = primary motor cortex; SMA = supplementary motor area.
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. Figure I | A demonstration of cued reaching movements. The lower right part of the
Sensory attenuatlon figure shows a motor plant, comprizing a two-jointed arm with teo hidden states, eachof

which corresponds to a particular angular pesition of the twa joints; the current pasition
S H t H t t' ofthe finger [red circle) is the sum of the vectors describing the location of 2ach joint.
ensorimortor In egra on Here, cauzal states in the world are the position and brightnes: of the target (green
circle). The arm obeys Newtonian mechanics, specified in terms of anguler inertia and
friction. The left part of the figure illustrates that the brain senses hidden states directly
in termsz of proprioceptive inmfsnﬁﬁnt:igmhﬂ'nungulm positions {x x ) of the
joirts and indirsctly through sesing the location of the finger in space I, J ) In addition,
through visual input (5, ) the sgent senses the target location (v, v,) and brightriess (v ).
Sensory prediction errors are passed to higher brain levels to optimize the conditional
expectations of hidden states (that is, the angular position of the joints) end causal (thet
iz, target) states. The snsuing predictions are sent back to suppress sensory prediction
errors. At the same time, sensory prediction errors are also trying to suppress themselves
by changing sensory input through action. The grey and black lines denote reciprocal
message passing among neuronal populations that encode prediction error and
conditional expectations: this architecture is the same as that depicted in 508 2. The
blue lines represent descending maotor control signals from sensory prediction-ermor
unitzs. The agent’s generative model included priors on the motion of hidden states that
effectively sngage an invizible elastic band between the finger and target [when the
targetisilluminated). This induces a prior expectation that the finger will be drawn to
the target, when cued appropriately. The insert shows the ensuing movement trajsctory
caused by action. The red circlesindicate the initial and final positions of the finger,
which reaches the target (green circle] quickly and smoothly; the blue line is the
simuleted trajecton:
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Figure 3. Active Inference

This figure represents the final simplification of the predictive coding scheme of the previous figure, Here, cost functions have been replaced by prior beliefs
about (desired) trajectories in an extrinsic frame of reference, These beliefs enter the Bayesian filter to guide predictions of sensory inputs. Proprioceptive
predictions are fulfilled in the periphery through classical motor reflex arcs, while predictions of exteroceptive inputs correspond to corollary discharge and are an
integral part of perceptual inference. Note that optimal control now reduces to simply suppressing proprioceptive prediction errors. This is active inference.
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Fig. 9 and i in active infer-
ence: In this figure, we have focused on monosynaptic reflex arcs and
have therefore treated alpha motor neurons as prediction error units.
In this scheme, descending (corticospinal) proprioceptive predictions
(from upper motor neurons in M1) and (primary sensory) proprio-
ceptive afferents from muscle spindles converge on alpha motor
neurones on the ventral horn of the spinal cord. The comparison of
these signals generates a prediction error. The gain of this prediction
error is in part dependent upon descending predictions of its precision
(for further explanation see "'CM neurons and predictions of precision”
in the “Discussion”). The associated alpha motor neuron di

activity. Crucially, active inference suggests that both proprioceptive
(motor) and somatosensory systems use a similar architecture. Tt is
generally thought that prediction units correspond to principal cells in
infragranular layers (deep pyramidal cells) that are the origin of
backward connections; while prediction error units are principal cells
in supragranular layers (superficial pyramidal cells) that elaborate
forward projections (Mumford 1992; Friston and Kiebel 2009). Note
that we have implicitly duplicated proprioceptive prediction errors at
the spinal (somatomotor) and thalamic (somatosensory) levels. This is
because the gain of central (somatosensory) principal units encoding

elicit (extrafusal) muscle fibre contractions until prediction error is
suppressed. Ascending proprioceptive and somatosensory information
does not become a prediction error until it encounters descending
predictions, whether in the (ventral posterior nucleus of the) thalamus,
the dorsal column nuclei, or much earlier in the dorsal hom. In the
cortex, ermor units at a given level receive predictions from that level
and the level above, and project to prediction units at that level and
the Tevel above (only two levels are shown). Tn this way. discrep-

P error is set by (e.g. gain or
dopamine), while the gain of peripheral (somatomotor) prediction
error units is set by NMDA-Rs and gamma motor neuron activity. In
predictive coding, this gain encodes the precision (inverse variance)
of prediction errors (see Feldman and Friston 2010). Algorithmically,
the duplication of prediction errors reflects the fact that somatomotor
prediction errors drive action, while somatosensory prediction errors
drive (Bayes-optimal) predictions. For reasons of clarity we have
omitted i ing the cord in the system,

ancies between actual and predicted inputs sulting in

errors—ean either be resolved at that level or passed further up the
hierarchy (Friston et al. 2006). Prediction units project to error units at
their level and the level below, attempting to explain away their

«e.g. spinal projections to M1 and the transcortical reflex pathway from
S1 (in particular the proprioceptive area 3a) to MI: these are
described in the “Discussion”
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Fig.2. Generative process and model of oculomator pursuit movements. This schematic illustrates the pracess (left panel) and generative model of that process (right panel)
used to simulate Bayes optimal pursuit. The graphics on the lefi show a putative predictive coding scheme (with superficial pyramidal cells in red and deep pyramidal cells
in black in the pontine nuclei) processing proprioceptive information during oculomotor pursuit. These cells receive proprioceptive information from an inverse model in
the subcortical oculomotor system and respond reflexively to minimise proprioceptive prediction error through action. This prediction error rests on descending predictions
from the generative model an the right. The actual movement of the target is determined by a hidden cause (target location), which determines the visual input for any given
direction of gaze. The generative model entails beliefs about how the target and eyes mave. In brief, this model includes an invisible location that attracts the target, causing
iit to move. Crucially, the agent believes that its centre of gaze is attracted io this location (and the target), where the forces of attraction may (or may not) depend upan
occlusion of the target and its atiracting location. These forces of attraction are illustrated with lilac arrows in the top right; the arrows are labelled with their respective
multipliers from the equations directly below. Please see main text for a description of the variables in the equations describing the motion of hidden states and how they
depend upon hidden causes. Note that real states that are hidden from observation in the real world are in bold, whereas the hidden states assumed by the generative model
are in italics. (For interpretation of the references to color in the text, the reader is referred to the web version of this article.)
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Fig. 3 This figure shows the results of simulations in which a face
was presented to an agent, whose responses were simulated using the
active inference scheme described in the main text. In this simulation,
the agent had three intemal images or hypotheses about the stimuli it
might sample (an upright face, an inverted face and a rotated face).
The agent was presented with an upright face and its posterior
expectations were evaluated over 16 (12 ms) time bins, until the next
saccade was emitted. This was repeated for eight saccades. The
ensuing eye movements are shown as red dots at the location (in
extrinsic coordinates) at the end of each saccade in the upper row. The
corresponding of eye is shown in the insert on
the wpper left, where the red circles comespond roughly to the
proportion of the image sampled. These saccades are driven by prior
beliefs about the direction of gaze—hased upon the saliency maps in
the second row. Note that these maps change with successive
saccades as posterior beliefs about the hidden states, including the
stimulus, hecome progressively more confident Note also that
salience is depleted in locations that were foveated in the previous
saccade. This reflects an inhibition of return that was built into the

prior beliefs. The resulting posterior beliefs provide both visual and
proprioceptive predictions that suppress visual prediction errors and
drive eye movements, respectively. Oculomotor responses are shown
in the third row in terms of the two hidden oculomotor states
correspanding to vertical and horizontal displacements. The associ-
ated portions of the image sampled (at the end of each saccade) are
shown in the fourth row. The final two rows show the posterior beliefs
and inferred stimulus categories, respectively. The posterior beliefs
are plotted in terms of posterior expectations and the 90 % confidence
interval about the true stimulus. The key thing to note here is that the
expectation about the true stimulus supervenes over its competing
expectations and-—as a result—posterior confidence about the stim-
ulus category increases (the confidence mtervals shrink to the
expectation). This illustrates the nature of evidence accumulation
when selecting a hypothesis or percept the best explains sensory data.
Within-saccade accumulation is evident even during the initial
fixation with further stepwise decreases in uncertainty as salient
information is sampled by successive saccades
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Fig. 2 This schematic summarizes the results of the simulations of
action observation reported in Friston et al. (2011). The left panel
pictures the brain as a forward or generative model of itinerant
movement trajectories (based on a Lotka-Volterra attractor, whose
states are shown as a function of time in coloured lines). This model
fumishes predictions about visual and proprioceptive inputs, which
prescribe movement through reflex arcs at the level of the spinal cord
(insert on the lower left). The variables have the same meaning as in
the previous figure. The mapping between attractor dynamics and
proprioceptive consequences is modelled with Newtonian mechanics
on a two jointed amm, whose extremity (red ball) is drawn to a target
location (green ball) by an imaginary spring. The location of the
target is prescribed (in an extrinsic frame of reference) by the
currently active state in the atractor. These attractor dynamics and
the mapping to an extrinsic (movement) frame of reference constitute
the agent’s prior beliefs. The ensuing posterior beliefs are entrained

prior beliefs

v

v v
action observation
o
o8 .
' % .
wl &% S
° . Y4
1% 2
‘ \
2
14
o 2z 02 05 48 1 12 14 C 02 04 05 & 1 12 1A
position (x) position {x)
by visual and proprioceptive ions by prediction errors during
the process of inference, as summarized in the previous figure. The

g il of s was figured to
handwriting and is shown as a function of location over time on the
lower right (as thick grey lines). The red dots on these trajectories
signify when a particular neuron or neuronal population encoding one
of the hidden attractor states was active during action (left panel) and
observation of the same action (right panel): More precisely, the dots
indicate when responses exceeded half the maximum activity and are
shown as a function of limb position. The left panel shows the
responses during action and illustrates both a place-cell-like selec-
tivity and directional selectivity for movement in an extrinsic frame
of reference. The equivalent results on the right were obtained by
presenting the same visual information to the agent but removing
proprioceptive sensations. This can be considered as a simulation of
action observation and mirror neuron-like activity
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Figure 10. This figure represents behavioral results in terms of reaction times for depleting ine in three regi the superior
colliculus ding sensory sali (as in previ figure), the motor cortex encoding proprioception (middle column) and the
premotor cortex encoding affordance (right column). These results are shown using the same format as in previous figure and illustrate the
qualitatively different effects of dopamine depletion in different parts of the brain (or model). The lower panels indicate the implicit projections, from
the substantia nigra or ventral tegmental area, have been selectively depleted (where a red cross highlights the forward prediction errors affected).
The key thing to take from these simulations is that reducing the precision of prediction errors on sensory salience induces bradykinesia and
ion; whereas the ivalent reduction in proprioceptive affordance causes bradykinesia without perseveration. Finally, compromising the
precision of changes in affordance increases p ion and decreases bradykinesia.
doi:10.1371/joumal.pcbi.1002327.g010
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Figure 5. This figure summarizes the results of simulations
under normal levals of dopamine (using alog precision of four
for all prediction errors). The conditional predictons and expecta-
tons am shown as functions of time over 128 time bins, each madelng
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Fig. 3. Oxytocin and the development of emotional affordance. This schematic describes normal (and autistic) neurodevelopmental trajectories, in terms of (simplified) neural
architectures underlying predictive coding of autonomic (emotional) signals. The three panels illustrate the development of associative connections we imagine underlie the
acquisition of emotional responses during three stages of development. The anatomical designations should not be taken too seriously—they are just used to illustrate how
predictive coding can be mapped onto neuronal systems. In all of these schematics, red triangles correspond to neuronal populations (superficial pyramidal cells) encoding
prediction error, while blue triangles represent papulations {deep pyramidal cells) encoding expectations. These populations provide descending predictions to prediction
error populations in lower hierarchical levels (blue lines). The prediction error populations then reciprocate ascending prediction errors to adjust the expectations (red lines).

Arrows denote excitatory connections, while circles denote inhibitory effects {mediated by inhibitory interneurons). Left panel: in the first panel, connections are in place
1o mediate innate (epigenetically specified) reflexes — such as the suckling reflex - that elicit autonomic (e.g., vasovagal) reflexes in response (o appropriate somatosensory
input. These reflexes depend upon high-level representations predicting both the somatesensory input and interoceptive consequences. The representations are activated by
somatosensory prediction errors and send interoceptive predictions o the hypothalamic area—to elicit interoceptive prediction errors that are resolved in the periphery by
autonomic reflexes. Oxytocin is shown to project to the high-level representations (the amygdala) and the hypothalamic area, to modulate the gain or precision of prediction
error units. In this schematic, its effects are twofold: oxytocin attenuates the gain of hypothalamic prediction error units and augments the gain of higher level units. Middle
panel: this shows the architecture after associative learning, during which high-level representations in the anterior cingulate or insular cortex have learned the coactivation
of amygdala representations and exteroceptive cues (e.g., the mother's face during suckling). These high-level representations now predict the exteroceptive visual input and
(through the amygdala) yand jic ¢ es. Right panel: in this schematic, visual input (e.g. the mother’s face) is recognized using the high-level
representation in the anterior insular or cingulate cortex. However, in this case, interoceptive prediction error is attenuated so that it does not elicit an autonomic response.

In other words, although the high-level emotional representation is used to recognize exteroceptive cues, lower-level transcortical reflexes are inhibited. In autism, we
presume that oxytocin is deficient. such that sensory attenuation is impaired - leading to disinhibition of autonomic responses and the failure to recognize a mother’s face
in any other context — other than during suckling. This failure of sensory attenuation may underlie itivity, failure of i recognition, attention
o emational cues, theory of mind and central coherence. The dotted green line in this figure acknowledges that there may not be any direct projections from the origin of
oxytocin cells {in the supraoptic and paraventricular nuclei of the hypothalamus) to secondary or primary somatosensory cortex. (For interpretation of the references to
«color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7 — C ication and This figure uses the same format as Fig. 6; however, here, we have
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An example: Visual searches and saccades
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Is Bayesian filtering the only process theory for
approximate Bayesian inference in the brain?
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What about state space models? . Ny yl @/‘

=2

q(x|u)=~ p(x|s,m)
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What does Bayesian filtering explain?
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Figure 3. Upper pancl: The results of 128 simulated wials assessed in tems of the probability of obtaining a reward. This performance is
shown as a function of prior preference over six equally spaced levels. The four profiles correspond to active inference (FE), risk-sensitive
control (KL), expeeted utility (RL), and active inference under fixed levels of precision (DA). See main text for a description of these schemes
and how they relate to each other. The two horizontal lines show chance (bottom lin) and optimal (top line) performance, respectively. Lower
lefi panels: These repont expected precision as o fiunction of time within a trial (comprising three movements). The black lines correspond to a
trial in which the cue (CS) was first accessed in the lower arm of the maze in the previous figure, after which the reward (US) was secured. The
equivalent results, when staying at the center location and accessing the reward directly, are shown as red lines. The upper panel shows the
expeeted precision and the lower panel shows simulated dopamine responses (that produce an increase in precision, which subsequently
decays). Lower right panels: These show the equivalent results in terms of simulated dopamine discharges. The key thing to note here is that the
responses to the cue (CS) are increased when it is informative (i.e., acoessed in the lower arm), while subsequent responses to the reward (US)
are decreased. See main text for details of these simulated responses.
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Initial state and policy selection
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Does the brain use continuous or discrete
state space models or both?
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Does the brain encode beliefs with ensemble
densities or sufficient statistics?

Ensemble code Laplace code
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Ensemble density Parametric density



Variational filtering with
ensembles

82 K. Friston et al. | Journal of Physiology - Paris 100 (2006) 70-87
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Fig. 5. Diagram showing the generative model (left) and comresponding recognition; i.e., neuronal model (right) used in the simulations. Left panel: this is
the generative model using a single cause '/, two dynamic states x(l".xg” and four outputs yy,...,ys. The lines denote the dependencies of the variables on
each other, summarised by the equation on top (in this example both the equations were simple linear mappings). This is effectively a linear convolution
model, mapping one cause to four outputs, which form the inputs to the recognition model (solid arrow). The architecture of the corresponding
recognition model is shown on the right. This has a similar architecture, apart from the inclusion of prediction error units; &”. The combination of forward
(red lines) and backward influences (black lines) enables recurrent dynamics that self-organise (according to the recognition equation; ji) = k(&0 #641))
to suppress and hopefully eliminate prediction error, at which point the inferred causes and real causes should correspond. (For interpretation of the
references in colour in this figure legend, the reader is referred to the web version of this article.)
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From ensemble coding to predictive coding (Bayesian filtering)

Taking the expectation of the ensemble dynamics, under the Laplace
assumption,we get:

Dyuy-VvVU +T =

NN N
Il

Dyuy-VF © u-Du=VF

=
Il

This can be regarded as a gradient ascent in a frame of reference that
moves along the trajectory encoded in generalised coordinates. The
stationary solution, in this moving frame of reference, maximises
variational action by the Fundamental lemma.

#—-Du=0= VF =0 6 F =0

u

c.f., Hamilton's principle of stationary action.
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Does the brain encode beliefs with ensemble
densities or sufficient statistics or both?
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Ensemble code Laplace code
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G(xlu) = N (u=2% u.3(n))

Parametric description of ensemble density



In other words, do we have:

An approximate description of
(nearly) exact Bayesian inference

A (nearly) exact description of
approximate Bayesian inference

or

Ensemble code Laplace code

G(xlu) = N (u=2% u.3(n))

Parametric description of ensemble density
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