Set Representations in Infancy:
 A Numerical Necessity

Lisa Feigenson
Johns Hopkins University
Department of Psychological \& Brain Sciences

Flexible Quantification

Outline

Outline

Core System 1:

 Numerical Approximation
Outline

Core System 1: Numerical Approximation

Outline

Core System 1: Numerical Approximation

Core System 2: Individual object representations

Outline

Core System 1:
 Numerical Approximation

That
Strawberry

Exactly 53

Gap between core systems and mathematics

Core System 3: Need for set-based representations

Core System 1: Numerical Approximation Quick:

How many dots?

Core System 1: Numerical Approximation Quick:

How many dots?
\square

Core System 1: Numerical Approximation Quick:

How many dots?

Core System 1: Numerical Approximation Quick:

How many dots?
(6)

Core System 1: Numerical Approximation Quick:

How many dots?

Core System 1: Numerical Approximation Quick:

How many dots?

Core System 1: Numerical Approximation Quick:

How many dots?
(14)

Core System 1: Numerical Approximation

 Quick:How many dots?

Core System 1: Numerical Approximation Quick:

How many dots?

Core System 1: Numerical Approximation Quick:

How many dots?
(37)

Core System 1: Numerical Approximation

Adult approximation signatures:

Core System 1: Numerical Approximation

- Adults' performance exhibits Weber's Law:

Ability to discriminate 2 numbers depends on their ratio

EASY

Core System 1: Numerical Approximation

- Adults' performance exhibits Weber's Law:

Ability to discriminate 2 numbers depends on their ratio

HARD!!!

Core System 1: Numerical Approximation

Numerosity discrimination by adults:

Core System 1: Numerical Approximation

QUESTION: Are adults' number representations limited to the visual modality? Or are they more abstract? (Barth et al, 2003)

"Is 2 fewer or more than 1 ?"

Core System 1: Numerical Approximation

QUESTION: Are adults' number representations limited to the visual modality? Or are they more abstract? (Barth et al, 2003)

Cross-modal comparisons are as accurate as comparisons within the visual modality alone!

Core System 1: Numerical Approximation

Developmental origins of approximation?
Xu \& Spelke (2000): Habituate 6-month olds to either 8 or 16 dots

Core System 1: Numerical Approximation

Developmental origins of approximation?
Xu \& Spelke (2000): Habituate 6-month olds to either 8 or 16 dots

Test with OLD number...

vs. NEW number...

Core System 1: Numerical Approximation

Developmental origins of approximation?
Xu \& Spelke (2000): Habituate 6-month olds to either 8 or 16 dots

Do infants, like adults, exhibit ratio-dependent performance?

Core System 1: Numerical Approximation

Developmental origins of approximation?
Xu \& Spelke (2000): Habituate 6-month olds to either 8 or 12 dots

Core System 1: Numerical Approximation

Developmental origins of approximation?

- Like adults, infants' approximations are abstract

- Like adults, infants' approximations support arithmetic

$$
\frac{1}{21}+\frac{1}{1}=\frac{1}{2} \text { or } 2
$$

Core System 1: Numerical Approximation

Hallmarks of Approximation:

- Ratio dependent- Weber's Law
- Demonstrated in infants, children, adults (\& animals)
- Abstract, amodal
- Supports arithmetic computation

Core System 1: Numerical Approximation

BUT: Numerical approximation does not support representing individual items...

Test with OLD number...

vs. NEW number...

Core System 2: Individual Object Representations

Can infants ever represent numbers of individual items?

Manual search task

Core System 2: Individual Object Representations

Manual Search Procedure: 1 vs. 2 Objects

Time

Core System 2: Individual Object Representations

Manual Search Procedure: 1 vs. 2 Objects

Core System 2: Individual Object Representations

Core System 2: Individual Object Representations

(12-14 mos)

Core System 2: Individual Object Representations

(12-14 mos)

Core System 2: Individual Object Representations

(12-14 mos)

Core System 2: Individual Object Representations

12-14 month infants limited to tracking 3 objects at a time...

Is this due to memory demands or reaching demands of manual search task?

Core System 2: Individual Object Representations

Cracker choice task:

Measure 10- \& 12-month olds' spontaneous abilities to track \& compare two quantities;
Vary quantity sizes to probe infants' abilities

Core System 2: Individual Object Representations

Cracker choice task:

Core System 2: Individual Object Representations

Cracker choice task:

Core System 2: Individual Object Representations

Cracker choice task:

Core System 2: Individual Object Representations

Cracker choice task:

Core System 2: Individual Object Representations

Cracker choice task:

Core System 2: Individual Object Representations

Hallmarks of Individual Object Representation:

- Subject to abrupt set-size limit (maximum = 3 items)
- Demonstrated in infants, children, adults (\& animals)

3rd Core System: Set Representations

- Core System 1 produces numerical approximations
- Core System 2 produces precise representations of individual items
- But neither supports precise large numbers or many mathematical concepts

3rd Core System: Set Representations

Do young children represents sets of items?

Note: Sets \neq groups

3rd Core System: Set Representations

Does thinking about SETS help infants represent more than simply thinking about INDIVIDUAL ITEMS?

3rd Core System: Set Representations

Does thinking about SETS help infants represent more than simply thinking about INDIVIDUAL ITEMS?

3 Sources of Evidence for Set-building

Spatiotemporal sets 0123456789

Conceptual sets
TGVCGTBNP

TGV CGT BNP
Linguistic sets

Spatial Set-building by Infants?

Perceptual and Conceptual Set-building by Infants?

- Conceptual sets???

Perceptual and Conceptual Set-building by Infants?

- Conceptual sets???

TGVCGTBNP

Perceptual and Conceptual Set-building by Infants?

- Conceptual sets???

TGVCGTBNP
Spatially
grouped

Perceptual and Conceptual Set-building by Infants?

- Conceptual sets???

TGVCGTBNP
Spatially

Perceptual and Conceptual Set-building by Infants?

(14 mos)

Perceptual and Conceptual Set-building by Infants?

(14

Perceptual and Conceptual Set-building by Infants?

(14

Perceptual and Conceptual Set-building by Infants?

(14

C BTCVNTGPG TGVCGTBNP

Set Binding of Non-identical Items?

(14 mos)

Difference score (sec)

Set Binding of Non-identical Items?

(14 mos)

Linguistic Set-building by Infants?

(14 mos)

Linguistic Set-building by Infants?

(14 mos)

3rd Core System: Set Representations

Does thinking about SETS help infants represent more than simply thinking about INDIVIDUAL ITEMS?

3 Sources of Evidence for Set-building

$$
\begin{array}{cc}
& \begin{array}{c}
\text { Spatiotemporal sets } \\
0123456789
\end{array} \\
& \\
& \text { Conceptual sets } \\
\text { Wasest } & \text { TGVCGTBNP } \\
& \text { TGV CGT BNP }
\end{array}
$$

Linguistic sets

3 Core Systems

Core System 1: Numerical Approximation

Core System 2:
Individual object representations

Core System 3:
Set based representations

3 Core Systems

Interaction of Core Systems 2 and 3:

3 Core Systems

Interaction of Core Systems 2 and 3:

3 Core Systems

Interaction of Core Systems 2 and 3:

Infants can track the separate locations of two sets, treating them as individuals

3 Core Systems

Interaction of Core Systems 1 and 2:

Discriminable Non-
Discriminable
Infants can represent up to 3 numerical approximations, just as they can represent up to 3 individual objects

Halberda, Sires, \& Feigenson, 2006;
Feigenson \& Zosh, in preparation

3 Core Systems

Core System 1:
 Numerical Approximation

Core System 2:
Individual object representations

Core System 3:
Set based representations

Acknowledgements

With support from:

- the James S. McDonnell Foundation
- the National Institutes of Health

