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Separate modi®ability, mental modules, and the use of pure
and composite measures to reveal them

Saul Sternberg

University of Pennsylvania, Philadelphia, PA 19104-6196, USA

Abstract

How can we divide a complex mental process into meaningful parts? In this paper, I ex-

plore an approach in which processes are divided into parts that are modular in the sense of

being separately modi®able. Evidence for separate modi®ability is provided by an instance of

selective in¯uence: two factors F and G (usually experimental manipulations) such that part A

is in¯uenced by F but invariant with respect to G, while part B is in¯uenced by G but invariant

with respect to F. Such evidence also indicates that the modules are functionally distinct. If we

have pure measures MA and MB, each of which re¯ects only one of the parts, we need to show

that MA is in¯uenced by F but not G, while MB is in¯uenced by G but not F. If we have only a

composite measure MAB of the entire process, we usually also need to con®rm a combination

rule for how the parts contribute to MAB.

I present a taxonomy of separate-modi®ability methods, discuss their inferential logic, and

describe several examples in each category. The three categories involve measures that are

derived pure (based on di�erent transformations of the same data; example: separation of

sensory and decision processes by signal detection theory), direct pure (based on di�erent data;

example: selective e�ects of adaptation on spatial-frequency thresholds), and composite (ex-

amples: the multiplicative-factor method for the analysis of response rate; the additive-factor

method for the analysis of reaction time). Six of the examples concern behavioral measures

and functional processes, while four concern brain measures and neural processes. They have

been chosen for their interest and importance; their diversity of measures, species, and com-

bination rules; their illustration of di�erent ways of thinking about data; the questions they

suggest about possibilities and limitations of the separate-modi®ability approach; and the case

they make for the fruitfulness of searching for mental modules. Ó 2001 Elsevier Science B.V.

All rights reserved.
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1. Introduction

How can we divide a complex process into meaningful parts, or ``modules''? I
start by considering a general criterion for characterizing the modules of a complex
process, a criterion that re¯ects recent thinking within psychology. Focusing on it
provides a new taxonomy that uni®es and relates diverse approaches to module
identi®cation. The criterion is separate modi®ability, a kind of independence: if two
processes are modules, then it should be possible to change each process without
changing the other. Thus, we can ®nd mental modules by searching for pairs or sets
of mental processes that are separately modi®able. At present, the taxonomy en-
compasses three kinds of experiment that use separate modi®ability to search for
modules; I illustrate the taxonomy with a set of 10 diverse examples. 1

The principle has been applied in two situations, which correspond to the two
main categories of the taxonomy. In one, we believe or hypothesize that we have a
pure measure of each of the hypothesized modules. Within this category there are two
sub-categories: we can have direct pure measures, each depending on di�erent data,
or we can have derived pure measures, which depend on di�erent aspects or functions
of the same data. Perhaps the most famous case of pure measures comes from signal-
detection theory (SDT), which is claimed to ``separate'' a sensory process from a
decision process (Ex. 3). Here, the data might consist of the proportions of ``hits''
and ``false alarms'' in a detection or discrimination experiment. These proportions
can be transformed and combined in di�erent ways to create derived pure measures
of discriminability (re¯ecting the sensory process) and of bias (re¯ecting the decision
process). With pure measures, the hypothesis that the measures are indeed pure must
usually be tested, along with separate modi®ability.

In the second main category of experiments we have a composite measure of two
or more hypothesized modules. That is, we have a measure to which we believe or
hypothesize each module makes a contribution, such as detection probability (Ex. 7),
amplitude of the event-related potential (ERP) (Ex. 8), or response rate (Ex. 9).
Here, to evaluate separate modi®ability, we need something more: we have to know
or hypothesize a combination rule that tells us how the modules contribute to the
composite measure. For example, in the additive-factor method (AFM) (Sections
3.1.1, 16; Appendix A.16.3), the hypothesized combination rule is summation: the
composite measure, reaction time (RT), is the sum of the contributions from the
modules. With a composite measure, the combination rule must usually be tested,

1 ``Example'' and ``Examples'' will be abbreviated ``Ex.'' and ``Exs.'', respectively.
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along with separate modi®ability. However, if the combination rule is known (as in
Ex. 8, where it is known from physics), separate modi®ability can be evaluated on its
own.

Separate modi®ability of component processes and their functional distinctness.
These two ideas are closely related. ``Functional distinctness'' is not well de®ned, so
its implications are not clear, but it at least suggests separate modi®ability: if two
parts of a process serve di�erent functions (e.g., representing sensory information vs
making a decision based on that representation), then it seems plausible that if they
can be changed at all, one can be changed without the other (e.g., by manipulating
the stimulus vs the costs and bene®ts of alternative decisions). Conversely, if we have
demonstrated that the two parts are separately modi®able by ®nding di�erent factors
that in¯uence them selectively, this is evidence for their being functionally distinct; if
they were not, the same factors should in¯uence them. Moreover, as additional
factors are found that do not jointly in¯uence them, the nature of the sets of factors
that do and do not in¯uence each process should provide information that helps to
further specify its distinct function. In short, modules de®ned by separate modi®-
ability are plausibly processes we would regard as functionally distinct (another
criterion for modularity), and tests of separate modi®ability can elucidate their
distinctness.

The goal of the present paper is to explicate the separate-modi®ability approach
to process decomposition, and to demonstrate its fruitful use in diverse areas and in
the analysis of both functional and neural processes.

1.1. Antecedents

The approach to understanding complex systems and processes by dividing
them into functionally distinct parts is an old one. Bechtel and Richardson (1993)
discuss examples from biology dating as far back as the 18th century. Within
psychology, an early example is the decomposition of RT into functionally distinct
and separately modi®able stages of mental processing, postulated and investigated
by Donders (1868) and pursued by many modern psychologists. (See, e.g., Christie
& Luce, 1956; Luce, 1986; Meyer, Osman, Irwin, & Yantis, 1988; Sanders, 1998;
Sternberg, 1969, 1998b; Townsend & Ashby, 1983.) Shallice suggest that ``modu-
larity is a basic principle that we often use to understand natural systems'' (1988,
p. 20). Arguments for modular organization in the design of artifacts and algo-
rithms and their speculative extension to design in nature have been advanced by
Simon (1962) and also, in his ``principle of modular design'', by Marr (1976). 2

2 In 1983, Fodor introduced and discussed a concept of modularity (narrower than those of Simon and

Marr and the one advanced here) that has had a large impact in some areas of psychology, but is outside

the scope of the present paper. In the context of his argument for neuroanatomical and functional

modularity, Shallice (1988, Section 2.1) argues that Fodor's criteria are too restrictive.
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Studies of arti®cial neural networks have suggested that an arrangement of
functionally specialized sub-networks may have advantages over a non-modular
architecture (Happel & Murre, 1994), and may develop during learning if short
neural connections are favored (Jacobs & Jordan, 1992). Researchers have also
explored other conditions under which sub-networks develop functional special-
ization (Jacobs, 1997; Jacobs, Jordan, & Barto, 1991; Jacobs, Jordan, Nowlan, &
Hinton, 1991).

Evidence for functional localization in the real brain, from the e�ects of lesions
(Shallice, 1988) and from single-cell studies (e.g., Van Essen, Anderson, & Felleman,
1992), has contributed to the argument for processing modules, based on the idea
that ``anatomically distinct subsystems exist to carry out separate micro-functions''
(Shallice, 1988 p. 19), and that ``computational independence is made easier by
separability of physical processes in the brain'' (Shallice, 1981). Cowey (1985, pp.
55-56) has linked Marr's (1976) argument for functional modularity of processes to
anatomical localization of neural processors, based on the localization of a processor
facilitating the selective inhibition of the process it implements, and on the impor-
tance of the shortness of interneurons in excitatory and inhibitory interactions
within a processor. Such arguments suggest the hypothesis that operations carried
out by anatomically localized processors implement functionally modular neural
processes.

Roberts' independent-measures method. Some of the ideas in this paper re¯ect
those of Seth Roberts. What I call the application of the separate-modi®ability
criterion to derived pure measures (di�erent measures based on the same set of
data; Section 2) is the same as his ``independent-measures method'', which he
applied in several studies starting with Roberts (1981) and has discussed
extensively since (1983, pp. 351-356; 1987, pp. 165-167; 1993; and 1998, Section
2.2).

1.2. Notation

Boldface roman letters, A, B; . . ., will be used to name hypothesized functional
modules, which we learn about from behavioral measures that may be pure (e.g., MA)
or composite (e.g., MAB). If A and B are in¯uenced by changes in the levels of factors
F and G, respectively, this may be made explicit by expressions such as MA�F � and
MAB�F ;G�. The contributions of A and B to MAB may be described, respectively, as
uA and uB, or, making explicit their dependence on F and G, as uA�F � and vB�G�,
sometimes abbreviated u�F � and v�G�. Neural processes, which we learn about from
brain measures, will be denoted by greek letters a; b; . . . ; with measures such as Ma

and Mab. The result of changing the level of a factor will be described in one of two
ways. One is as a di�erence, the other as a ratio. Consider a pure measure MA that
depends on a factor F with levels fFjg, and let MA be its mean. Consider the result of
changing from level F1 to level F2. We de®ne the e�ect of F on MA as the di�erence
MA�F2� ÿMA�F1�; the proportional e�ect (``p.e�ect'') as the ratio MA�F2�=MA�F1�. A
quantity such as RT�k, in which the subscript j in RTjk is replaced by a dot, represents
the mean of RTjk over all values of j.
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1.3. Twofold partition as an initial step in understanding a complex process

For simplicity we shall mainly consider dividing a process into just two modules,
which requires just two factors. Such a twofold partition may often be a reasonable
starting point in decomposing a process. 3 In general, extending the argument to
more than two modules is straightforward: one or both of the modules already
identi®ed may be further partitioned into sub-modules. In another kind of elabo-
ration, the functions of the identi®ed modules can be further speci®ed by considering
the pattern of e�ects of additional factors. Such elaborations of an initial analysis
(which may also serve to test it) are discussed in connection with Exs. 1 and 10.

If a process consists of modular sub-processes, then it would seem important to
discover what they are and to roughly characterize their distinct functions. But this is
only an initial step in understanding the process, which requires knowing in greater
detail what the modules do, how they are organized, and how their e�ects combine.

1.4. Processes, measures, factors, and selective in¯uence

More formally, two parts (sub-processes) A and B of a complex (mental) process are
de®ned as modules if and only if they are separately modi®able. Evidence favoring
separate modi®ability is provided if we ®nd an instance of selective in¯uence, that is,
®nd two factors F and G (usually experimental manipulations ± independent variables)
that in¯uence A and B selectively: a change in the level of F in¯uences A but leaves B

invariant, while a change in the level of G in¯uences B but leaves A invariant. However,
we can observe only one or more measures of a process, not the process itself. If we
have pure measures MA and MB, each of which re¯ects only one of the component
processes, we need to show that MA is in¯uenced by F but invariant with respect to G,
while MB is in¯uenced by G but invariant with respect to F . To demonstrate separate
modi®ability if we have only a composite measure MAB of the entire process usually
requires us also to test a combination rule for how the modules contribute to MAB.

The generality of selective in¯uence. In the absence of a compelling argument for
why it should be otherwise, we would regard the property of selective in¯uence of
factors on processes or their measures as being satis®ed only if the required in-
variances are general, within appropriate ranges of the levels of F and G. For ex-
ample, the invariance of MA with respect to G has to obtain at all levels of F . 4 The

3 It is possible, however, for a process to contain parts whose modularity would not be revealed by a

twofold partition. Suppose a process consists of three modules A; B, and C, and we ®nd three factors

F ; G, and H such that F in¯uences A and B but not C, G in¯uences B and C but not A, and H in¯uences A

and C but not B. Separate modi®ability would then have been demonstrated for each pair of sub-

processes, and hence for the set of three. But it would not have been demonstrated for any twofold

partition. For example, suppose a twofold partition separates A� B � X from C. Then, because all three

factors in¯uence X, both of the factors (G and H) that in¯uence C would also in¯uence X; thus X and C

would not have been shown to be separately modi®able.
4 With pure measures, explicit testing of such generality requires a factorial design (Section 3.3), often

not used; with composite measures, factorial designs are required for other reasons.
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reason for this desideratum is to avoid drawing strong conclusions based on acci-
dents of particular factor levels. However, in the present context, selective in¯uence
can be persuasive evidence for separate modi®ability even if such generality fails
(Appendix A.9.1).

1.5. Statistical issues

The tests of statistical signi®cance that are most familiar to psychologists are
asymmetric: they force us to assume that there is no e�ect of a factor ± invariance,
the ``null hypothesis'' ± unless the contrary can be proved. However, the demon-
stration of selective in¯uence (e.g., of F on MA) relies as strongly on showing that MB

is invariant with respect of F as on showing that it is in¯uenced by G. The conclusion
of invariance should not be permitted to be drawn by default, simply because data
are insu�ciently precise. One useful guide, applied in the examples below, is ob-
tained by expressing the magnitude of deviations from invariance as a one-dimen-
sional quantity (easy if F is studied at only two levels), and providing an estimate of
its precision such as its standard error (S.E.). We are then forced to consider the
power of the test: how large the deviations would have to be in order to be detected.
(A supplementary precaution is to check that the e�ect of F on MA is signi®cantly
greater than the e�ect of G, and the converse for MB.) In Ex. 3 (pure measures), the
factors have more than two levels, which permits such one-dimensional quantities to
be de®ned so as to be sensitive to the degree to which deviations from invariance are
systematic. In Ex. 9 (composite measure), where a failure of invariance would be
revealed as failure of additivity of the e�ects of factors with multiple levels, a similar
quantity is de®ned. 5 Statistical issues are further discussed in Appendix A.11.2.

1.6. Process decomposition vs task comparison

The focus of the present paper is on methods for discovering the parts (sub-
processes) of the complex process used to carry out a particular task. It is central in
these methods to ®nd factors that in¯uence these sub-processes selectively. And it is
therefore important that factors be selected such that their variation changes the
process quantitatively but not qualitatively: that is, factors should in¯uence the

5 A possibly better approach, not integrated into the present paper, is to apply the kind of equivalence

tests (Berger & Hsu, 1996) that have been developed to answer the question of the bioequivalence of drugs,

tests that reverse the asymmetry of the more traditional ones. Here the null hypothesis asserts that two

drugs are not equivalent; the risk described by the signi®cance level is that equivalence (i.e., approximate

invariance across drugs) will be asserted when it is false. To perform such a test it is necessary to de®ne an

interval around zero (the alternative hypothesis) such that if a one-dimensional measure of the true e�ect

fell within that interval, invariance could be declared. Interactions can be treated similarly: for example,

the alternative hypothesis can be an interval around zero for a one-dimensional interaction measure.

Formal incorporation of such intervals into inference is rare in psychology, but we often use them

informally; it seems desirable to make them explicit, recognizing that opinions about the appropriate

interval may di�er and may change.

152 S. Sternberg / Acta Psychologica 106 (2001) 147±246



execution of sub-processes, but not cause them to be added, deleted, or replaced.
One feature of these separate-modi®ability methods is that they provide evidence
that bears on the validity of the task theory that guides their use ± a hypothesis about
the structure of the complex process used to carry out a task.

These separate-modi®ability methods should be distinguished from the formally
similar task-comparison method often used in psychological research, where the in-
terest is in ®nding factors that selectively in¯uence measures of performance in dif-
ferent tasks, each involving a di�erent complex process, and the ®nding of greatest
interest is double dissociation of tasks. Using such ®ndings to identify the parts of the
associated complex processes usually requires a theory for each task, theories that
gain at most weak validation from the results, which in general provide no infor-
mation about the separate modi®ability of the hypothesized parts. It is important to
distinguish the task-comparison method (Appendix A.1) from the methods discussed
below, whose goal is to partition the one complex process used to carry out one
particular task.

1.7. Relevance of brain measurement to process decomposition

The methods of cognitive neuroscience that use brain measurements taken during
performance of a task o�er great promise for helping us to understand the functional
organization of mental processes, as well as the anatomical organization of the
processors that implement them. For this reason I included, among the ten examples,
four that involve such brain measures. As we shall see, the inferential logic that
applies to functional processes (A; B; . . ., inferred from behavioral measures) can also
be applied to neural processes (a; b; . . ., inferred from brain measures). Inference
from brain measurements to functional processes raises several di�cult issues
(Meyer et al., 1988; Rugg & Coles, 1995; Sarter, Berntson, & Cacioppo, 1996). One is
based on the observation that systematic changes in a brain measurement that are
associated with task variations provide only correlational information; they do not
necessarily re¯ect brain events that are required to perform the task (``task-essen-
tial''). 6 Caution is thus needed in their interpretation, whether in the context of task
comparison (Appendix A.1.2.4) or process decomposition. A second issue is the
relation between the modularity (that might be inferred from behavioral measures)
of functional processes, and modularity of the neural processes assumed to imple-
ment them ± modularity that might be inferred from brain measures. That these two
kinds of modularity are associated seems plausible if the performance of a task
depends on a set of distinct functional processes and if the neural processors that
implement them are functionally speci®c. But does one kind of modularity neces-
sarily imply the other (Section 11.1)? Much depends on the validity of correspon-
dences that are assumed, e.g., that the latency of a brain measurement is temporally
linked to some signi®cant time point during a functional process (Sections 6, 10;

6 Unlike brain measures, this problem does not arise with brain factors (such as lesions, or transcranial

magnetic stimulation) used together with task factors and behavioral measures.
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Appendix A.6); or that the level of activation of a brain region re¯ects the amount of
``work'' associated with implementing a process (Section 11; Appendix A.11). 7

Di�erent sources of reassurance about task essentiality are available for di�erent
brain measures. Examples include the following: It is helpful to look for (and ®nd)
the same patterns of selective factor e�ects on brain and task-performance measures
(Section 11; Appendix A.6), acknowledging that these may not always be available
(Section 6). In measures of single-neuron activity, where individual trial data are
usable (Section 10), we can determine that such activity occurs on every trial (or on
every trial when a particular stimulus or response occurs) between stimulus and
response, and seldom or never between trials. (In contrast, for measures such as the
ERP or functional magnetic-resonance imaging (fMRI) that often require averaging
over trials, the measured events may occur on only some of the trials.) Lesion data
are helpful when a processor is believed to have been localized, as in some fMRI
studies (Section 11). And timing data are helpful when the measure has good time
resolution, as in ERP or single-neuron measurements (Sections 6, 10, 14; Appendix
A.6), data that, for example, permit us to know whether the measured event occurred
during the stimulus±response interval, and when during that interval.

These and related issues are further considered in the context of particular
examples.

1.8. Organization of the paper

I discuss the inferential logic associated with these methods and general consid-
erations related to their use in Sections 2 and 3. Section 2 starts by distinguishing
between the selective in¯uence of factors on unobservable processes A and B, and on
observable measures of those processes, MA and MB, and then explicates the infer-
ential logic associated with the use of pure measures. Section 3 does the same for
composite measures MAB with summation (Section 3.1) and multiplication (Section
3.2) as the combination rules. With the latter combination rule an additional hy-
pothesis must be included: that the contributions of A and B to MAB are uncorre-
lated.

Ten examples are discussed in Sections 4±16, based on measures that are derived
pure (Exs. 1±3), direct pure (Exs. 4±6), and composite (Exs. 7±10). Each group is
preceded by an introduction (Sections 4, 8, 12); each example concludes with a
section containing comments about some of its lessons and limitations. The exam-
ples, some ¯awed and limited, were chosen for their interest and importance, their
diversity of measures, species, and combination rules, their illustration of various
ways of making inferences from data in this context, the questions they suggest
about the possibilities and limitations of the approach, and the extent to which they
argue for the existence of modular mental processes and the value of searching for
them. The measures are neural, for investigating neural processes (Exs. 2, 3, 5, 8;

7 These assumptions are akin to ``linking hypotheses'' about the connections between perceptual and

physiological states (Teller, 1984; Geisler & Albrecht, 2000).
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Appendix A.6) and behavioral, for investigating functional processes (Exs. 1, 3, 4, 7,
9, 10); species include monkey (Ex. 5), rat (Exs. 1, 9), pigeon (Ex. 3), and human
(Exs. 2, 4, 6±8, 10). For several of the examples, only mean data were available,
which limited the possible analyses.

A caveat that applies to all the examples but is not reiterated for each is that the
inferences from any single application of these methods have to be regarded as
tentative. Among the reasons are: First, like all cases where a theory is con®rmed
by the success of its predictions, the degree of con®rmation is moderated by the
existence (which can change) of plausible alternative theories that generate the
same predictions, along with other knowledge, including results of related experi-
ments. Second, other measures of the same processes might provide di�erent an-
swers. And third, the arguments rest heavily on demonstrations of invariance as
factor levels are changed ± of the values of measures, or of the sizes of e�ects on
measures ± and persuasive evidence for invariance requires highly precise data, as
well as the possibility of assessing the extent to which any deviations are system-
atic.

The reader is encouraged to skim Sections 2 and 3 to become familiar with
terminology and logic, and then return to them after considering a few of the
examples. For interested readers, the text is followed by appendices with heading
numbers starting with ``A'' and keyed to corresponding main sections of the text.
Because of their similarities, and because task comparison (Sections 1.6, 11) is
more common in psychology than process-decomposition methods, the longest
appendix (Appendix A.1) attempts to distinguish and relate the two approaches,
arguing for the advantages of the separate-modi®ability approach for the decom-
position of mental processes. Other appendices are concerned with details of par-
ticular examples, and others with general issues such as the choice of factors
(Appendix A.2), the plausibility of combination rules (Appendix A.3.1), the sto-
chastic independence of contributions of modules to composite measures (Ap-
pendices A.3.2, A.3.3), advantages of factorial experiments and multiple-level
factors (Appendices A.2.1, A.9), numerical scaling of factor levels (Appendix
A.15), and statistical issues (Appendix A.11.2). Two further instances of process
decomposition that complement the other examples are brie¯y described in
Appendices A.6 and A.16.1.

Following the appendices is a glossary of the main abbreviations.

2. Pure measures: de®nitions and inferential logic

Suppose a process is hypothesized to consist of two modules A and B with cor-
responding hypothesized pure measures MA and MB. They are ``pure'' in the sense of
being selective, or separate: for example, MA should not vary with changes in B.
Examples of measures of a process include its duration, a discriminability measure
such as d 0 in SDT, an intensity measure such as a rat's peak bar-pressing rate, and
for a neural process, the amount of activity in a brain region.
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2.1. Selective in¯uence of factors on processes and their measures

We cannot know about a mental process A as such, but only about one or more
measures, MA, of it. For this reason, we have to consider what the hypothesis of
selective in¯uence of factors F and G on processes A and B says about their in¯uence
on pure measures of A and B; the implications are spelled out in Table 1. 8 Thus, we
test the hypothesis of selective in¯uence of factors on processes by examining the
behavior of various measures. Suppose we ®nd that MA varies with the level of F but
not with the level of G, and that MB varies with G but not with F. Using `` '' for ``is
in¯uenced by'' and ``8'' for ``is invariant with respect to'', these four properties can
be described as MA  F ; MA 8G; MB  G; and MB 8 F . Such a ®nding of selec-
tive in¯uence of factors F, G on measures MA; MB supports the hypothesis of se-
lective in¯uence of F, G on processes A, B, and thus supports separate modi®ability
(hence modularity) of A, B. It also supports the hypothesis that MA and MB are pure
measures of A and B. Note that the choice of measures may in¯uence our ®ndings,
and hence our conclusions. That is, two measures of the same process may behave
di�erently, so a claim of invariance of a process may be limited to just the aspect of
that process that is re¯ected by the measure we use. For example, if MA is a particular
pure measure of A, then, whereas MA  F implies A F ; MA 8G does not imply
A8G. However, in the absence of arguments to the contrary it is reasonable to start
with the idea that if an hypothesized measure of a process is invariant, then so is the
process itself.

Suppose process A in¯uences process B, such that a change in A causes a change
in MB. Then, because any factor that in¯uences A should also indirectly in¯uence MB,
we should be unable to use MB to demonstrate separate modi®ability of A and B.
Similarly, for a composite measure MAB we should be unable to ®nd evidence sup-
porting the modularity of A and B if the contribution of B to MAB is in¯uenced by A.
Thus, in general, the separate modi®ability of modules precludes one in¯uencing the
other. As discussed in Section 7.1, however, there may be good reason to regard A

and B as modular even if one ``in¯uences'' the other in the sense that B operates on
information (the operand) provided by A. (After all, processes arranged sequentially

Table 1

The hypothesis of selective in¯uence of factors on processes, and its implications for pure measures

Parts of the Hypothesis Associated Predictions

Process A is in¯uenced by F F is likely to change some MA

Process A is invariant with respect to G G changes no MA

Process B is in¯uenced by G G is likely to change some MB

Process B is invariant with respect to F F changes no MB

8 For neural processes, change A to a, MA to Ma, etc., in this table and in Tables 2±4, 7, and 8.
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± as stages ± have often been thought to be ``data-dependent'', with one stage using
data furnished by an earlier stage, yet are shown to be separately modi®able using
MAB � RT. 9) In testing for modularity in such a case, a measure MB should be
sought that re¯ects not the operand, but properties of the operator.

2.2. Hypothesis, prediction, and inference for pure measures

In Table 2 is outlined the two-part hypothesis associated with pure measures, the
prediction to which it leads (which includes the four indicated properties,
p1; p2; p3; and p4) and the alternative possible ®ndings and associated inferenc-
es. 10 Here and elsewhere (e.g., Tables 3, 4, 7, and 8) we would of course like to

Table 2

Inferential logic for pure measures

9 The requirement of ``constant stage output'' for such processes (e.g., Sanders, 1998; Sternberg, 1969,

Section 3.2) must thus be interpreted with some subtlety.
10 If the hypotheses about A and B are su�ciently detailed, then an alternative formulation to the one in

Table 2 (Appendix A.2.3, Table 7) may be more appropriate, in which the joint hypothesis incorporates

the speci®cation of factors F and G.
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ask separately about each part of the joint hypothesis (here H1 and H2), but in
a single such test we cannot. One consequence is that failure of the prediction
may be less informative than success. If factors F and G are found not to in-
¯uence MA and MB selectively, then, guided by our (revised) beliefs about A and
B, we can try other factors, or abandon H2 and consider other measures, or
abandon H1.

2.3. Why all four properties are important

Suppose we tested for and found only p1 and p2 of the four properties listed under
Prediction in Table 2: a factor F in¯uences MA but not MB. Why do we need the
others? One reason is that MB 8 F could occur simply because MB is not sensitive,
making the invariance MB 8 F less persuasive. (For example, if the measure MB is
the duration of process B, then F could modify B without altering its duration.) This
possibility is rendered less plausible if we can show that some manipulation can alter
MB, that is, if we can ®nd a factor G such that MB  G (property p3). We would then
know that both MA and MB are sensitive. 11 The second reason is that even with p3

added, we have no support for the hypothesis that B can be modi®ed without A; for
this, we also need p4: MA 8 G. If we added p4 but not p3, our evidence would also be
insu�cient: p4 could arise simply because G was not a potent factor. This possibility
is rendered less likely if we can show that G can in¯uence some process, which we
learn from p3; MB  G. Thus, the four properties together tell us that each factor is
potent (can modify some process) and that each measure is sensitive (can be altered
by some factor), as well as providing evidence that, for processes A and B, each can
be modi®ed without the other. 12

3. Composite measures: de®nitions and inferential logic

Suppose we have one measure MAB that re¯ects a property of the entire complex
process of interest, a process that consists of component processes A and B. That is,
we know only the combined contributions of A and B to a measure MAB that depends
on both of them. To make inferences from the data, we must know or hypothesize
how the contributions of A and B combine in in¯uencing MAB. In this paper I
consider primarily two combination rules, summation and multiplication. (Hybrid
rules are also brie¯y considered, in Section 15 and Appendix A.15.) These rules are

11 One limitation of the criterion of separate modi®ability is that if a process (and hence all measures of

it) is insensitive ± if we cannot modify it ± it will not be revealed as a module. On the other hand,

convincing evidence of the non-modi®ability of a process in the context of modi®able others might argue

for its being functionally distinct, and modular in a di�erent sense.
12 Suppose a subset of the properties obtains, such as p1; p3; and p4 (see Ex. 3). This might be

interpreted as ``partial modularity'', consistent with A in¯uencing B but not the reverse; in the task-

comparison method this would be analogous to something between single and double task-dissociation

(Appendix A.1.2.1).
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associated with the two ways mentioned in Section 1.2 in which the result of
changing the level of a factor can be described, as an e�ect for one and as a p.e�ect
for the other. 13

3.1. Composite measures based on summation

Suppose we either know or hypothesize that the combination rule is summation:
the combined contribution of processes A and B to MAB is the sum of their separate
contributions, or MAB � uA � vB. Letting u � uA and v � vB, if factors F and G
selectively in¯uence A and B, respectively, we have

MAB�Fj;Gk� � u�Fj� � v�Gk�; �1�
where, for example, u�Fj� is a function that describes the relation between the level of
F and the contribution of A to MAB. Now, in general we work with averages rather
than individual values of MAB, and we regard uA and vB as random rather than de-
terministic variables. Using M ; u; and v to indicate means (expectations) of these
random variables, it is pleasantly convenient that with no further assumptions (such
as the stochastic independence of u and v), Eq. (1) implies

MAB�Fj;Gk� � u�Fj� � v�Gk�: �2�
(As we shall see, matters are not so simple if the combination rule is multiplication.)
From Eq. (2) it is easy to show that F and G are additive factors: the combined e�ect
on MAB of changing the levels of both F and G is the sum of the e�ect of changing
only F and the e�ect of changing only G. For changes from the ®rst to the second
level of each factor,

effect�F ;G� � MAB�F2;G2� ÿMAB�F1;G1�
� �u�F2� � v�G2�� ÿ �u�F1� � v�G1��
� �u�F2� ÿ u�F1�� � �v�G2� ÿ v�G1�� � effect�F � � effect�G�: �3�

Eq. (3) is equivalent to the e�ect of F on MAB being invariant over levels of G, and
vice versa. In Table 3 is outlined the two-part hypothesis associated with such a
composite measure, the prediction to which it leads, and the alternative possible
®ndings and associated inferences. 14

3.1.1. Illustration: the additive-factor method
One way in which summation can arise as the combination rule is if processes A

and B are arranged as stages ± functionally distinct operations that occur during

13 Care must be taken in the estimation of the p.e�ect from values subject to sampling error because, in

general, E�x�=E�y� 6� E�x=y�, where E��� is expectation, even when x and y are stochastically independent.
14 Whereas properties fpkg (Tables 2, 7) apply to observable quantities, analogous properties fp0kg

(Tables 3, 4, 7, 8) apply to contributions to a composite measure that are not directly observable. Also note

that if A and B are hypothesized to exhaust the process (in a twofold partition), then in Tables 3 and 4 the

fourth line under Prediction can be deleted, and in Table 8, the third line of H1*.
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non-overlapping epochs, and such that the response occurs when both operations
have been completed. The measure MAB � RT , the duration of the full process, can
be written as the sum of individual process durations, TA � TB. If factors F and G
in¯uence processes A and B selectively, then RT � TA�F � � TB�G�. This implies that
the e�ect of F on RT in an F � G factorial experiment (the di�erence in RT produced
by a change in level of F) is invariant over levels of G. Also implied is the comple-
ment: invariance of the e�ect of G on RT over levels of F; together, mutual invariance.
Such invariance is equivalent to the e�ects on RT of F and G being additive, and is
one aspect of the AFM, in which the ®nding of such invariance is used as evidence
for H1 and H3 of Table 3. (An example due to Sanders, Wijnen, & Van Arkel, 1982
is described in Section 16.) Indeed, in the present context, the AFM might better be
called the ``method of invariant factor e�ects''. 15

Table 3

Inferential logic for a composite measure with summation as the combination rule

15 In an alternative formulation of the inferential logic associated with the AFM, a statement about the

selective in¯uence of particular factors is incorporated in the joint hypothesis (Appendix A.2.3, Table 8;

Sternberg, 1998b, Section 14.6.3).

160 S. Sternberg / Acta Psychologica 106 (2001) 147±246



3.2. Composite measures based on multiplication

Suppose we either know or hypothesize that the combination rule is multiplica-
tion: the combined contribution of processes A and B is the product of their separate
contributions, or MAB � uA � vB. If factors F and G selectively in¯uence A and B,
respectively, then we have

MAB�Fj;Gk� � u�Fj� � v�Gk�: �4�

As when summation is the combination rule, u and v are random rather than de-
terministic variables, and we will be working with averages rather than individual
values of MAB. With the multiplicative combination rule, however, an additional
hypothesis is needed to permit the derivation of the equivalent to Eq. (2) from Eq.
(4): we must assume (H5 in Table 4) that the contributions from A and B to MAB have

Table 4

Inferential logic for a composite measure with multiplication as the combination rule
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zero correlation. 16 (The expectation of a product of two random variables is the
product of their expectations if and only if they are uncorrelated.)

Using M ; u; and v to indicate means (expectations), and given the additional
assumption, it follows from Eq. (4) that

MAB�Fj;Gk� � u�Fj� � v�Gk�: �5�
From Eq. (5) it is easy to show that F and G are multiplicative factors: the p.e�ect on
MAB of changing the levels of both F and G is the product of the p.e�ect of changing
only F and the p.e�ect of changing only G. 17 For changes from the ®rst to the
second level of each factor,

p:effect�F ;G� � MAB�F2;G2�
MAB�F1;G1�

� u�F2�v�G2�
u�F1�v�G1� �

u�F2�
u�F1� �

v�G2�
v�G1�

� MAB�F2;Gk�
MAB�F1;Gk�

�MAB�Fj;G2�
MAB�Fj;G1�

� p:effect�F � � p:effect�G�: �6�

Illustrations are provided by Exs. 7 and 9. Eq. (6) is equivalent to the p.e�ect of F on
MAB being invariant over levels of G, and vice versa. Note that if Eq. (4) is true for
MAB, it is also true for its reciprocal; simply replace u�Fj� and v�Gk� by their recip-
rocals in Eq. (4). Analogs to Eqs. (5) and (6) then follow, as above. 18

If two modules contribute multiplicatively to MAB, and their contributions are
greater than zero, then they contribute additively to log �MAB�:

log�MAB�Fj;Gk�� � log�u�Fj�� � log�v�Gk��:
Under these conditions, Eq. (6) thus implies

log�p:effect�F ;G�� � log�p:effect�F �� � log�p:effect�G��: �7�
By using the logarithm of the composite measure, we can thus transform the mul-
tiplicative case into the additive one, which is sometimes convenient (Section 15) and
may be very useful (Appendix A.3.2).

3.3. Factorial experiments

We shall be considering (complete) factorial experiments in which each of the nF

levels of F is tested with each of the nG levels of G, thus generating nF � nG ``con-
ditions''. This kind of experiment permits us to determine the extent to which the
e�ect of each factor is modulated by the level of the other. For testing selective in-
¯uence with pure measures, such experiments are not required, but they do add
important information, as demonstrated in Section 7.2 and discussed in Section 11

16 Some of the implications for data analysis of H5 being required are discussed in Appendix A.3.2.
17 For any level Gk of G, the p.e�ect on MAB of a factor F with two levels F1; F2 is the value of the

measure when F � F2 divided by its value when F � F1.
18 As shown by Anderson (1996) and Roberts (1987), analyses of such data bene®t from numeric scaling

of the factor levels; see Sections 13, 15, and Appendix A.15.
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and Appendix A.9.1. However, factorial experiments are essential with composite
measures, because the predictions take the form of statements about how factor
e�ects combine. For example, if the combination rule is summation, as in Exs. 8 and
10, then selective in¯uence implies that the e�ect of one factor should be invariant
over levels of the other, which corresponds to additive factor e�ects; such a pre-
diction can be tested only in a factorial experiment.

4. Introduction to three examples of inference based on derived pure measures

In each of the examples of Sections 5±7, di�erent computations on the same set of
data provide hypothesized pure measures of two component processes.

Example 1 (Isolation of a timing module in the rat). Roberts (1981) measured re-
sponse rate as a function of time from signal onset for rats performing a time-
discrimination task (the peak procedure); he discovered that two measures based on
the response-rate function were in¯uenced selectively by di�erent factors. Further
experiments permitted him to con®rm and elaborate the inferred decomposition.
This example is included because it is simple, clear, and prototypical.

Example 2 (Parallel neural modules revealed by the lateralized readiness potential
(LRP)). The LRP is a measure of electrical signals at the scalp that re¯ects the
preparation of a left-hand or right-hand response. With appropriate experiments
(Osman, Bashore, Coles, Donchin, & Meyer, 1992), two brain measures have been
derived from it, indicators of when the response is selected and of when the decision
is made to execute that response. The pattern of factor e�ects not only indicates the
modularity of the two corresponding neural processes, but, in addition, shows that
they are arranged in parallel.

Example 3 (Separation of sensory and decision processes by signal-detection theory
(SDT)). SDT is associated with the best known use of derived pure measures of
two hypothetical processes (sensory S and decision D) that underlie performance
in many tasks. Its measure MS � d 0 of the sensory process is in¯uenced by
``sensory factors'' (such as stimulus properties) but not ``decision factors'' (such as
rewards and penalties). However, until recently SDT has failed to provide any MD

that is invariant with respect to sensory factors. Recent work with pigeons (Alsop,
1998; McCarthy & Davison, 1984) suggests that the problem lies not with MD but
rather with the principle factor used to in¯uence and control D. By using a
di�erent factor, the approximate modularity of S and D can be demonstrated.
This example, therefore, shows how critical is the choice of factors. Another
feature of this example is the examination of more than two levels of each factor,
which permits testing the extent to which deviations from invariance are sys-
tematic.
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5. Isolation of a timing module in the rat (Ex. 1)

In the peak procedure as used by Roberts (1981), 19 a rat that has learned to press
a lever for food is presented, randomly, with two kinds of trial, each starting with the
onset of a signal such as a light. On food trials, a food reward is ``primed'' after a
®xed interval (such as 20 s) called time of food (TF ), in the sense that the ®rst lever
press after TF causes food delivery and signal o�set. On empty trials, no food is
delivered, and after 2 or 3 min the signal turns o�, independent of the rat's behavior.
After a rat is trained, its response rate during an empty trial rises and then falls,
reaching a maximum at about the time when food would become available on food
trials. Results from this procedure and others suggest that animals have a clock
process, C, that measures such time intervals. Roberts' goal was to isolate this
process, that is, to show that C can be modi®ed and measured separately from the
remainder of the stimulus±response path, which I shall call the response process R;
Among other functions, R uses information from C in its control of response rate.

For each condition, Roberts started with the function that relates mean response
rate to time from signal onset, the response-rate function. (See Fig. 1 for examples of
mean functions.) From such a function we can derive many properties that might be
pure measures; examples are the maximum rate (peak rate), the time at which the
peak rate is achieved (peak time), the spread (width) of the function, and the tail rate
(rate toward the end of empty trials). Earlier results from a similar procedure
(Catania, 1970) had shown in a pigeon that peak rate could be changed without
changing peak time. Roberts was interested in the possibility that processes C and R

are modules associated with pure measures MC (peak time) and MR (peak rate),
respectively.

In one experiment (1981, Exp. 1) Roberts randomly mixed trials on which the
signals were light and sound. He varied two factors, TF, de®ned above, and the
proportion of trials on which food was delivered, probability of food (PF). During
Phase 1 of the experiment, PF was ®xed at 0.8 while TF varied: TF � TF1 � 20 s with
one of the two signals; TF � TF2 � 40 s with the other. During Phase 2, TF was ®xed
at 20 s while PF varied: PF � PF1 � 0:2 with one of the two signals; PF � PF2 � 0:8
with the other. In both phases, the two signals occurred randomly and equally often.
The conditions studied were thus f�TF1; PF2�; �TF2; PF2�g in Phase 1, and
f�TF1; PF1�; �TF1; PF2�g in Phase 2 (shown in Table 5, column 2 and row 1, respec-
tively). Response-rate functions after training, averaged over the 10 rats, are shown
in Fig. 1. Fig. 2 shows the e�ects on peak rate and peak time of changing TF (panel
A) and of changing PF (panel B).

These ®ndings of selective in¯uence (and others: Roberts, 1993, 1998) support the
hypothesis that the process that controls response rate can be partitioned into two
di�erent modules (C and R) that control peak time (MC) and peak rate (MR),
respectively, and that MC and MR are pure measures of these modules.

19 See Roberts (1998) for further discussion and access to other illuminating papers.
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5.1. Two kinds of elaboration of the two-module analysis

Such a two-module analysis can be extended in two ways. First, each additional
factor that is found that in¯uences or does not in¯uence MC or MR permits a more
re®ned characterization of the identi®ed modules. Much can be learned about what a
(sub-)process does from which of a set of factors in¯uence it (and how), and which
do not.

Table 5

A 2� 2 factorial designa

a Boldface entries show conditions in Exp. 1 of Roberts (1981).

Fig. 1. Mean response rate vs time from signal onset within consecutive 5 s intervals in the two phases of

Roberts' (1981) Experiment 1. During Phase 1 PF was ®xed at 0.8, and TF di�ered for the two possible

signals: TF1 � early � 20 s vs TF2 � late � 40 s. During Phase 2 TF was ®xed at 20 s, and PF di�ered for

the two possible signals: PF1 � infrequent � 0:2 vs PF2 � frequent � 0:8. These functions are based on the

data for both food trials and empty trials. The ®tted curves are described by Roberts (1981, pp. 245-246).

After Fig. 2.3 of Roberts (1998).
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Second, the two-module process can be further partitioned, as follows: Suppose
we have found that factors TF and PF in¯uence measures MC and MR selectively, as
above. If a third measure MX is found that is in¯uenced selectively by a new factor H,
but not by TF or PF, and if H in¯uences neither MC nor MR (adding ®ve properties to
p1; . . . ; p4 of Table 2), then this indicates the presence of a third module X, and a
further partition is justi®ed. 20

Roberts has achieved both kinds of elaboration in his analyses of timing behavior.
First, several other ®ndings permit further characterization of processes C and R
(Roberts, 1981). For example, a ``blackout'' (signal interruption) early during a trial
changes peak time but not peak rate, while, after experience, prefeeding (before the
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Fig. 2. Panel A: E�ects of TF in Phase 1 on peak rate (ÿ1:3� 2:5 responses/min) and on peak time (20� 1

s). Panel B: E�ects of PF in Phase 2 on peak rate (42� 5 responses/min) and on peak time (1:1� 1:0 s).

Also shown are null-e�ect models for peak rate in panel A and peak time in panel B. Note that for the

conditions on the left in panel A and on the right in panel B (where the levels of TF and PF are the same)

values of both peak rate and peak time are almost identical; the stability across Phases 1 and 2 is im-

pressive. The di�erences between the e�ects of TF (Phase 1) and PF (Phase 2) on each of the two measures

are highly reliable: for peak rate the di�erence is 44� 6 responses/min; for peak time the di�erence is

18� 1 s. Roberts (1981) used robust and resistant analyses; the values here, derived with methods more

familiar to psychologists, di�er slightly from his. Variability estimates are based on di�erences among the

ten rats.

20 For composite measures, both kinds of elaboration of a two-factor two-module analysis require

factorial experiments with two or three factors. Examples of the ®rst kind of elaboration in such a case are

described in Section 16.1.
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session) does the reverse. The inference is that these two manipulations selectively
in¯uence C and R, respectively. These ®ndings also add support to the conclusion
from the results described above that C and R are separate modules, and that MC

and MR are pure measures of them. Second, other measures derived from the re-
sponse-rate function, such as relative spread (width/peak-time), can be changed
while peak time and peak rate remain invariant (Roberts, 1982, 1993); this indicates
that the S±R path can be partitioned further. 21

5.2. Comments

In this investigation of separate modi®ability, the joint hypothesis (Table 2) in-
cludes H1: Processes C and R are modules (separately modi®able) and H2: Peak time
MC and peak rate MR are pure measures of C and R, respectively. Roberts' discovery
of factors TF and PF that in¯uence the two measures selectively supports the joint
hypothesis. The peak time and peak rate measures are di�erent aspects of the same
data (the response-rate function), rather than aspects of di�erent data; hence these
are derived rather than direct pure measures.

The boldface entries in Table 5 describe the design of Roberts (1981) experiment.
As mentioned in Section 3.3, complete factorial experiments are not required when
pure measures are available, as in this example, where the condition �TF2; PF1� was
excluded. What these results tell us is that when PF � PF2 � 0:8; p1 : MC  TF
and p2 : MR 8 TF (Phase 1) and that when TF � TF1 � 20s; p3 : MR  PF ; and p4 :
MC 8 PF . What would a complete experiment have added? First, two tests of
qualitative generality: given selective in¯uence of factors on measures, properties
p1 and p2 should also be found when PF � PF1 � 0:2, and properties p3 and p4

should also be found when TF � TF2 � 40s (Section 1.4); such implications could be
tested. And second, two tests of quantitative invariance: given the joint hypothesis,
the e�ect of TF on MC should be invariant with respect to PF, and the e�ect of PF
on MR should be invariant with respect to TF. Thus, there are internal consisten-
cy checks of the method, and here, a complete factorial experiment would permit
them.

6. Parallel neural modules revealed by the lateralized readiness potential (Ex. 2)

Consider a trial in a choice±reaction experiment where two alternative responses
are made by the two hands. Recall that the part of the motor cortex that controls a
hand is contralateral to that hand. When enough information has been extracted
from the stimulus to permit selection of the hand, but before any sign of muscle
activity, the part of the motor cortex that controls that hand becomes more active
than the part that controls the non-selected hand. This asymmetric activity can be

21 Most of these ®ndings and conclusions are summarized in Table 25.1 and Fig. 25.10 of Roberts

(1993); see also Roberts (1981).
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detected as an increase in the di�erence between electrical potentials at the two
corresponding scalp locations. Let AMC�t� (an index of motor-cortex asymmetry)
express this di�erence as a function of time from stimulus onset. AMC�t� is normally
zero, but becomes positive when the response hand is selected; the increase of such
asymmetry is called the lateralized readiness potential (LRP) (see Eimer, 1998 for a
review).

I shall use ``Event 1'' to mean the onset of the LRP; the latency T1 of Event 1 can
thus be used to indicate when the response has been selected. Normally (on ``Go''
trials) AMC continues to rise until the overt response is initiated. If a ``NoGo'' signal
tells the subject to inhibit the response before it would otherwise occur, however,
AMC starts falling. 22 The time at which AMC�t; NoGo� diverges from AMC�t; Go� ± the
latency T2 of ``Event 2'' ± can thus be used to indicate when the NoGo signal is
discriminated and response preparation ceases.

Osman et al. (1992 see also Osman, 1998) exploited these properties of AMC�t� in a
study in which the visual stimulus on each trial had two features, position and cat-
egory. Its position (left vs right, which was rapidly discriminated) indicated which
response to make, should a response be required. Its category (letter vs digit, which
was discriminated more slowly) indicated whether this was a Go trial (on which the
selected response should be activated) or a NoGo trial (on which any response
should be inhibited).

The purpose of the study was to investigate the relation between two processes
underlying performance in the task: One is location discrimination and response se-
lection �a�. The other is category discrimination, and activation vs inhibition of the
selected response �b�. Events 1 and 2 indicate the completion of processes a and b,
respectively. Can response preparation start when the position but not the category
of the stimulus has been discriminated? And, if so, can category discrimination
proceed in parallel with response preparation? To answer such questions, Osman et
al. examined the e�ects of two factors: One (in Exp. 1) is Go±NoGo Discriminability
(GND), which should in¯uence b; it could be easy (letter and digit with dissimilar
shapes, GND1) or hard (similar shapes, GND2). The other factor (in Exp. 2) is the
stimulus-response mapping (SRM), which should in¯uence a; it could be easy (spa-
tially compatible SRM: respond with the hand on the same side as the stimulus,
SRM1) or hard (spatially incompatible SRM: respond with the hand on the opposite
side, SRM2).

Consider the asymmetry function for Go trials, AMC�t; Go�: this was obtained by
linearly combining four di�erent ERP �t� functions, where ERP �t� is the average (over
an appropriate subset of trials) of scalp potential vs time from stimulus onset. The
four ERP �t; Go� functions were obtained from the left and right motor cortex for
each of the two signaled responses on Go trials. They were combined in such a way

22 I use the term ``inhibit'' informally here, without distinguishing a separate inhibitory process from the

mere cessation of preparation.
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that a positive AMC�t; Go� would indicate preparation for the signaled re-
sponse. 23AMC�t; NoGo� was obtained similarly.

Idealizations of the resulting AMC�t� functions are shown in Fig. 3, and the ob-
served values of T 1 and T 2 in Fig. 4. Each of the four panels of Fig. 3 shows the pair
AMC�t; Go� and AMC�t; NoGo� for one condition. The two latency measures for a
condition were derived in di�erent ways from this pair of AMC�t� functions: The
latency T1 of Event 1 (onset of the LRP) is the time at which the sum of the two
AMC�t� functions reliably exceeds baseline. The latency T2 of Event 2 (divergence of
the Go and NoGo LRPs) is the time at which their di�erence reliably exceeds zero. In
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Fig. 3. Schematic idealized asymmetry functions AMC�t� from Osman et al. (1992). Event 1 is the LRP

onset; Event 2 is the divergence of AMC�t; Go� from AMC�t; NoGo�. Panels A1 and A2: Asymmetry functions

from the two conditions in Exp. 1, in which GND could be easy �GND � GND1� or hard �GND � GND2�.
Panels B1 and B2: Asymmetry functions from the two conditions in Exp. 2, in which SRM could be easy

�SRM � SRM1� or hard �SRM � SRM2�.

23 For Go (letter) trials in Exp. 1, for example, there were four conditions, left vs right position� easy vs

hard discrimination, each providing data from about 150 correct trials per subject. On each trial on which

the left response RL was signaled, the left and right motor cortex (MCL and MCR) generated potentials that

were measured as a function of time from stimulus onset. For each subject, these potential functions were

averaged over each such set of trials, to give ERP�t; Go; RL; MCL� and ERP�t; Go; RL;MCR�.
Corresponding ERPs were obtained for Go trials on which the right response RR was signaled. For

each condition, these four ERPs were then combined to give AMC�t; Go� � �ERP�t; Go; RL; MCL�
ÿERP�t; Go; RL; MCR�� � �ERP�t; Go; RR; MCR� ÿ ERP�t; Go; RR; MCL��. Because the LRP is a negative-

going potential at the motor cortex contralateral to the response, it causes the AMC�t� de®ned in this way to

become positive when the signaled response is selected.
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Exp. 1, GND in¯uenced T 2 (by 43 ms) but not T 1 (compare Figs. 3A1 and A2). The
absence of any e�ect of GND on T 1 (T 1 � 170 ms on both Go and NoGo trials)
shows that the position of the stimulus, but not its category, controlled the start of
response preparation. More generally, because the stimulus in¯uenced response
preparation before both of its features were discriminated, these ®ndings from Exp. 1
demonstrate the transmission of ``partial information'' from the perceptual process
to the response process.

In one of the conditions of Exp. 2 the SRM was hard, which was expected to delay
selection of the response. To ensure that stimulus position had an opportunity to
in¯uence response preparation on NoGo trials in both conditions, it was important
to delay the Go±NoGo discrimination; Osman et al. therefore increased letter±digit
shape similarity such that T 2 � 350 ms as shown in Fig. 4B. In this experiment, SRM
in¯uenced T 1 (by 121 ms) but not T 2 (compare Figs. 3B1and B2). (Note that in-
creasing the level of mapping di�culty from SRM1 to SRM2 therefore reduced the
interval between Event 1 and Event 2.) SRM and GND thus in¯uenced the two
measures T1 and T2 selectively, supporting the hypothesis that they are pure measures
of two di�erent modular processes (Table 2).

The results also show how a and b are arranged. Suppose they were arranged
sequentially, at stages. Prolonging the ®rst of two stages by Dt ms should delay
completion of the second by the same amount: the prolongation Dt should be
propagated to the completion time of the next stage. If we assume equal delays be-
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Fig. 4. Mean e�ects of two factors on the latencies of Events 1 and 2 in Osman et al. (1992). Panel A:

E�ects of GND (Exp. 1, N � 6). Its e�ect on T 1 is 2:5� 5:0 ms; its e�ect on T 2 is 43� 14 ms; the di�erence

between these e�ects is 41� 11 ms �p � 0:01�. Panel B: E�ects of SRM (Exp. 2, N � 6). Its e�ect on T 1 is

121� 17 ms; its e�ect on T 2 is 3:3� 8:8 ms; the di�erence between these e�ects is 129� 27 ms �p � 0:01�.
Also shown are null-e�ect models for T 1 in panel A and T 2 in panel B. For the RT data, see Tables 1 and 5

in Osman et al. (1992).
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tween completion of each process and its e�ect on AMC�t�, then the order of process
completions would be the same as the order of Events 1 and 2. The ®nding (Exp. 2)
that the e�ect of SRM on T1 is not propagated to T2 would then be su�cient to
invalidate a stage model. If we relax the equal-delays assumption, permitting us to
assume the opposite order of process completions, then the propagation property
requires that any e�ects on T2 propagate to T1, contrary to what was found (Exp. 1)
for the e�ect of GND. The alternative to a stages arrangement is that a and b overlap
in time and operate in parallel. Given a plausible linkage of a and b with the be-
havioral response, the RT (on Go trials) would then be determined by the completion
time of the slower of the two. Such an arrangement is consistent with the further
®nding (from Exp. 2) that the e�ect of SRM on RT (16 ms) is dramatically smaller
than its e�ect on T 1 (121 ms).

6.1. Comments

As mentioned above, latencies such as those shown in Fig. 4 are determined from
ERP �t� functions, which are averages over trials. It is highly likely that latencies of
the corresponding brain events vary from trial to trial. Given the low thresholds used
to de®ne Events 1 and 2, quantities such as T1 and T2 would then re¯ect the left-hand
tail, rather than the mean, of the latency distribution over trials. To the extent that
the shape or spread of this distribution varies with factor level, this complicates the
interpretation of changes in T1 and T2, and of quantitative similarities and di�erences
between e�ects of factors on RT and their e�ects on latencies such as T1 and T2

(Meyer et al., 1988, Section 8).
At the time of the Osman et al. (1992) study, it had not been recognized that the

LRP might result partly from lateralized activation of sensory neurons and from
response tendencies ``automatically'' elicited by lateralized stimuli. 24 It seems un-
likely, however, that either instance of selective in¯uence in Figs. 4A and B (on which
the inferences are based) could be the spurious consequence of such ``direct'' e�ects
of stimulus lateralization, rather than re¯ecting the task-speci®ed response. For
example, the e�ect of SRM on T1 in Exp. 2 (Figs. 3B and 4B) shows that T1 is at least
in part determined by the task-speci®ed response. Hence, the invariance of T1 in Exp.
1 (Figs. 3A and 4A) is unlikely to be an artifact of stimulus position.

A contrasting example is outlined in Appendix A.6, in which pure measures based
on the LRP provide evidence for a serial arrangement of two neural processes. In
that case, unlike this one, a composite behavioral measure (RT ) leads to a similar
analysis of corresponding functional processes. In the present example, however, T1

indicates the time of a process (response selection) for which there may be no pure
behavioral measure, and whose contribution to the composite RT measure cannot be
described by any simple combination rule.

24 See Eimer (1998), but also Vall�e-Inclan and Redondo (1998).
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7. Separation of sensory and decision processes by signal-detection theory (Ex. 3)

The most in¯uential approach to deriving pure measures of two processes
underlying the performance of a task is the one associated with SDT, as de-
scribed, for example, by Swets, Tanner, and Birdsall (1961). 25 At the heart of this
approach is the recognition that even simple psychophysical tasks involve decision
processes (that may be biased) as well as sensory mechanisms. Consider a psy-
chophysical experiment in which two types of trial are randomly intermixed, each
with a slightly di�erent light intensity. On one type of trial the brighter light, ST

(the ``target'' stimulus) is presented; on the other type the dimmer light, SNT (the
non-target stimulus) is presented. The observer's task is to respond with either RT

(``it was the target'') or RNT (``it was the non-target''). On each trial, according to
SDT, the observer forms a unidimensional internal representation of the stimulus;
let us call these representations XT and XNT , for ST and SNT , respectively. Because
ST is brighter than SNT , XT will tend to be larger than XNT . It is also assumed,
however, that because of external and internal noise, XT and XNT are random
variables with distributions, rather than being ®xed constants, and that because ST

and SNT are similar, these distributions overlap. It is the overlap that creates the
discrimination problem for the observer. In what follows, I shall assume that
the distributions of XT and XNT are Gaussian with equal variances (supported in
the experiment described below, but often false), and also that ST and SNT trials
are equally frequent. The present treatment of SDT is simpli®ed in other ways as
well.

According to SDT, the value of X on a trial results from the operation of a
sensory process S; a decision process D then uses this value to select one of the
two responses, selecting RT if X exceeds a criterion value, selecting RNT otherwise.
The choice of criterion value determines the direction and magnitude of response
bias.

The data from such an experiment can be described by four numbers arranged in
a 2� 2 data matrix as shown in Table 6, where the rows correspond to the two trial
types ST and SNT and the columns correspond to the two responses RT and RNT . In
the top row are the proportions of the target (ST ) trials that elicited each response,
which estimate PrfRT jST g (the true positive or ``hit'' probability), and PrfRNT jSTg
(the false negative or ``miss'' probability). In the bottom row are the proportions of
the non-target �SNT � trials that elicited each response, which estimate PrfRT jSNTg (the
false positive or ``false alarm'' probability) and PrfRNT jSNT g (the true negative or
``correct rejection'' probability). From such a table, two measures can be derived:
One is d 0, presumed to be a pure measure of the sensory process S, and proportional

25 See also Green and Swets (1966), especially Chapter 4 on ``Basic Experiments: Separation of Sensory

and Decision Processes''; Macmillan and Creelman (1991), especially Chapter 2 on ``The yes±no

experiment: Response bias''; and Swets (1998) on ``Separating Discrimination and Decision in Detection,

Recognition, and Matters of Life and Death''.
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to X T ÿ X NT , which increases with discriminability. The other is a measure of re-
sponse bias or criterion, presumed to be a pure measure of the decision process D.

Many factors have been used in attempts to in¯uence S and D, some expected to
in¯uence just a sensory process (sensory factors or ``s-factors''), and some expected
to in¯uence just a decision process (decision factors or ``d-factors''). Stimulus
features such as the luminance di�erence between ST and SNT are examples of s-
factors used to in¯uence the measure d 0 � MS . In studies with human observers,
2� 2 payo� matrices (PMs), containing positive or negative values associated with
the four possible outcomes on a trial, have been used as a factor PM to in¯uence
the response bias associated with D. Examples are shown by payo� matrices PM1
and PM2 in Table 6, where each cell contains the number of units of money earned
for the corresponding S-R pair. PM1 provides symmetric rewards, while PM2 in-
duces a ``conservative'' criterion ± a bias favoring RNT . In analogous studies with
animals, partial reinforcement is often used: a food reward is provided for only a
fraction of the correct responses. The entries in PM3 are therefore probabilities less
than 1.0; one way to try to induce a conservative criterion would be to set
pNT > pT > 0.

In terms of the inferential logic of Table 2, the SDT approach has met with only
partial success: d 0 has been found to be sensitive to s-factors (such as the luminance
di�erence mentioned above), and invariant with respect to d-factors (such as the
payo�-matrix), which argues for d 0 � MS being a pure measure of S. From the
viewpoint of a psychophysicist investigating S, the SDT approach can thus be ex-
traordinarily helpful. However, despite attempts to ®nd a pure measure MD of the
decision process ± in particular, a measure that re¯ects response bias ± none has been
found that is invariant with respect to s-factors (as well as being sensitive to d-fac-
tors) in experiments with either humans (Dusoir, 1975, 1983), or with animals, using
payo� matrices such as PM3 in Table 6 (Alsop, 1998). The SDT approach thus seems
to provide only a ``partial modularity'' (footnote 12) in which property p2

(MD8s-factors, Table 2) does not obtain.

Table 6

Yes±No signal-detection experiment: data matrix and three payo� matrices, PM1, PM2, and PM3
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7.1. Why has SDT failed in this respect?

One possibility is that a suitable measure MD has yet to be found. It should be
pointed out that D is hypothesized to operate on information (the operand) pro-
vided by S (Section 2.1). Whereas the operator may well not be a�ected by the
operand, D must be in¯uenced in some sense by the operand, and hence by
s-factors as well as d-factors. This might make it especially di�cult to ®nd a
measure that re¯ects only that aspect of D (the operator) that is invariant over
s-factors, even if there is such an aspect. (Recall from Section 2.1 that di�erent
measures of a process may re¯ect di�erent aspects of it, and that a claim of in-
variance of a process may be limited to just the aspect of that process re¯ected by
the particular measure.)

A second possibility is that it may be di�cult to ®nd s-factors with respect to
which to demonstrate the desired invariance of a measure of response bias. For
example, if the level of discriminability is random from trial to trial (several inten-
sities of ST , one of SNT ), it is not obvious how to de®ne a separate measure of re-
sponse bias MD for each ST intensity that it could permit testing such invariance. On
the other hand, if the level of discriminability is ®xed over a series of trials or cued on
each trial, as in Dusoir's (1983) experiments, then expected discriminability or ex-
pected noise level or signal level (which might well be a d-factor) is confounded with
discriminability (an s-factor).

A third possibility is that suitable d-factors have not been used. For example,
when the relative frequencies of ST and SNT have been manipulated instead of being
kept equal (a d-factor), it has been found (Markowitz & Swets, 1967) that d 0 is af-
fected, presumably because such variation also a�ects ``knowledge of the signal'', an
s-factor. The possibility considered by Alsop (1998), and by others whose work he
reviews, is that the problem may be a failure of the assumption that PM in¯uences D

selectively and controls response bias. It is true that if a subject operates so as to
maximize the expected value of a trial, and learns the XT and XNT distributions, then
the optimal criterion can be computed from them and the payo� matrix. But humans
have been found to select criteria that are far from optimal (e.g., Green & Swets,
1966, Chapter 4), and a few animal studies suggest that response bias is controlled,
not by the conditional probabilities described by the payo� matrix, but by the ob-
tained distribution of rewards over the two alternative responses, sometimes called
the reinforcer ratio (RR).

One way to characterize RR is as PrfRNT jRewardg, the proportion of the total
number of rewarded responses that are associated with RNT . Given PM3 of Table 6,
and assuming equal frequencies of ST and SNT , PrfRNT jRewardg � r=�1� r�, where r,
the expected ratio of rewarded RNT responses to rewarded RT responses, is given by
�pNT PrfRNT jSNT g�=�pT PrfRT jSTg�. In addition to depending on the values of pT and
pNT speci®ed by the payo�-matrix, the ratio r and hence RR also depend on dis-
criminability and the current response bias. Controlling or manipulating the payo�
matrix thus provides only partial control of a factor (RR) that may in¯uence D

selectively, but whose level is also a�ected by s-factors. Even when only S is of in-
terest and only s-factors are varied, the failure of a constant payo�-matrix to insure a
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constant response bias could be important, if the interpretation of their e�ects re-
quires that s-factors do not also in¯uence D. Fortunately it is possible to control RR
itself instead of the payo� matrix.

7.2. An approximation to full modularity of sensory and decision processes when RR is
controlled

In a luminance-discrimination experiment with six pigeons, McCarthy and
Davison (1984) used a linked concurrent pair of variable-interval (VI) schedules to
control RR. On each trial in a series, one of two light intensities appeared on the
center key of three keys; the two trial types were equally frequent. The correct re-
sponse was to peck the left key �RT � if the center key was ``bright'', and to peck the
right key �RNT � if it was ``dim''. Correct responses were reinforced with food, with a
mean probability of about 0.37, controlled by the VI schedules. Two factors were
varied orthogonally: The luminance ratio (LR) of the two lights was varied by letting
the dimmer luminance be one of ®ve values, including, for the lowest LR level, a
value of equal to the brighter luminance. And RR could be one of three values, 0.2,
0.5, or 0.8. 26 There were thus 5� 3 � 15 conditions. For each bird, each condition
was tested for a series of consecutive daily sessions until a stability requirement was
satis®ed; the data analyzed came from the last seven sessions in each condition
(about 1060 trials per condition per bird).

For each condition and each bird, the data can be represented in a data matrix
like that in Table 6, and can be summarized by two proportions, PrfRT jSTg and
PrfRT jSNTg. If the distributions of XT and XNT (see above) are Gaussian with equal
variances, and z��� is the z-transform of a proportion (the inverse Gaussian distri-
bution function), then the (``ROC'') curve traced out when z�PrfRT jST g� is plotted
against z�PrfRT jSNT g�, as RR is changed from 0.2 to 0.5 to 0.8, is expected to be
linear with slope 1.0. Examination of the set of such curves (six birds � ®ve levels of
LR) supports this expectation, and hence the equal-variance Gaussian model. 27

Given such support for the model, suitable estimators for the discriminability and
criterion measures for each condition are d̂ 0 � z�PrfRT jSTg� ÿ z�PrfRT jSNT g� and
ĉ � �z�PrfRT jST g� � z�PrfRT jSNTg��=2. (Just as in Ex. 2, the two measures of interest
are derived from the basic data by determining the sum and di�erence of two initial
measures.) Note that the origin for the criterion measure is the midpoint between
X NT and X T ; the sign of the criterion thus re¯ects the direction of the bias. Means
over birds of these two measures are shown in Fig. 5.

The left side of the ®gure (and associated ANOVAs) shows that while the criterion
responds strongly to factor RR (panel A1), the often-demonstrated invariance of d 0

with respect to d-factors is also persuasive here (panel A2): there is neither a main
e�ect of RR on d 0, nor is there any modulation by RR of the e�ect of LR. The in-

26 If RR � PrfRNT jRewardg � 0:2, for example, the ratio r de®ned above is 1/4; for each rewarded RNT

response there are four rewarded RT responses, encouraging a liberal (low) criterion for RT .
27 See Appendix A.7.1 for details.
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variant model ®ts well. We thus have evidence for the hypothesis that while RR is
potent, as shown by its in¯uence on the criterion c (hence on D), it leaves invariant
our measure d 0 of discriminability (and hence of S). These statements are based on
standard ANOVA tests in which LR and RR are treated as factors (categorical
variables). Such tests, being global rather than focused, would reveal any violation of
invariance, whether erratic or orderly, but not be especially sensitive to any.

Because we are especially interested in systematic modulation of the e�ect of a
factor F by a factor G, tests that focus on systematic e�ects rather than being global
(and may thus be more sensitive to such e�ects) are also useful. An example of a
systematic modulation is one that has a pattern that is qualitatively the same for each
level of a factor F, but whose magnitude changes monotonically with the ordered
levels of G (a ``monotone interaction''; Section 15.1), or linearly with a numeric
variable G that represents the scaled levels of G (a multiplicative interaction; Section
15.1). (Roughly, if a small change in G alters the e�ect of F a little, then a greater
change should alter it more.) To permit such focused tests, each level of each factor
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B2), respectively. Filled points and heavy solid lines in panels A2 and B1 represent ®tted models in which

d 0 and c are invariant with respect to factors RR and LR, respectively. The dotted lines in panel B1

represent a ®tted model with a multiplicative interaction of the two factors. The �S.E. error bars re¯ect

estimates of the variability of each plotted point after removing mean di�erences among birds. Plotting

symbols correspond from top panels to bottom, but not from left to right; the plotted y-values are the

same from left to right. From McCarthy and Davison (1984); basic data kindly provided by Alsop.
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was given a numerical ``potency value'' equal to the corresponding mean (over levels
of the other factor) of the measure most sensitive to it; for each factor the x-axis
values in Fig. 5 have been plotted on such a scale. (This is why the means of the
functions in panels A1 and B2 are linear.) Let ``RR'' and ``LR'' represent these
numerically scaled versions of the two factors. No signi®cant violations of invariance
of d 0 with respect to RR were found from any of several such focused tests, including
the multiplicative interaction of LR and RR. 28

E�ects of LR are shown on the right side of the ®gure. Panel B2 shows the orderly
e�ect of LR on d 0. Panel B1 shows that to a good approximation the criterion is
unin¯uenced by LR, while it causes discriminability to range widely, from d 0 � 0 to
d 0 � 3:6. In this case, however, a global test shows that the small LR� RR interaction
is signi®cant: F �8; 40� � 2:25; p � 0:04. 29 Results of ®tting a multiplicative inter-
action of LR and RR are shown by the dotted lines; criteria tend to be less extreme
at higher levels of discriminability. One advantage of representing failures of in-
variance with such multiplicative interactions is that they have only one degree of
freedom, and thus permit simple expression of their size and variability over subjects.
Here we ®nd the coe�cient of the interaction term LR�RR to be ÿ0:07� 0:03,
which is not signi®cant. In appreciating the magnitude of the interaction coe�cient,
it is useful to know that if the dotted lines maintained their average separations but
converged fully at LR � 1:90, the coe�cient would be ÿ0:48, about seven times as
large as the value observed. 30

Overall, this study along with others (see Alsop, 1998) seems promising in its
suggestion that by using something other than the payo� matrix as a d-factor in
signal-detection experiments, the separate modi®ability of S and D can be demon-
strated. While these data are from pigeons, a recent study with humans (Johnstone &
Alsop, 2000) also suggests that when RR is controlled, the criterion c is approxi-
mately invariant over changes in discriminability.

7.3. Comments

This example illustrates how important is the choice of factors. When the mea-
sures are MS � d 0 and MD � c, and the factors are the s-factor LR and the d-factor
PM, the modularity of S and D is hidden: MD depends on LR as well as PM. In
contrast, if the factors are LR and RR, the pigeon data suggest that to a good ap-

28 See Section 15 for a similar approach to testing additivity of factor e�ects on a composite measure,

rather than invariance of an e�ect on a pure measure.
29 When data for the highest LR (for which the ROCs were unusually irregular) are removed, however,

the interaction becomes non-signi®cant: F �6; 30� � 1:48; p � 0:22.
30 Unfortunately, in a similar study (Alsop & Davison, 1991) with more extreme RR values

�0:1; 0:5; 0:9�, the multiplicative interaction is somewhat larger, in the same direction, and highly

signi®cant �ÿ0:12� 0:01; p � 0:0003�, which perhaps argues against ignoring the multiplicative interaction

in the present experiment. Di�erences between these studies include the ordering of conditions and the

occurrence in the McCarthy and Davison (1984) experiment of di�erent outcomes for correct vs incorrect

responses on non-reward trials.
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proximation they in¯uence MS and MD selectively, thus demonstrating the separate
modi®ability of S and D. One way to think of this is that the dependence of MD on
the two factors LR and PM occurs because they both a�ect RR; if we control RR
rather than PM, we ®nd MD to be invariant with respect to LR, just as MS is
invariant with respect to d-factors.

Also illustrated by this example is focused testing for a systematic deviation from
invariance, the importance of factorial experiments and factors with more than two
levels for doing so, and the helpfulness of numerical scaling of factor levels for
permitting the systematic deviation to be easily expressed and evaluated.

Finally, this example permits me to emphasize that the purity of a measure is a
hypothesis to be tested (H2, Table 2), by considering an alternative to MD � c as a
measure of D: the likelihood ratio M 0D � b at the criterion, well known in the context
of SDT. 31 In Appendix A.7.2 I show that unlike c, b is drastically in¯uenced by LR
in the present experiment, hence is not a pure measure of D.

8. Introduction to three examples of inference based on direct pure measures

In each of the examples of Sections 9±11, hypothesized pure measures of two
processes are based on di�erent data sets.

Example 4 (Evidence for modular band-limited spatial-frequency analyzers in the
visual system). Demonstration of the selective e�ects of sensory adaptation is a
classic use of direct pure measures, and one in which the issue of modularity of
perceptual processes has been important theoretically. Here, the hypothesized pure
measures are detection thresholds for simple gratings of di�erent frequencies.
However, it may be more appropriate to regard this as an example of task com-
parison rather than process decomposition.

Example 5 (Partial evidence from single-cell recordings for temporally delimited
neural modules (stages)). Activation latencies of cortical neurons that are linked to
sensory and motor events, respectively, provide pure measures of the time from
stimulus to sensory-neuron activation, and the time from motor-neuron activation to
overt response, candidates for the durations of modular processes a and c, respec-
tively. This example raises questions about how to demonstrate that brain measures
re¯ect events that are essential in performing a task, and (because a process b in-
tervenes between a and c) about what evidence is needed to demonstrate modularity
of three processes rather than two.

Example 6 (Evidence from fMRI brain measurements for modular processes imple-
mented by localized neural processors). Because of its relatively good spatial resolu-
tion, fMRI provides a promising measure for the decomposition of neural processes.

31 See, e.g., Macmillan and Creelman (1991, Chapter 2); Swets (1998).
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As I could not ®nd a suitable study, the data are hypothetical. The discussion
contrasts the task-comparison method (in which fMRI or PET measurements have
often been employed; Appendix A.1) with the method of process decomposition
promoted here, outlines some of the assumptions required for both methods, and
argues for the superiority of the latter for the analysis of mental processes. I suggest
that inferences are considerably strengthened by ®nding behavioral measures that
show the same pattern of selective in¯uence as the brain measures, and again
mention the advantages of factorial experiments and factors with more than two
levels.

9. Evidence for modular spatial-frequency analyzers from selective adaptation (Ex. 4)

In the 1960s a revolution occurred in the way in which vision scientists thought
about pattern perception. The visual system came to be regarded as performing
something close to a spatial Fourier analysis of a pattern, that is, an analysis into
spatially sinusoidal components in di�erent overlapping spatial-frequency bands
(Campbell & Robson, 1968). One discovery that favored this view was Blakemore
and Campbell's (1969) ®nding of frequency-selective adaptation e�ects with si-
nusoidal gratings, ``perhaps the single most convincing psychophysical demon-
stration that the visual system contains multiple channels, each of which operates
more or less as a band-pass spatial frequency ®lter'' (De Valois & De Valois, 1988,
p. 183).

The data in Fig. 6, collected for a di�erent purpose, are derived from contrast-
threshold measurements of low- and high-frequency gratings for one of the subjects
(DS) in Graham's (1970) Ph.D. thesis (see also Graham, 1972). 32 For these data, the
joint hypothesis (Table 2) asserts (H1) that the analyzers L and H are modules that
separately determine the contrast thresholds for low (1.3 cycles/deg) and high (7.5
cycles/deg) spatial frequencies, respectively, and (H2) that the contrast thresholds for
sinusoidal gratings at these two frequencies are pure measures ML and MH of their
respective modules. 33

The factors, each with two levels, are low-frequency adaptation (LA) (with a
grating of 1.0, 1.3, or 1.7 cycles/deg), at either LA1 � 0% or LA2 � 80% contrast, and
high-frequency adaptation (HA) (with a grating of 5.5, 7.5, or 10.0 cycles/deg), at
either HA1 � 0% or HA2 � 80% contrast. The adapting stimuli f�LAj;HAk�g were
homogeneous (blank), �0%; 0%�; low-frequency, �80%; 0%�; or high-frequency,
�0%; 80%�. The goals of Graham's experiment did not require the fourth condition

32 Graham's primary interest was in the shapes of the functions that relate threshold elevation to test

frequency, after adaptation, for each of a set of adapting frequencies.
33 The contrast of a sinusoidal grating is half the di�erence between the peak and trough luminances

divided by their mean, a number between zero and one, often described in percent. The contrast threshold

is the contrast at which the presence of a grating is just detectable. Whereas typical adaptation contrasts

range from 20% to values close to 100%, threshold contrasts tend to be 1% or less.
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of a complete factorial design, �LA2;HA2� � �80%; 80%�: adaptation with a com-
pound grating consisting of both low and high frequencies. 34 To increase sample
size and provide a measure of variability I selected the data to include adapting
frequencies near (as well as at) the center frequencies of the hypothesized modules.
The plotted values ML and MH are post-adaptation threshold contrasts of the two
test gratings obtained by the method of adjustment, averaged over the three adapting
frequencies in each set.

These conditions produced the data shown in Figs. 6A and C. Fig. 6A shows that
changing LA from LA1 to LA2 increases ML but not MH ; Fig. 6C shows that changing
HA from HA1 to HA2 does the opposite. Thus LA and HA in¯uence ML and MH

selectively, supporting H1 and H2 of Table 2.
Fig. 6B shows that a third factor, medium-frequency adaptation (MA) (with a

grating of 2.25, 3.0, or 4.0 cycles/deg), at either MA1 � 0% or MA2 � 80% contrast,
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threshold contrasts (on a logrithmic scale) for low-frequency (1.3 cycles/deg) and high-frequency (7.5

cycles/deg) test gratings. What di�ers across panels is the spatial-frequency range of the adapting gratings:

In cycles/deg they are low (1.0, 1.3, 1.7) in panel A (factor LA); medium (2.25, 3.0, 4.0) in panel B (factor

MA); and high (5.5, 7.5, 10.0) in panel C (factor HA). Each factor has two levels, 0% and 80% contrast.

The values of threshold contrast for 0% adapting contrast (left-hand points) in the three panels represent

the same data. In units of 100� log�threshold�, mean threshold elevations in panels A, B, and C are,

respectively, 39.0, 28.5, and 4.6 units for the low-frequency test (ML) and 0.2, 19.1, and 41.0 units for the

high-frequency test (MH ). The estimated S.E. for these mean elevations is 4.1 units and is based on 12 df;

the elevations are therefore highly signi®cant �p < 0:001� except for the high-frequency test with low-

frequency adaptation (0:2� 4:1 units) and the low-frequency test with high-frequency adaptation

(4:6� 4:1 units). Also shown are null-e�ect models for the e�ects of LA on MH and of HA on ML.

34 See Appendix A.9.1 for the likely results of such a factorial experiment.
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leaves neither ML and MH invariant; this is interpreted to indicate that the band-
widths of analyzer modules L and H; centered at 1.3 and 7.5 cycles/deg, respectively,
are both large enough to include some or all of these medium frequencies. Note that
®nding a factor, MA, that in¯uences both ML and MH does not detract from the
demonstration of separate modi®ability provided by ®nding two factors that in¯u-
ence those measures selectively.

Especially when taken together with related studies, these data argue persuasively
for the existence of band-limited spatial-frequency analyzers that control contrast
thresholds within their bands, and whose adaptive states are separately modi®able by
high-contrast simple gratings.

9.1. Comments

In this investigation of separate modi®ability, the joint hypothesis (Table 2) in-
cludes H1: Analyzers L and H are modules (separately modi®able) and H2: Contrast
thresholds ML and MH for low and high spatial frequencies are pure measures of the
hypothesized modules. The joint hypothesis is supported by the discovery that fac-
tors LA (when HA � HA1) and HA (when LA � LA1) in¯uence the two measures
selectively. Because ML and MH are based on di�erent data, they are direct-pure
rather than derived-pure measures.

A di�erent approach to the modularity of spatial-frequency analyzers is taken
in Ex. 7 from Sachs, Nachmias, and Robson (1971), an experiment in which
stimuli in the conditions of primary interest were compound gratings containing
two frequencies best detected by two distinct analyzers. The procedure and results
of the latter experiment are consistent with the idea that on every trial, both
analyzers participated in the complex process that the subject used to perform the
task.

In the present study, however, where thresholds were obtained by the adjustment
method and the test frequency was known to the subject (who might therefore be
able to adjust the detection process, dependent on frequency), it is hard to argue that
ML and MH are measures within the same task. Strictly, we should regard this as an
example of the task-comparison method (Section 1.6; Appendix A.1), with the two
tasks being detection of the low- and high-frequency test gratings. Suppose, how-
ever, that ML and MH were obtained in a ``concurrent task'', where the stimuli on
di�erent trials could contain either frequency, both, or neither, and where on each
trial the subject made separate judgements about the presence of each test grating.
Under such frequency-uncertainty conditions, both analyzers would participate on
every trial, and the claim that a single complex process was under analysis would
have greater merit. Performance in such a concurrent task appears to be no worse
than under corresponding ®xed-frequency conditions (Graham, Kramer, & Haber,
1985), suggesting that the pattern of adaptation e�ects would be similar to that in
Fig. 6.

In Appendix A.9 we consider the advantages of expanding a study like the present
one into a factorial design with multiple-level factors.
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10. Evidence from individual neurons for temporally delimited (serial) neural modules

(Ex. 5)

In experiments in which RT of human subjects is measured and where it is
possible that component processes are arranged in stages (Sections 3.1.1, 16;
Appendix A.16.2), we usually have no pure measures of their durations. Instead, the
RT has to be treated as a composite measure that re¯ects the entire process. Suppose
that the end of a functional processing stage corresponds to a neural process that
ends with the (asynchronous) ``activation'' of an appropriate population of neurons
(Parker & Newsome, 1998). When sub-human primates are subjects in such exper-
iments, measurements of the activity of single neurons then provide estimates of time
points that may inform us about these boundaries between one such stage and the
next. Of course, such time points are useful for identifying (modular) stages only if
the stages so de®ned can be shown to be separately modi®able. A pioneering but
partial example is provided by the work of Mouret and Hasbroucq (2000).

Task essentiality of neural activity. Whether a brain measure re¯ects events that
are essential to the task being performed is often problematic (Section 1.7). One
virtue of Mouret and Hasbroucq's approach is that the signal-to-noise ratio is high
enough so that each trial provides an interpretable datum. For a neuron to be of
interest, they can therefore require that it become active during the interval between
stimulus and response on every successful trial of a particular type, and that its
activation can be shown to be either contingent on or temporally coupled to a
particular trial event (Appendix A.10.1). 35 Meeting of such criteria cannot guar-
antee the task essentiality of a neuron's activity, but it does constitute strong sup-
porting evidence.

The subject was a rhesus monkey performing in a two-choice RT experiment. His
thumb �t� rested on one surface, his four ®ngers �f � on another. The stimulus was
vibration of one of the surfaces; the response was an isometric increase in the force
he applied to one of the surfaces. The factor of principal interest was SRM: In high-
compatibility trial blocks �SRM � SRM1 � easy�, the digit(s) stimulated on a trial
also responded; the two trial types can be designated t±T and f±F. In low-compat-
ibility trial blocks �SRM � SRM2 � hard�, the mapping was reversed; the trial types
were t±F and f±T. An extracellular electrode was used to record the spikes (action
potentials) of individual neurons in primary somatosensory cortex (S1) and primary
motor cortex (M1). During each of many sets of trials on which RT was measured,
the activity at a particular electrode placement (probably arising from a single
neuron) was also measured; the authors estimated the occurrence time (an activation
time, Ta) of an increase in its spike rate (an activation). Neurons were selected that
regularly showed activations between stimulus �Ts � 0� and response �Tr � RT �.
Because about 25% of these neurons systematically showed two such bursts of

35 Such criteria cannot easily be imposed if, because the S/N ratio is low, a method requires averaging

over many trials, as in typical uses of ERPs (Sections 6, 14; Appendix A.6) or fMRI measurements

(Section 11; Appendices A1.2.4, A.11).
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activity, the neuron-activation (rather than the neuron) became the unit of analysis,
whose occurrence time on each of many trials was measured. For simplicity, I write
as if such activation pairs for an electrode placement were generated by two di�erent
cells, and call each unit a ``cell�''. Based on selection criteria described in Appendix
A.10.1, cells� fell into four classes, two sensory (SC2 and SC4) and two motor (MC2

and MC4); data from cells� that satis®ed none of the four sets of selection criteria
were discarded.

10.1. Estimation of stage durations

Fig. 7 shows the way in which three hypothesized neural processing stages were
de®ned, and how stage durations were estimated by combining mean activation
times with mean occurrence times of stimulus and response. Averaging over trial
types, the data in Fig. 8 show the estimated mean durations of a; b; and c to be
Da � 39;Db � 142; and Dc � 63 ms, respectively. The mean e�ect of SRM on RT is
33 ms. Which stage or stages are responsible for this e�ect? Panel A of Fig. 8 shows
that whereas SRM in¯uenced RT for those trials on which sensory cells� were
measured, it had no e�ect on mean latency of the neuron response, hence none on
Da. Panel B shows that for trials on which motor cells� were measured, the mean
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Fig. 7. Three hypothesized processing stages and their de®nitions in terms of the times of events on trials

on which sensory cells� were measured (panel A) and on which motor cells� were measured (panel B), in

the experiment by Mouret and Hasbroucq (2000). Stage a with mean duration Da is the process that starts

with the stimulus and ends with the activation of sensory cells�. Stage c with mean duration Dc is the

process that starts with the activation of motor cells� and ends with the overt response. The mean duration

of stage b, which starts with the activation of sensory cells� and ends with the activation of motor cells�, is

estimated by Db � RT ÿ �Da � Dc�.
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latencies of neuron and overt responses were in¯uenced to about the same extent by
SRM, which means that Dc is (approximately) invariant with respect to SRM. (Note,
however, that for both MC2 and MC4 cells�; mean activation latency shows a non-
signi®cantly smaller e�ect of SRM than does RT ; the average reduction is 20%. Even
this experiment ± heroic for both subject and experimenters ± provides less precision
than would be desirable.) Idealized, these two ®ndings mean that neither Da nor Dc

were in¯uenced by SRM. It follows that the SRM e�ect was due entirely to a change
in Db, which supports the idea that b can be modi®ed without also modifying a or c:
However, this support is not as strong as it might be.
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Mouret and Hasbroucq (2000) with ®tted selective-in¯uence models. In each set of trials a group of cells�

of one type was each measured many times. For each type, mean latencies are shown as functions of the

level of SRM, with levels SRM1 � easy (spatially compatible) and SRM2 � hard (spatially incompatible).

Panel A shows the results for trials on which stimulus-related (sensory) cells� were measured, type SC2 on

the left, type SC4 on the right. For trials on which SC2 cells� were measured the SRM e�ects are ÿ0:5� 1:7
(neuron response) and 32� 10 ms (overt response). For trials on which SC4 cells� were measured the SRM

e�ects are 0:3� 0:8 (neuron response) and 29� 4 ms (overt response). Also shown for each cell� type is a

null SRM-e�ect model for the neuron activation latency. Panel B shows the results for trials on which

response-related (motor) cells� were measured, type MC2 on the left, type MC4 on the right. For trials on

which MC2 cells� were measured the SRM e�ects are 27� 8 (neuron response) and 35� 8 ms (overt re-

sponse); for trials on which MC4 cells� were measured the SRM e�ects are 31� 8 (neuron response) and

37� 7 ms (overt response). Also shown for each cell� type is a ®tted equal SRM-e�ects model (latencies of

neuron vs overt response). For MC2 cells� the di�erence between the e�ects (measuring badness of ®t of the

model) is 9� 11 ms; for MC4 cells� the di�erence is 6� 7 ms.
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10.2. Relation of these ®ndings to the demonstration of separate modi®ability

To handle three modules ± here organized as stages ± the argument of Table 2
must be expanded. For example, one might search for three factors, F, G, and H,
each selectively in¯uencing a di�erent stage, which would require testing for nine
properties like the four in Table 2. Of those nine properties, these results con®rm
only three: Ma 8 G; Mb  G; and Mc 8 G, where G is SRM, and Ma;Mb; and Mc

are the three duration estimates Da;Db; and Dc, respectively. Hence, while Mouret
and Hasbroucq have provided an important and novel demonstration of selective
in¯uence in a neural process, the argument for modularity could be considerably
strengthened (Section 2.3): we know neither that Ma and Mc are sensitive nor that
they can be modi®ed separately from Mb or from each other. For example, the
present ®ndings leave open the following possibilities for a:

(1) a is in¯uenced by no task factors ± it is non-modi®able.
(2) a SRM ; but this is not re¯ected in Ma.
(3) a8SRM :

If Ma were now shown to be sensitive (responsive to some other factor), this would
falsify (1), reduce the plausibility of (2) (which would now require that Ma re¯ect
some functional changes in a but not others), and hence strengthen (3).

10.3. Comments

In relation to the goal of identifying modules, the major limitation of the present
example is the absence of one or more factors with systematic e�ects that in¯uence a

and/or c selectively. 36 Without such information the demonstration of modularity is
incomplete (Section 2.3) even for two processes, and certainly for three, where nine
properties must be established rather than only the four listed in Table 2.

Idealizing the data, we have learned that of the 244 ms in the RT � Da � Db � Dc;
a substantial part (Da � Dc � 102 ms, or 42%) is invariant with respect to SRM,
evidence for the selective in¯uence of SRM on an epoch within the RT, and hence for
a stage model. The strength of this evidence would be greatly enhanced if the sen-
sitivity of Da and/or Dc could be established, even using factors whose in¯uence was
non-selective.

The four examples (2, 5, 6, and 8) based on brain measures all require the as-
sumption that the measure (here, Ta) corresponds to the neuronal implementation of
(part of) the process that controls the behavior. It is in the present example that this
assumption is most defensible, because the measurement of individual neurons
permits more persuasive tests of task-essentiality (Section 1.7; Appendix A.10.1)
than the other brain measures. Applying such criteria to individual neurons seems
especially important, given the ®nding (Appendix A.10.1) that even areas S1 and M1
of the monkey cortex each contain mixtures of sensory and motor cells.

36 See Appendix A.10.3 for a discussion of e�ects of the stimulus (t vs f ) and the response (T vs F ) as

factors, in this connection.
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Behavior is controlled by populations of neurons (Parker & Newsome, 1998); it is
not obvious that the mean is the appropriate statistic of the population latency
distribution to compare to the behavioral latency measure RT (Appendix A.10.2).
Appendix A.6 contains a brief summary of a study in which the latency of the LRP
in humans was used as an indicator of the boundary between two stages, analogous
to Ta.

11. Evidence from fMRI for modular neural processes implemented by anatomically
delimited processors (Ex. 6)

Among the informal (and controversial) assumptions that appear to underlie the
interpretation of localized brain activation in much research using functional brain-
imaging (such as PET and fMRI; Frackowiak, Friston, Frith, & Mazziotta, 1997;
Posner & Raichle, 1994) are the following four:

(1) The neural processes (a; b; . . .) that underlie di�erent functional operations
are likely to be implemented by neural processors that are localized in the
brain such that they occupy non-overlapping brain regions (Ra; Rb; . . .)
and are of a size resolvable by the imaging method. 37

(2) If and only if a process (e.g., a) occurs during performance of a task, there is
an increase in activation of the region containing the corresponding proces-
sor (Ra), relative to a task in which a does not occur. 38

(3) If the same operation (e.g., a) is employed in two di�erent tasks, it is likely to
be implemented by the same neural processor (located in region Ra).

(4) Many laboratory tasks are accomplished by a set of distinct mental-process-
ing operations, some of which are also employed in other tasks.

The ``only if'' in Assumption 2 (process occurrence necessary as well as su�cient) is
needed, with the other assumptions, to infer the occurrence of a from activation of
Ra. It is equivalent to assuming that the neural processes carried out in regions Ra

and Rb are modular. (To see why, replace MA;MB; and processes A and B in Table 2
by Ma;Mb; and processes a and b; respectively.)

The best-known paradigm in which functional imaging methods have been used is
task comparison (Section 1.6; Appendix A.1), in which we search for dissociations
between tasks, each accomplished by a qualitatively di�erent complex process, rather
than dissociations among parts of the complex process used to carry out a single
task. In the simplest case, one selects two tasks, Task 0 and Task 1, and compares the
associated patterns of brain activation. Inferences from the di�erences between these

37 It has to be recognized that neural processors that are distributed over large regions or intermingled

in small regions are less likely to be picked up using fMRI (Geisler & Albrecht, 2000, p. 82n). Also, the

possibility that human brain regions contain neuron types with diverse functions is made more plausible

by the discovery that primary somatosensory and motor areas in monkeys each contain both ``sensory''

and ``motor neurons'' (Appendix A.10.1). See also Phillips, Zeki, and Barlow (1984).
38 This in turn requires that spatially resolvable brain regions can be found that are functionally

homogeneous.
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patterns are made in the context of a task theory for each task, which speci®es the set
of mental operations it requires. (While typical inferences require such task theories,
they are sometimes only implicit.) Among other things, these inferences depend on
the validity of the two task theories. The principal goal of such studies is to use the
task theories together with the measured activation di�erences to discover the lo-
cations of the processors that carry out the hypothesized component operations,
without necessarily validating the two task theories or assessing the modularity of
these operations. 39

Similar ideas and fewer assumptions lead to the use of fMRI for process de-
composition, which can help validate a task theory as well as localize its constituent
processes. As there is only one task, we eliminate Assumptions 3 and 4. And to
justify the interpretation of brain-image di�erences due to within-task factor varia-
tion we replace Assumption 2 by:

�20� If and only if a process (e.g., a) that occurs during a task is prolonged or
otherwise made more di�cult, there is an increase in activation of the region
containing the corresponding processor (Ra). 40

Consider a single task for which performance depends on modular processes a

and b. Suppose these process are accomplished by neural processors that occupy
non-overlapping brain regions Ra and Rb; and therefore provide pure measures Ma

and Mb of processor activation. (Given the assumed links between functional and
neural processes, Ma and Mb are also pure measures of functional processes A and
B.) If we can ®nd a factor F (G) that selectively in¯uences A (B), then if it in¯uences
the activation of either region, it should plausibly also selectively in¯uence
Ma �Mb�. 41 One example of a candidate task is a choice±reaction experiment, for
which the task theory might assert that the sub-processes include modules for
stimulus identi®cation and response selection; the two factors might be stimulus
quality (SQ) and stimulus-response mapping familiarity (MF). (See Section 16 for
relevant behavioral evidence.) Some requirements for a study of this kind are de-
scribed in Appendix A.11.1; as I have been unable to ®nd a study that meets them,
the present example is hypothetical.

Fig. 9 shows mean data from a pair of hypothetical experiments in such a task. In
one experiment (panel A), with G at a ®xed level and four levels of F, changing the
level of F leaves Mb invariant while changing Ma: In the other experiment (panel B),

39 A classic example of task comparison in brain imaging is provided by Petersen, Fox, Posner, Mintun,

and Raichle (1988). See Appendix A.1 for a more extensive discussion of task comparison, its use with

fMRI, and the contrast between task comparison and process decomposition.
40 Prolonging a process may not increase its instantaneous neural activation level while it is occurring.

The fMRI signal is inherently a time average, however; if the period of elevated activation is brief

compared to the e�ective period of the average, then an increase in its duration will increase that average.
41 With about 105 neurons/mm3 (Wandell, 1995), a typical fMRI voxel (volume element) of 70 mm3

contains almost 107 neurons. Due to this limit on the spatial resolution of fMRI, meaningful changes in

activation patterns within voxels may not be re¯ected in Ma or Mb.
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with F at a ®xed level and three levels of G, changing the level of G leaves Ma in-
variant while changing Mb. (The statistical treatment of such data is considered in
Appendix A.11.2.) Such results support the hypotheses that the task involves (at
least) the two processes a and b; that Ma and Mb are pure measures of them, that a

and b are modular and selectively in¯uenced by F and G, respectively, and that they
are carried out by neural processors in regions Ra and Rb. Thus, in addition to lo-
calizing processes a and b in the brain, such results provide support for the task
theory. However, such data provide us with less con®dence about the modularity of
A and B than of a and b because there may be no support for the assumed a±A and
b±B linkage. How might such support be provided? One approach would be to
search for pure or composite behavioral measures of processes A and B, and seek
evidence for A (B) being in¯uenced selectively by the same factors as a �b�. 42

In addition to providing evidence for modularity of processes and processors as
well as functional localization, a test of the task theory, and information (from the
nature of the factors) that helps to de®ne the processes of interest, the method has
four other desirable features: First, a theory for only one task is required. Second,
because Ma and Mb are pure measures, the critical question is whether a factor
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Fig. 9. Idealized hypothetical data from a pair of experiments in which localized measures of brain ac-

tivation Ma and Mb are obtained in two regions Ra and Rb. Values shown are the means over N subjects.

Panel A: The two measures as functions of the level of factor F, with the level of factor G ®xed at G2. Panel

B: The two measures as functions of the level of factor G, with the level of factor F ®xed at F1. Unlike Fig.

5, the x-axes have not been rescaled for linearity of the e�ect of the most potent factor. See Appendix

A.11.2 for discussion of statistical issues.

42 Appendix A.6 summarizes such parallel evidence from an actual study, but where the brain

measurements were time measures based on ERPs. However, parallel behavioral evidence may not always

be available (Section 6.1).
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changes an activation measure or leaves it invariant; the thorny issue of the ap-
propriate combination rule for activation levels therefore need not be addressed.
Third, because comparisons are of di�erent conditions within the same task, there is
no baseline task, hence, again, no need to assume any particular combination rule
for baseline and task-dependent activation. 43 And fourth, while the presence vs
absence of a process (in the task-comparison method) is a factor with only two levels,
this method permits the use of multiple-level (within-task) factors, with its several
advantages (Appendices A.2.1, A.9.2).

On the other hand, among the sources of concern associated with this method as
well as some other imaging methods are the following: With a time constant on the
order of seconds, the hemodynamic response is sluggish in relation to the time scale
of interesting mental operations, which could lead to contamination of localized
activation measures. Together with trials averaging, this even raises the possibility
that events that follow a behavioral response may be interpreted as being required
for it to occur, and that the increased activation measure for a region occurs on only
a subset of trials. Finally, if the assumption of functional localization were to fail
substantially in a particular study, as might be expected from some single-neuron
studies (Appendix A.10.1), then we would be unlikely to ®nd evidence for selective
modi®ability: persuasive invariance of activation in one region concurrent with
systematic change in another (such as shown in Figs. 9A and 9B) would be im-
probable.

A factorial version of the pair of experiments. As argued in Appendix A.9, a fac-
torial experiment rather than two one-factor experiments, while not essential, sup-
plements demonstrations of selective in¯uence such as those shown in Fig. 9 with
useful tests of generality. Consider panel A, for example. In a 4� 3 factorial ex-
periment we should ®nd, ®rst, that Ma behaves identically at each level of G, and,
second, that the invariance of Mb with respect to F is expressed at each level of G by a
di�erent ¯at function of F-level. In addition, such an expanded experiment permits
assessing the extent to which any deviations from the expected patterns are sys-
tematic (see Exs. 3, 7, and 9). The cost of such considerable enrichment of the results
is an increase in the number of conditions from seven �3� 4� to only 12 (3� 4).

11.1. Comments

In this example we consider the assumptions often used in making inference from
fMRI measurements in task-comparison studies. I suggest that a smaller and per-
haps weaker set of assumptions can be used as a basis for identifying modular
processes a and b used in implementing the complex process for a single task, and
thus acquire evidence about the modularity of the processes A and B that they im-
plement.

43 The rule assumed in the task-comparison paradigm (Appendix A.1.2.4) is almost always summation;

usually its validation is at best indirect, because the conditions that would permit a test are not included.
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But how strongly does the modularity of neural processes support the modularity
of functional ones? That we observe only measures of functional processes and not
the processes themselves, and that one measure of one such process might be in-
variant with respect to a factor while another measure of the same process might not
be (Section 2.1), also applies to neural processes. In this example, the conclusion that
processes carried out by a and b are modular is based on the selective in¯uence of F
and G on spatially and temporally integrated (fMRI) activation measures Ma and
Mb, respectively. One reason for advocating the search for parallel evidence using
behavioral process measures MA and MB is that the outcome of such a search is not
obvious: Especially as measures of temporally and spatially integrated neural ac-
tivity, it is possible that Ma and Mb are merely crude and partial indicators that might
be invariant with respect to a factor that substantially in¯uences the corresponding
neural process. (See Section 1.7 for other relevant considerations.) Hence, at least
early in such research, it may be desirable to use tasks for which factors with selective
in¯uence have already been found in successful functional decomposition.

12. Introduction to four examples of inference based on composite measures

In each of the examples of Sections 13±16 a composite measure of the process is
used, rather than pure measures of its parts. In the three behavioral examples the
composite measures are standard indices of task performance (detectability, response
rate, and reaction time); in each case a combination rule is speci®ed and tested
(Tables 3, 4, 8). In Ex. 8, where brain measurements are used, the combination rule is
known, hence need not be tested.

Example 7 (Evidence for modular spatial-frequency analyzers from ``probability
summation'' at threshold). As discussed in relation to Ex. 4 (where the measures were
pure), the selective e�ects of high-contrast adapting gratings of particular spatial
frequencies on detection thresholds over a range of frequencies have provided one
argument for modular spatial-frequency analyzers. Another kind of evidence is how
the detectabilities of gratings of two di�erent frequencies combine (producing a
composite detectability measure) if they are presented together as a compound
grating (Sachs et al., 1971). When the frequencies are su�ciently separated, the
behavior of the composite measure indicates that they are detected by di�erent
modular analyzers (two-channel model). The discussion shows why a multiplicative
combination rule for the non-detection probabilities of the two analyzers (usually
called ``probability summation'') is appropriate. In Appendix A.13, we consider
Sachs et al.'s single-channel model, which ®ts the data when the two frequencies are
close and the two-channel model fails. When the frequencies are separated the single-
channel model fails, strengthening the evidence for modularity.

Example 8 (Evidence from ERP amplitude for modular neural processes). The elec-
trical potential at a point on the scalp is a composite measure of the contributions
from all the voltage sources in the brain, suitably weighted. In his additive-amplitude
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method, Kounios (1999) exploits the fact that, unlike our other examples of com-
posite measures, the combination rule (summation) for ERP amplitude is given by
physics rather than being one of the hypotheses (H3 in Tables 3, 8) to be tested. Such
composite measures can be obtained simultaneously at each of several locations
rather than just one, which permits stronger inferences.

Example 9 (Response rate as a composite measure with multiplication as the
combination rule). Among the relatively few factorial experiments by students of
animal behavior, Roberts (1987) discovered a large number of diverse examples of
factors having multiplicative e�ects on response rate, RR, one from a study by Clark
(1958). Such a pattern can arise if the combination rule for the contributions to RR
of di�erent processes (in¯uenced selectively by those factors) is multiplication;
Roberts has considered what sort of process model would create such a combination
rule. By transforming Clark's data logarithmically, multiplicative factor e�ects be-
come additive, and we can apply familiar tests of additivity. Because the factors had
more than two levels, we can see the advantages of scaling them numerically (as in
Ex. 3), which helps here in assessing the extent to which deviations from additivity
are systematic. Together with Ex. 1, this example di�ers from the others in how
responses are controlled: here, individual responses are operants, rather than being
elicited by individual stimuli.

Example 10 (Selective effects of sleep deprivation). One application of the separate-
modi®ability method to a composite measure �RT � with summation as the combi-
nation rule is the AFM, which has been used e�ectively and in interesting ways by
Sanders. Unlike most of the other examples, a study by Sanders et al. (1982) goes
beyond merely demonstrating the separate modi®ability of two processes, by also
showing that two additional factors, one being the amount of sleep deprivation,
in¯uences only one of those two processes. 44 While most experiments on sleep de-
privation have used the task-comparison approach, leading experts to conclude that
deprivation in¯uences all mental processes (Appendix A.1.2.2), this use of the single-
task process-decomposition approach indicates otherwise. As well as prolonging RT,
sleep deprivation increases the number of response omissions; in Appendix A.16 we
consider the proportion of trials on which responses are produced as a composite
measure with multiplication as the combination rule, and also discuss several issues
in the interpretation of additive RT e�ects, and what, exactly, a stage model is.

13. Evidence for modular spatial-frequency analyzers from `probability summation' at

threshold (Ex. 7)

In Section 9 we considered evidence for modular spatial-frequency analyzers (or
``channels'') from the selectivity of the e�ects of adapting to a sinusoidal grating of

44 This required Sanders et al. to run a four-factor (24) experiment.
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one spatial frequency on the modulation-contrast thresholds for detecting test
gratings over a range of frequencies. If detection thresholds are determined by
modular band-limited analyzers, then the absence of an e�ect far from the adapting
frequency (outside the inferred band of the adapted analyzer) favors the hypothesis.
In a ground-breaking and once controversial paper, Sachs et al. (1971) adopted a
di�erent approach; they considered how gratings of two frequencies in a compound
grating (consisting of superposed simple vertical gratings at frequencies f and f 0)
combine in in¯uencing the probability of detection. In their experiments, a brief test
stimulus was preceded and followed by a uniform ®eld of the same mean luminance;
the observer responded ``yes'' (``detection'') if he saw any change. Because
PrfDetectg is then a composite measure, re¯ecting the contributions of both con-
stituent gratings, the test of separate modi®ability requires assuming a combination
rule, as discussed in Section 3 and exempli®ed in Tables 3, 4, and 8.

13.1. Justi®cation of a multiplicative combination rule for non-detection probability

Suppose spatial frequencies f and f 0 are su�ciently far apart such that the an-
alyzers most sensitive to them, A and A0, are modules (distinct ``channels''). That is,
they are separately modi®able, as shown by A being in¯uenced by the contrast of
the f grating (Cf ) but not by the contrast of the f 0 grating (Cf 0), and vice versa:
factors Cf and Cf 0 in¯uence processes A and A0 selectively. As the stimuli in these
experiments are near threshold, the behavior of each analyzer is probabilistic: from
trial to trial the same signal may or may not excite it, perhaps depending on the
levels of external and internal ``noise''. What is selectively in¯uenced by a factor is
therefore a probability. For each analyzer on each trial we de®ne a binary indicator
random variable (x for A, x0 for A0) that has the value one if its analyzer is excited,
and zero otherwise.

As shown below, the appropriate combination rule for x and x0 is multiplication
(Section 3.2). Thus, in addition to assuming A and A0 to be independent in the
sense of separately modi®able, justi®cation of the combination rule required Sachs
et al. also to assume that the behaviors of the two analyzers (expressed by the
random variables x and x0) are uncorrelated. For example, the fact that A is excited
(x � 1) on a trial can have no e�ect on Prfx0 � 1g on that trial. Also, the occur-
rence of detection responses on ``catch'' trials, on which no grating was displayed,
led them to assume that, independent of these analyzers, a third ``guessing''
mechanism, GM, may generate a false detection response with some probability
regardless of the stimulus; let y � 1 when such a guess is generated, and y � 0
otherwise. Random variables x, x0, and y are then assumed to be mutually inde-
pendent stochastically. 45 Finally, Sachs et al. (1971) assumed that the observer

45 As discussed in Appendix A.3.3, whereas the zero-correlation requirement can be violated for

processes we would regard as modular, support for stochastic independence strengthens the evidence for

modularity.
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makes an overt detection response on a trial if and only if at least one of the
variables x, x0, or y is non-zero. 46

The consequences of these assumptions can be more simply expressed if we
consider PND � PrfNondetectg � 1ÿ PrfDetectg rather than PrfDetectg. Non-detec-
tion occurs if and only if x, x0, and y are all zero; using the stochastic independence
of these three random variables, it follows that PND � Prfx � 0g � Prfx0
� 0g � Prfy � 0g, a multiplicative combination rule similar to Eq. (4). Given con-
trast levels Cf � Cfj and Cf 0 � Cf 0k, we let p�Cfj� � Prfx � 0g be the probability
that A is not excited, let p0�Cf 0j � � Prfx0 � 0g be the probability that A0 is not ex-
cited, and let png � Prfy � 0g be the probability that no guessed ``yes'' is generated.
The assumptions above then imply that

PND�Cfj;Cf 0k� � p�Cfj� � p0�Cf 0k� � png: �8�
That is, Cf and Cf 0 are multiplicative factors, because the composite measure is a
product and their levels in¯uence di�erent factors in that product (Section 3.2).

13.2. Three tests of the joint hypothesis

The joint hypothesis is as in Table 4, with modules A, A0 and measure MAA0 � PND,
but strengthened by the added hypothesis that GM neither a�ects nor is a�ected by A
and A0, and by replacement of H5 by the mutual stochastic independence of the
contributions of A, A0; and GM. (See Appendix A.2.3 for an alternative formulation
of the inferential logic.) In Sachs et al.'s primary test, they ®xed f at 14 cycles/deg and
set f 0 at di�erent values in di�erent conditions, some far from f (the furthest were 2.8
and 28 cycles/deg) and some near f (the closest was 11.2 cycles/deg). In each con-
dition, Cf took on levels in a random sequence selected from 0 � Cf1 < Cf2

< � � � < Cfn with n � 6. Cf 0 was randomly either Cf 0 � 0, generating a simple ( f )
grating, or a ®xed value Cf 02 > 0, generating a compound �f ; f 0� grating. Each con-
dition thus consisted of an n� 2 �Cf � Cf 0� factorial design, with the �Cf1;Cf 01�
cell consisting of catch trials (zero contrasts for both f and f 0). For the simple
grating,

PND�Cfj; 0� � p�Cfj� � png: �9�
Combining this with Eq. (8) for the compound grating, we ®nd

PND�Cfj;Cf 02� � aPND�Cfj; 0�; �0 < a < 1�; �10�
where a is the constant p0�Cf 02�. The result of adding the f 0 grating (the result of
changing the level of factor Cf 0 from zero to a ®xed positive value) is thus predicted
to be multiplication of PND by a ®xed constant 0 < a < 1, regardless of the level of Cf.

46 For discussion related to such models, in which what is combined are binary decisions about each of

several sources of information rather than the (possibly continuous) information on which those decisions

are based, see, for example, Graham (1989, especially Chapters 4 & 7), Shaw (1982, on evidence favoring

``second-order integration''), and Treisman's (1998) review and elaborations of ``probability-summation''

models.
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As a is just the p.e�ect of Cf 0, we see that it is invariant with respect to Cf; similarly,
the p.e�ect of changing the level of Cf from Cfj to Cfj�1 (for example) is invariant
with respect to Cf 0.

The plots in Fig. 10, of data from three of the conditions shown in Sachs et al.'s
Fig. 8, di�er from theirs in assuming nothing about the form of the psychometric
function other than its monotonicity. To help visualize any systematic pattern in the
model-data deviations, I scaled the Cf levels (x-axis) in each condition so as to
linearize the observed proportions for the simple grating, P̂ND�Cfj; 0�, and hence the
predicted proportions for the compound grating. From Eq. (10), we then expect the
observed proportions for the compound grating, P̂ND�Cfj;Cf 02�, to fall on a linear
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Fig. 8). For each condition, each open symbol shows the proportion, P̂ND of N � 100 trials on which the

observer reported ``no change'', as a function of the contrast (Cf) of the grating with spatial frequency

f � 14 cycles/deg, for simple gratings (no other frequency present; Cf 0 � Cf 01 � 0) and for compound

gratings (also containing a superposed ®xed-contrast grating with frequency f 0; Cf 0 � Cf 02 > 0). Panels A

and C show conditions in which f 0 was 2.8 and 28 cycles/deg, respectively, far from f � 14 cycles/deg.

Panel B shows a condition in which f 0 was 11.2 cycles/deg, close to f. For each condition the x-axis has

been scaled so as to linearize the simple-grating data. The two-channel (modular±analyzer) model implies

that PND�compound� is a ®xed proportion (a in Eq. 10) of PND�simple�, as shown by the lower ®tted line and

®lled squares. Non-detection proportions for catch trials (zero contrast at both frequencies) are shown by

the highest value of P̂ND in each panel. Error bars represent�S.E., based on binomial variance. Also shown

in each panel are the ®tted values for a broadband single-channel model (Appendix A.13). Because the

basic data are no longer available, values were determined from the 1971 ®gure.
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function that lies below the P̂ND�Cfj; 0� line, and that converges with it where
PND � 0. The a-value that best ®tted the compound-grating proportions in each
condition was determined by least squares; the resulting ®tted lines (two-channel
model) are shown. Global tests of goodness of ®t as well as tests focused on sys-
tematic (linear and quadratic) trends in the deviations of the compound-grating data
from the ®tted model show that for panels A and C (compounds consisting of two
frequencies separated by at least a factor of 2) the multiplicative prediction ®ts well,
while it fails dramatically for panel B (compound consisting of two frequencies
separated by much less than a factor of 2). Con®rming the joint hypothesis, Sachs et
al. thus provide us with evidence that detection of compounds of two gratings with
su�ciently separated frequencies, but not of those with similar frequencies, is
accomplished by modular analyzers.

13.3. Comments

In this investigation of separate modi®ability, the joint hypothesis is an elab-
orated version of what is stated in Table 4, including H1: Analyzers A and A0 are
modules; H4: Their contributions to MAA0 � PND combine by multiplication; and
H5: These contributions are uncorrelated. 47 The measure PND is composite be-
cause it re¯ects contributions from both modules; in this experiment subjects did
not attempt to report separately on the presence of f and f 0. That factors Cf and
Cf 0 (the contrasts of frequencies f and f 0, respectively) have multiplicative
p.e�ects on the composite measure PND (when f and f 0 are su�ciently separated)
supports the joint hypothesis (in that case). Unlike the joint hypotheses for pure
measures (Table 2) and for composite measures with summation as the combi-
nation rule (Table 3), this one incorporates the hypothesis of stochastic inde-
pendence. The ®nding of multiplicative p.e�ects therefore supports such stochastic
independence, providing stronger evidence for modularity than in these other
cases (Appendix A.3.3), as we shall also see in Ex. 9.

As mentioned in Section 9.1, one advantage of the present approach to evaluating
the modularity of spatial-frequency analyzers is that it clearly involves one task that
employs both analyzers, rather than a di�erent task for each. Ignoring this di�culty,
the two kinds of evidence in Exs. 4 and 7 complement each other in demonstrating
the modularity of such analyzers when their frequencies are su�ciently di�erent: Ex.
4 shows that they can be selectively adapted by high-contrast simple gratings; the
present example shows that their detection performance is selectively in¯uenced by
the threshold-level contrasts of separated spatial-frequency components in a com-
pound grating.

One aspect of this example is the demonstration (Fig. 10; Appendix A.13) that a
competing broadband one-channel model fails when the two-channel model suc-
ceeds, and vice versa. This strengthens the argument, ®rst by demonstrating that the

47 The elaborations of the joint hypothesis result from the need for a third process, GM, which is

assumed to function independently of A and A0, both stochastically and in its mean contribution.
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data features considered, together with their precision, are capable of discriminating
between plausible models, and second, by showing a dependence of the relative
merits of the two models on the f ±f 0 di�erence that is plausible, given the idea that
spatial-frequency analyzers have measurable bandwidths. Also, because introduction
of the competing model can be regarded as simply replacing one candidate com-
posite measure (Eq. (8)) by another (Eq. (19)), this example permits me to emphasize
that a particular measure MAB may or may not have the behavior hypothesized (H4
and H5, Table 4), just as did Ex. 3 for a pure measure (Appendix A.7.2). Also
described in Appendix A.13 are details of ®tting the two-channel model.

14. Evidence from amplitude of the event-related potential for modular neural processes

(Ex. 8)

The ERP(t) at an electrode site on the scalp is typically the average over trials of a
function that relates the voltage at that site to the time since stimulus presentation.
As in some other brain measurements (e.g., PET, fMRI), averaging is often required
for the measures to be interpretable, because of the poor S=N ratio. 48 At any
particular time t � t0, ERP �t0� is a composite measure of contributions from all the
neural processors (``sources'' or ``generators'' of voltage) in the brain that are active
at time t0. The physics of volume conduction tells us that the potentials from dif-
ferent sources obey linear superposition, and that the combination rule is thus
summation: the voltage at a site is a weighted sum of the contributions from all the
sources, with the weights dependent on variables such as source±site distance and
conductivity, and source orientation (Kutas & Dale, 1997; Nunez, 1981).

14.1. The additive-amplitude method

Let the modules H1 in Table 3 be neural processes a and b. Because the combi-
nation-rule part of the joint hypothesis (H3) is given by physics, the inferential logic
in this case is concerned exclusively with H1. If we are able to ®nd factors F and G
that in¯uence a and b selectively during some epoch (and that jointly in¯uence no
other neural process), it follows that the factor e�ects on Mab � ERP �t� during that
epoch will be additive and that this will be true at any electrode site. This realization
was the basis of Kounios' (1999) additive-amplitude method (see also Kounios, 1996).

How strongly does a ®nding of additive factor e�ects support hypothesis H1? As
mentioned in Section 1.8, the degree to which con®rmation of a prediction supports
a hypothesis depends (partly) on the existence and plausibility of alternative hy-
potheses that generate the same prediction. And it can be argued that we know too
little about brain circuitry to estimate the likelihood that two factors that in¯uence

48 Here the ``noise'' is due partly to brain events probably unrelated to the task being performed, whose

contributions are eliminated by subtracting a pre-stimulus baseline level and by an averaging process that

reveals only those events that are time-locked to the stimulus.
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the same neural process will have e�ects on the scalp potential that are additive. 49

However, because multiple electrodes are typically used, we also have information
about the locations of processors Pa and Pb, hence of the sources of the signals that
contribute additively to Mab. If a and b are in¯uenced selectively by F and G, and Pa

and Pb have di�erent loci (arguably evidence against the two factors in¯uencing the
same process), then we expect the e�ects of these factors to have di�erent topogra-
phies. That is, we expect that the pattern across the set of electrode sites of the
relative magnitudes of the e�ects that F produces should di�er from the pattern for
G. Thus, if di�erent topographies are found for the main e�ects of two additive
factors, this strengthens the support for H1 provided by additivity. It is of course
possible that two neural processors Pa and Pb that implement modular processes are
coextensive. Hence, while sameness of topography of the factor e�ects weakens the
support for H1 that is provided by additivity, it does not rule H1 out.

What if two factors interact at some electrode sites while at others they are ad-
ditive? One possible interpretation is that a and b are in¯uenced selectively by F and
G, but that there is a third process c that is in¯uenced by both factors, but whose
processor Pc is located su�ciently far from some sites so its contributions there are
greatly attenuated. (That is, its weights in the weighted sums for those sites are ef-
fectively zero.) A second possibility is that a and b are both in¯uenced by both
factors, but that the resulting interactions are of opposite sign; at sites appropriately
located between Pa and Pb the net interaction could then be zero, even though both
main e�ects are non-zero there. Possibilities like these have other implications that
can be tested, given the rich data provided by multiple electrodes.

14.2. Application of the additive-amplitude method to word classi®cation

The goal of one of the applications that Kounios (1999) reports was to understand
the mechanism of semantic satiation. The subject heard a continuously presented list
of spoken nouns, each of which had to be classi®ed by meaning. The list consisted of
sublists, each containing 15 presentations of a ``prime'', the ®rst and ®fteenth fol-
lowed by di�erent ``probes''. Target words (names of body parts), which were ran-
domly interspersed in the list, comprised about 5% of the words and required a
manual response; otherwise no overt response was required. The critical data are the
ERPs elicited by the probes.

Two factors were manipulated, each at two levels. One factor was REL, the se-
mantic relatedness of the probe to the prime, that preceded it. For high relatedness
(e.g., dog-cat), REL � REL1; for low relatedness (e.g. desk-truck), REL � REL2. The
other factor was SAT, semantic satiation of the prime, which is believed to increase
with successive presentations: for probes following the ®rst presentation of a prime
SAT � SAT1; for probes following the ®fteenth, SAT � SAT2. Factor levels are in-

49 Example of relevant evidence are provided by Carandini and Heeger (1994) and Geisler and Albrecht

(1995).
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dexed so that a higher index value is associated with a greater (negative) ERP am-
plitude, averaged over electrode sites.

For each site, the mean ERP �t� was determined for each of two epochs,
4006 t6 600 ms (early, i � 1) and 6006 t6 800 ms (late, i � 2), and for each of the
four pairs of factor levels, giving ERP �early; Rj; Sk� � ERP1jk and ERP �late; Rj; Sk�
� ERP2jk �j � 1; 2; k � 1; 2�. For each epoch and each of the four conditions, the
mean amplitude over subjects and over the ®ve pairs of lateral electrode sites is
shown in Fig. 11, together with a ®tted additive model. There is a clear interaction
during the ®rst epoch that has vanished by the second. 50
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Fig. 11. Means over 36 subjects and ®ve pairs of lateral electrode sites from Kounios (1999, Example 2).

In panel A for the earlier �i � 1� epoch, un®lled squares show the mean ERP amplitude, ERP1jk over the

®ve pairs of lateral electrode sites for each of the four conditions. Panel B for the later �i � 2� epoch shows

the corresponding values of ERP2jk . Note the y-axis translation between panels. Also shown for each epoch

is a ®tted additive model. The main e�ects of REL �ERPi2� ÿ ERPi1�� for early and late epochs are

ÿ1:1� 0:2 and ÿ1:3� 0:2 lm, respectively, a non-signi®cant increase of 0:20� 0:23 lm from one epoch to

the next. The corresponding main e�ects of SAT �ERPi�2 ÿ ERPi�1� are ÿ1:6� 0:4 and ÿ2:1� 0:4 lm,

respectively, a signi®cant increase of 0:5� 0:3 lm �p � 0:046�. For the earlier epoch the additive model ®ts

poorly: using an S.E. based on between-subject variation, the interaction contrast is

�ERP122 ÿ ERP121� ÿ �ERP112 ÿ ERP111� � ÿ0:8� 0:3 lm �p � 0:013�. For the later epoch the model ®ts

well: the interaction contrast is 0:01� 0:34 lm. The change in the interaction contrast between epochs is

signi®cant: 0:8� 0:3 lm �p � 0:013�. The inverted y-axis scale is consistent with the ERP response being

an increased negativity.

50 Given its variation over subjects, expressed by the S.E., the mean interaction contrast is surprisingly

(and signi®cantly) small. This e�ect can occur if the estimated S.E. is in¯ated by a factor that was balanced

over subjects.
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For each epoch, the main e�ects and interactions of SAT and REL are shown in
Fig. 12, separated by pairs of electrode sites. The ®gure shows that during both
epochs the e�ects of the two factors had substantially di�erent topographies: the
SAT e�ect increases markedly from back to front while the REL e�ect has a gentle
peak at the second site and changes relatively little across sites. Furthermore, each
main e�ect has a size and topography that are similar across epochs, which suggests
that the loci of Pa and Pb do not change from one epoch to the next. The striking
di�erence between epochs is in the REL� SAT interaction, which is noticeable and
reliable during the ®rst epoch (with satiation reducing the e�ect of relatedness), but
persuasively close to zero at all sites during the second. The three midline electrode
sites (not shown) reveal the same patterns.

These results support the following account: During the second epoch, factors
REL and SAT in¯uence separately modi®able neural processes a and b that are
implemented by processors Pa and Pb at separated loci within the brain, and REL
and SAT do not jointly in¯uence any other process c. During the ®rst epoch this
account is false in one or more ways. What might di�er about the ®rst epoch?
Possibilities include: (1) Selective in¯uence fails, such that a, b, or both are in¯uenced
jointly by REL and SAT then, but not later. If so, a and b may be modular during

+1

0

-1

-2

-3

-4

 

  
  

 

 

 
 

 

 
 

   

 

A
Earlier Epoch: 400 < t < 600 ms

Relatedness (REL)

Satiation (SAT)

REL x SAT Interaction

Electrode Site

Occipital Wernicke Temporal Anterior-Temporal Frontal MEAN

+1

0

-1

-2

-3

-4

 

  
  

 

 

 
 

 

 
          

B
Later Epoch: 600 < t < 800 ms

Relatedness (REL)

Satiation (SAT)

REL x SAT Interaction

M
ea

n 
E

R
P

(t
): 

M
ai

n 
E

ffe
ct

s 
an

d 
In

te
ra

ct
io

n 
C

on
tr

as
ts

 (
m

ic
ro

vo
lts

)

Fig. 12. Means over 36 subjects from Kounios (1999, Example 2), here separated by pairs of lateral

electrode sites. Main e�ects and interactions are de®ned as in Fig. 11. Panels for earlier (i � 1, panel A)

and later (i � 2, panel B) epochs each show the main e�ect of REL, the main e�ect of SAT, and their

interaction contrast. These values are shown for means of each of ®ve pairs of lateral electrode sites,

plotted from posterior to anterior. Also shown for the interaction contrasts are their means over the ®ve

sites, and �S.E. bars based on between-subject variation.
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both epochs, and an alternative pair of factors might be found that have additive
e�ects during the ®rst epoch, or possibly during both. (2) A third process c (im-
plemented by processor Pc) that is jointly in¯uenced by REL and SAT is active
during the ®rst epoch but not later. Again, this would be consistent with the mod-
ularity of a and b during both epochs. (3) a and b are modular only during the
second epoch; during the ®rst they interact in such a way that they are not separately
modi®able. The similarity across epochs of the sizes and topographies of the main
e�ects does not appear to favor one of these possibilities over another.

14.3. Comments

As in other cases where the measurements during a task are of neural processes
rather than aspects of task performance, we would like to link a and b to functional
processes that are among those required to carry out the task. This would be es-
pecially di�cult in the present example: while a decision was required as to whether
each word was a target, overt responses were made on only the 5% of the trials on
which the decision was a�rmative, trials not relevant to the questions being asked. 51

One of the strengths of the ERP method is that measurements can be made at
multiple electrode sites, providing a richness of data that behavioral measurements
often do not. It is impressive, for example, that during the later epoch, the inter-
action is shown to be negligible at all ®ve pairs of lateral sites. And we have seen that
topography di�erences between the e�ects of the two factors can play a useful role in
inferences. Another strength of the method is its excellent time resolution compared
to some other methods (such as fMRI), without which the change from interactive to
additive factor e�ects between epochs could not have been observed. On the other
hand, if the explanation of the di�erence between epochs is possibility (2), it might be
easier to determine whether Pc is separated from Pa and Pb with better spatial
resolution, which may be provided by advances in ERP source localization, perhaps
supplemented with fMRI. The interpretation of provocative data such as these will
be aided by additional within-task factorial ERP experiments, along with relevant
behavioral measurements, especially ones that evaluate e�ects of the same factors on
both behavioral and brain measures.

15. Multiplicative combination rule for response rate (Ex. 9)

In Roberts' (1987) paper on the multiplicative-factor method, he described a
widespread orderliness of RR in the data from 17 factorial experiments with animals,

51 The possibility has to be considered that by the second epoch the decision had been made. (The

strength of the main e�ects during that epoch might then be puzzling.) However, in similar experiments

(Kounios, Kotz, & Holcomb, 2000) the RT for overt responses to targets was 749 ms, measured from the

onsets of spoken words with mean duration 544 ms. On many trials, therefore, some or all of the decision

process may have been included within the second epoch (from 600 to 800 ms) rather than being completed

earlier.
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experiments that covered a remarkable range of factors and species. The orderliness
takes one of two forms: In one, displayed by several of the data sets, pairs of factors
had multiplicative p.e�ects (Section 3.2) on RR, supporting the joint hypothesis of
Table 4, which includes the multiplicative combination rule expressed by Eq. (4):

MAB�Fj;Gk� � u�Fj� � v�Gk�;
and leads to the combining of factor e�ects described by Eqs. (6) and (7) ± multi-
plicative p.e�ects on MAB � RR, and additive e�ects on log �MAB� � log �RR�. The
other form, required by many of the data sets, is consistent with a third process C

that generates responses independently of processes A and B of Table 4, where C

may be in¯uenced by F or G or neither; this arrangement is associated with a hybrid
(multiplicative±additive) combination rule,

MAB�Fj;Gk� � �u�Fj� � v�Gk�� � w; �11�
where w is either a constant with respect to j and k, or w � w�Gk� or w�Fj�, a function
of one of the factors. 52

One of the simple cases is provided by Clark's (1958) experiment on the e�ects of
hours of food deprivation (HD) and frequency of feeding (FF) on the rate of bar
pressing by rats under VI (variable-interval) reinforcement schedules. After training,
each rat was kept at about 85% of its free-feeding weight, and was tested on di�erent
days at di�erent delays after the daily feeding, thus varying the level HDj of HD; the
levels were 1, 3, 5, 7, 10, 20, and 23 h. Each of three groups of three rats experienced
a di�erent VI schedule, with 3, 2, and 1 min VI schedules generating low, medium,
and high levels FFk of FF, respectively.

Fig. 13A displays both the remarkable precision of the data and the excellent ®t of
the multiplicative model described by Eq. (6): the p.e�ect of a change in HD is in-
variant over levels of FF, and vice versa. This ®nding supports the joint hypothesis
described in Table 4: There are two modular processes, A related to motivation and
B related to a variety of learning, in¯uenced selectively by HD and FF, respectively;
their contributions to RR combine by multiplication and are uncorrelated. In both
panels the levels of HD plotted on the x-axis have been assigned numerical values so
as to linearize the main e�ect of that factor; the goal is to make any systematic
deviations of data from model easier to discern.

Roberts (1987) considered several process models in relation to the multiplicative
combination rule, and favored one that is equivalent to the following: Processes A
and B are arranged sequentially. Each operates by receiving a series of discrete
signals (``pulses'') and transmitting each pulse with some probability. Let xA and xB

be zero-one indicator random variables that correspond to pulse transmission by A

and B, respectively, with pA � PrfxA � 1g and pB � PrfxB � 1g. Because A and B are
selectively in¯uenced by HD and FF, respectively, pA � pA�HD� and pB � pB�FF �.

52 See Appendix A.15 for discussion of such hybrid combination rules and their implications.
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A series of input pulses at a ®xed mean rate R0 is the input to the ®rst process; each
output pulse from the second process is converted into a response. The probability
that an input pulse produces a response is then PrfxAxB � 1g. Assuming that
the events xA � 1 and xB � 1 are uncorrelated, PrfxAxB � 1g � PrfxA � 1g�
PrfxB � 1g. With such an arrangement, then,

RR�HDj; FFk� � R0 � pA�HDj� � pB�FFk�; �12�

and we have the multiplicative combination rule. 53
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Fig. 13. Means reported by Clark (1958) for three groups of three rats each. Panel A, similar to Roberts

(1987, Fig. 13), shows RRjk vs HD for three levels of FF. Levels HDj have been assigned numerical values

so as to render the RRj� linear. For each level FFk , panel A also shows the best-®tting line constrained to

pass through the origin. Panel B shows the same RRjk data scaled logarithmically: RR�jk � log�RRjk�. Here,

levels HDj have been assigned numerical values so as to linearize the RR�j�, the means over FFk of RR�jk .

Panel B also shows an additive model ®tted to the data, as well as a model with a multiplicative inter-

action; see text. Only the mean RRjk-values are available; individual data points re¯ect an average of about

1750 responses. Also shown are �S.E. bars, representing the precision of individual data points, based on

deviations from the ®tted multiplicative (panel A) and additive (panel B) models. Data values were de-

termined from Fig. 1 of Clark (1958).

53 In a variant model, the input signal is continuous, each process functions as a ``gain control'' or

``attenuator'', the response rate is proportional to the output signal level, and any variabilities in the gains

of the two processes are uncorrelated.
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For the hybrid combination rule (Eq. (11)), Roberts suggested an additional path
for generating responses, in parallel with the A-B path described above, involving a
third process C that might or might not be in¯uenced by FF. 54 In such a case the
three functions in panel A would still be linear, and either would intersect at a
common point where RR > 0 (if C is in¯uenced by neither HD nor FF) or would not
intersect at a common point (if C is in¯uenced by FF). Note that to distinguish these
alternatives requires at least three levels of factor FF. 55

As shown in panel B, the application of a logarithmic transformation to MAB to
produce RR�jk converts a multiplicative pattern of factor e�ects into an additive one
(Eq. (7)); the excellent ®t of the additive model is simply another expression of the
excellence of the multiplicative-e�ects model in panel A. For the hybrid combination
rule, the use of a logarithmic transformation is less straightforward.

15.1. A plausible systematic deviation from additivity measured by multiplicative
interaction of scaled factor levels

Monotone interaction. The second model ®tted to the data in panel B assumes
additive e�ects of HD and FF together with a multiplicative interaction. It is in-
cluded to illustrate the use of a focused test for one kind of systematic deviation
between the data and an additive model, rather than depending solely on a global or
``omnibus'' test of deviations (interaction) that is less sensitive to a particular pat-
tern. To discuss such a focused test it is convenient to order the levels of each factor
in terms of the mean of the composite measure associated with it. In this example,
values of j are assigned such that RR�j� increases monotonically with j, and likewise
for k and RR��k. We can then consider ``increasing'' or ``decreasing'' the level of a
factor. Especially if the factors are unitary (Appendix A.2.1), the most plausible and
interesting systematic deviation is one in which, instead of falling on parallel lines,
the data fall on lines that diverge or converge: that is, a deviation from additivity in
which each increase in the level of one factor (e.g., FF) consistently increases (or
decreases) the e�ect of increasing the level of the other (e.g., HD). We thus have a
monotone modulation of the e�ect of one factor by the other ± a ``monotone in-
teraction''. 56 This kind of interaction is plausible if the mechanism that generates it
is qualitatively the ``same'' at all factor levels.

To think about the quantitative form that such an interaction is likely to take, we
need to consider how much each incremental e�ect of HD (for example, from HD1 to

54 Where C is introduced, an independent source of input pulses with rate R00 and a transmission

probability pC can be added to the process model; to Eq. (12) we would then add the corresponding term

R00 � pC .
55 If C were in¯uenced by HD instead of FF, the same statements would apply, but only if the roles of

HD and FF were reversed in the plot; in this case at least three levels of HD would be required to

distinguish the alternatives.
56 Monotonicity of a two-way interaction is symmetric: If FF modulates the e�ect of HD monotonically,

then the converse also obtains.
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HD2, or RR�2k±RR�1k) is likely to change with a particular increase in the level FFk of FF
(from k � 3 to k � 4, for example). As the choice of factor levels is often arbi-
trary, there is no basis for assuming that the modulation of the HD e�ect induced
by increasing the FF level from k � 3 to k � 4 would be the same as that induced
by increasing the FF level from k � 2 to k � 3, for example. That is, these two
FF-level increases would not, in general, be equally ``potent'' for modulating the
HD e�ect. Similarly, we would not expect two di�erent one-step level increases of
HD to be equally potent for modulating an incremental e�ect of FF (for example,
RR�j2±RR�j1).

Multiplicative interaction. One solution is to assign numerical values to the levels
of each factor that are proportional to their potencies ± that re¯ect the psychological
rather than physical magnitudes of the levels ± that is, to scale the factor levels
psychologically. The amount of modulation expected to be induced by an increase in
FF (from FFk to FFk�1) on an incremental e�ect of HD (e.g., as HD is increased from
HDj to HDj�1) should be proportional to the potency increases for both factors, and
hence to the product of these increases. The amount of modulation by FF of an
incremental e�ect of HD should thus increase linearly with the potency of FF; im-
plemented as suggested below, such an interaction is surprisingly general (footnote
58). This corresponds to a multiplicative interaction (a special case of monotone
interaction) between the numerically scaled factor levels, numerical values that I
denote ``HDj'' and ``FFk''. (It is best to de®ne the interaction in terms of the
corresponding centered values, HDj ÿHD� and FFk ÿFF�.) Adding such a
multiplicative interaction to an ordinary additive model has at least four advantages
over other ways of assessing deviations from additivity: (1) It re¯ects the pattern of
deviations (monotone interaction) that is of most interest in the present context. (2)
It adds only one degree of freedom to the model. (3) The estimated size of the in-
teraction (re¯ected by the coe�cient of the interaction term in the model) is ex-
pressible as a single number that can be associated with a con®dence interval that
expresses what we know about it. (4) Because of (2), the multiplicative interaction
can be ®tted even in a case, like the present one, where we have only one observation
per cell.

How should the levels of factors HD and FF be scaled to determine the values that
de®ne their potencies, HDj and FFk? Given the additivity expected after a loga-
rithmic transformation, one reasonable method is to use the main e�ect of each
factor (the mean RR� over the levels that happen to have been chosen of the other
factor) to estimate the scale values of its levels. In the present example we would thus
de®ne HDj � RR�j� and FFk � RR��k. An equivalent way to make this assignment is
to ®t an additive model, Model 1:

RR�jk � l� aj � bk � ejk; �13�

where one coe�cient aj �bk� is associated with each level of HDj �FFk�. These esti-
mated coe�cients then determine the scaled values of the factors: âj �HDj ÿHD�
and b̂j �FFj ÿFF�. We then form a new variable, numeric rather than cate-
gorical, as the product âjb̂k, and ®t Model 2:
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RR�jk � l� aj � bk � câjb̂k � ejk: �14�

As the new variable is numeric, Model 2 requires only one additional parameter (c)
to be estimated. 57 For the data in Fig. 13B, ĉ � ÿ0:12� 0:07 (not signi®cantly
di�erent from zero). This test for non-additivity was ®rst proposed by Tukey (1949),
but motivated di�erently, and has been widely discussed. 58 One way to get a sense of
the size of ĉ is to consider the percentage change in the ®tted separation between the
top and bottom dotted lines in panel B (for FF3 and FF1) as HD changes from HD1 to
HD7, which is 6.5%. A second way is to note that if the dotted lines maintained their
mean separation but converged fully at HD7 (23 h deprivation), c would be 3.62,
about 30 times as great. A third way is to note that whereas Model 1 explains 99.89%
of the total variance of the RR�jk about their mean, Model 2 explains only 0.02%
more.

15.2. Comments

Because Clark's data exemplify the simple multiplicative combination rule of Eq.
(4), it was straightforward to apply a logarithmic transformation to permit also
considering the data in relation to an additive model. I suggested that we should be
asking about deviations between data and model that are systematic, and proposed
that for an additive model the deviation pattern of greatest interest is a monotone
interaction. While this question is relevant in any assessment of additive e�ects, it
can be asked only if each factor takes on at least three levels. The method proposed
for answering it is to scale the factor levels numerically according to their potencies
(the scaling that renders their main e�ects linear), and then to assess the magnitude
of a multiplicative interaction expressed by a single number. 59 A monotone inter-
action is perhaps the kind of deviation most plausibly associated with failure of the
joint hypothesis, rather than with an experimental artifact. But it is not the only
deviation of interest; it is important to know about any deviation that is consistent
across subjects, or across data subsets otherwise de®ned. Deviations of any kind may
lead to rejection of the joint hypothesis, or may indicate non-unitary factors
(Appendix A.2.1), or other problems with the experiment.

57 Such estimation is equivalent to regressing the residuals from Model 1 on just the interaction term of

Model 2. In such a procedure the residual degrees of freedom must be adjusted, however, to acknowledge

that âj and b̂k were estimated from the data.
58 Sche��e (1959, Section 4.8) shows that if the value of a general interaction term for a cell is a function

of the main-e�ect estimates of the two factors for that cell, and if this function is assumed to be a general

second-degree polynomial, then the polynomial must be the simple product we have discussed. Graybill

(1976, Section 14.11) shows that with Gaussian-distributed errors, the residuals from Model 2 are

independent of the main-e�ect estimates, which insures the validity of the usual variability estimates and

tests even though the data themselves have been used to determine those main-e�ect estimates and thus to

determine the numeric values of the added interaction factor. See also the ``di�erential curvilinear trend

test'' of Abelson and Prentice (1997), of which the present test appears to be an extension.
59 A similar approach is used in Section 7.2 in analyzing pure measures.
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In Appendix A.15 I discuss a similar numerical scaling of factor levels (but one
that linearizes their main e�ects on the untransformed RR data) and explain how
Roberts (1987) used this representation to help discriminate among the simple
multiplicative model of Eq. (4) and the three hybrid models expressed by Eq. (11).

Because the expectation of multiplicative factor e�ects depends on the contribu-
tions of the two processes A and B to MAB being uncorrelated (H5 in Table 4), the
persuasive evidence provided by Clark's data for the e�ects of HD and FF being
multiplicative supports that hypothesis (as well as H1 and H4), thus strengthening
the evidence for modularity in this case, as in Ex. 7 (see Appendix A.3.3).

16. Reaction time as a composite measure: selective e�ects of sleep deprivation (Ex. 10)

Suppose that the complex process between stimulus and response can be parti-
tioned into stages. I mentioned in Section 3.1.1 that RT then becomes an example of
a composite measure with summation as the combination rule. If the process is di-
vided into two such stages A and B with durations TA and TB, then on any particular
trial, these durations are their contributions to the composite measure, and
RT � TA � TB. Thus, over a series of trials, RT � T A � T B. It follows that if factors F
and G selectively in¯uence A and B, respectively, their e�ects on RT should be ad-
ditive; the MAB of Eq. (2) is the mean sum of the durations of A and B, and the
equation becomes

RT �Fj;Gk� � T A�Fj� � T B�Gk�: �15�
The AFM (see, e.g., Miller, 1988, 1993; Sanders, 1980, 1990, 1998; Sternberg, 1969,
1998b; and references therein) was devised to exploit this prediction from a stage
model, given factors that in¯uence the stages selectively; other inferences associated
with the AFM concern the interpretation of factor interactions, which depend on the
converse of the observation that factors that in¯uence no stage in common must
have additive e�ects on RT; it follows that factors found to interact must in¯uence at
least one stage in common. 60 By combining such inferences from a pattern of
additive and interacting factor e�ects it is possible to draw conclusions about the
underlying processing structure, as partially outlined in Tables 3 and 8.

As one part of his wide-ranging research, Andries Sanders, to whom the present
volume is dedicated, has applied and advanced the AFM in important ways. He has
provided integrative critical syntheses of large sets of ®ndings, has brought out or
suggested requirements and assumptions associated with the method as well as
testing them, has analyzed its limitations and possibilities, and with his students and
colleagues has contributed a number of interesting applications. One of the most
provocative is described by Sanders et al. (1982, Experiment 1; see also Sternberg,
1998b, Section 14.5.1), and leads to the controversial conclusion that the e�ects of
sleep deprivation are process-speci®c rather than global (Appendix A.1.2.2). Sanders

60 For one view of the ``logic'' of the AFM, see Sternberg (1984, 1998b, Sections 14.3 & 14.6.3).
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et al. used the AFM to examine the e�ects of experimentally induced sleep depri-
vation on di�erent mental operations within the same task. What follows is a sim-
pli®ed description of their experiment and ®ndings.

It is a feature of this example that distinguishes it from the others ± the inclusion
of more than two factors ± that permits asking the question of process speci®city.
The stimuli were the single digits ``2'', ``3'', ``4'', ``5''; the responses were their spoken
names, ``two'', ``three'', ``four'', and ``®ve''. Four factors were manipulated, each at
two levels: The ®rst was SQ; the digits, presented as dot patterns, could be intact or
degraded by adding other dots. The second was the MF; it could either be high
(respond to each digit with its name) or low (respond to ``2'', ``3'', ``4'', ``5'' with
``three'', ``four'', ``®ve'', ``two'', respectively). The third was sleep state (SLP), which
was either normal (data taken during the day after a normal night's sleep) or deprived
(data taken during the day after a night awake in the lab). The measure was the RT
for trials on which a response was made and was correct. Test sessions occurred in
both the morning and afternoon, creating a fourth two-level factor, time of day (TD),
discussed below. The 24 � 16 conditions were run in separate blocks of trials. For
simplicity, the data shown in Fig. 14 have been averaged over levels of TD.

Other studies had already suggested that SQ and MF were likely to in¯uence two
di�erent processing stages selectively, processes that might be described as stimulus
identi®cation (S) and response selection (R), respectively. 61 If this were con®rmed in
the present experiment (by the additivity of e�ects of SQ and MF) then we could
conclude that increasing the level of SQ (MF) adds to the di�culty of only S (R).
Given the global-e�ect hypothesis about sleep deprivation, SLP should in¯uence
both S and R. Increasing the level of SLP should therefore exacerbate both kinds of
di�culty: SLP should interact with both SQ and MF by amplifying their e�ects.

The results in Fig. 14 consist of the RT s from the 2� 2� 2 � 8 conditions. These
eight values are plotted in each of the three pairs of panels of Fig. 14 in di�erent
arrangements, to show the relations between the two factors in each of the three
factor pairs. Panels A1 and A2 show that at each level of SLP there are additive
e�ects on RT of SQ and MF. 62 This evidence supports:

(1) Performing the task involves at least two modules, arranged as stages.
(2) Factors SQ and MF in¯uence no stages in common.
Panels B1 and B2 show that at each level of SQ there are additive e�ects on RT of

MF and SLP. That is, the extra time a subject takes to execute an unfamiliar S±R

61 This conclusion (separately modi®able sequential processes, or stages) has recently been further

strengthened by analyses of complete RT-distributions rather than just RT means, from a similar

experiment (Roberts & Sternberg, 1993, Experiment 2).
62 Panels A1 and A2 show that the SQ e�ect decreases slightly with the more di�cult mapping (not a

statistically signi®cant interaction). Because this study had only two levels per factor (a property shared

with many other factorial experiments in psychology, and understandably, given the complexities of

experimental design when conditions are blocked) we cannot decide whether this tendency is a systematic

one, as was possible, e.g., in Ex. 9.
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association rather than a well-learned one is invariant over sleep states, rather than
being increased by sleep deprivation. This evidence lends further support to (1) and
also supports:

(3) Factors SLP and MF in¯uence no stages in common.
Panels C1 and C2 show that at each level of MF there are interactive e�ects of SQ

and SLP: increasing the level of SLP has a far greater e�ect on RT when the stimulus
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Fig. 14. Data from Sanders et al. (1982, Experiment 1). Means over the two levels of TD. Each pair of

panels shows the same 2� 2� 2 � 8 data points, plotted in di�erent ways. Each point is the mean of

about 300 RTs from each of 16 subjects. A ®tted additive model is also shown in each of the top four

panels. Mean absolute deviations of data from model are 3.3 (panels A1, A2) and 1.0 ms (panels B1, B2).

Because basic data are no longer available, values were obtained from Fig. 1 of Sanders et al. (1982). For

the same reason, neither within-cell nor between-subject measures of variability are available. The �S.E.

bars were therefore determined by separating the data by TD, ®tting a model that assumes the additivity of

MF with SQ, SLP, and TD, and using the deviations (7 df) to estimate S.E.
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is degraded (98 ms) than when it is intact (17 ms). That is, sleep deprivation mod-
ulates the di�culty of stimulus identi®cation. This evidence supports:

(4) Factors SLP and SQ in¯uence at least one stage in common.
Taken together, the three pieces of evidence support a theory according to

which the process used to perform the task contains at least two modules, S and
R, these modules are arranged as stages (but see Appendix A.16.3), and among
the factors SQ, MF, and SLP, SQ and SLP in¯uence S, while MF alone in¯u-
ences R. Suppose the stimulus is identi®ed during S, and the response is selected
during R. (This is suggested by the nature of the factors SQ and MF that in-
¯uence them.) We then arrive at the surprising conclusion that whereas SLP
in¯uences stimulus identi®cation, it does not in¯uence response selection. The
reasoning here is an instance of the AFM: The additivity of the e�ects of SQ and
MF and of SLP and MF support the hypothesis that the process by which the
task is accomplished can be divided into at least two modules arranged in stages,
and that particular factors in¯uence their measures selectively; given this inference
the interaction of SLP and SQ shows that SLP in¯uences the same stage
as SQ.

16.1. Comments

The main purpose of this paper has been to explore various ways in which sep-
arate modi®ability can be used to reveal the modular structure of a process. Partly to
simplify the exposition, I have considered primarily the decomposition of a process
into just two modules, and have said little about how such analyses can be elabo-
rated by further partitioning one or both of these modules, or by further charac-
terizing them. For pure measures such elaboration is straightforward, as discussed in
Section 5.1. For composite measures, however, it requires factorial experiments with
three or more factors. Despite Fisher (1926, 1935) demonstration of the e�ciency of
such experiments, their obvious advantages for assessing generality, and their ne-
cessity for determining how the e�ects of di�erent factors combine, they are often not
used when they would be fruitful.

Unlike our other applications of composite measures, the sleep-deprivation
®ndings not only demonstrate separate modi®ability and thereby permit us to
partition the S-R path into two modules (here, stages) S and R (the former
selectively in¯uenced by SQ, the latter by MF), but also extend the ini-
tial analysis, providing an example of localizing the in¯uence of a third factor
SLP in one of the identi®ed modules, S, and thereby further characterizing S

and R.
The pattern of e�ects of the fourth factor TD (not shown in Fig. 14) also permits

further elaboration of the analysis. First, to justify averaging over its levels to
create the ®gure, it is important that the pattern of e�ects of the other three factors
is invariant across levels of TD (an instance of ``stage robustness'', Sanders, 1998).
Indeed, at each level of TD, SQ and SLP interact while MF is additive with
both SQ and SLP. Second, TD itself interacts with SLP but is additive with MF,
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indicating that it in¯uences R but not S and, consistent with this conclusion, TD
also interacts with SQ. (Such ®ndings about TD are not logically required, but can
instead be regarded as successful tests of the analysis based on the other three
factors.)

There has been much discussion of alternatives to stage models for the interpre-
tation of additive e�ects on RT , as well as confusion about what a processing stage
might be. I discuss these issues in Appendices A.16.2 and A.16.3. In Appendix A.16.1
I brie¯y describe a multiplicative combination rule for the pattern of response
omissions in the present study, which has been found (Schweickert, 1985) to apply to
the errors of commission generated by stage models. Another example of process
decomposition using RT , but supplemented by pure measures based on the LRP, is
brie¯y described in Appendix A.6.

17. General discussion

A priori considerations (Section 1.1) argue for the idea that complex processes
and devices may be composed of relatively independent parts, and psychological
research has revealed abundant evidence for modular mental processes, composed
of separately modi®able and functionally distinct sub-processes. Some of this evi-
dence is included among the examples here discussed. One reasonable starting
point for understanding a complex process is therefore to determine whether it is
composed of such modules, and if so, try to identify them. And an initial step in
doing so is to divide the process into just two parts (Section 1.3), perhaps followed
later by dividing those parts in turn. Ultimately this should lead to analysis of the
functions of each such module, as well as an understanding how they work to-
gether. Also, we would hope to ®nd that di�erent tasks are implemented by dif-
ferent subsets of the same set of basic modules, an idea associated with both the
task-comparison method (Appendix A.1) and functional brain localization (Section
11).

In this paper I have explored the idea of separate modi®ability as a criterion for
modularity, by considering the shared and distinguishing features of a set of diverse
examples. The examples fall into three categories, depending on whether the mea-
sures of the hypothesized modular processes are believed to be pure or composite
and, among the pure measures, whether they depend on di�erent data (direct pure) or
di�erent aspects of the same data (derived pure). In each case, evidence for separate
modi®ability consists of ®nding experimental manipulations (factors) that in¯uence
the hypothesized modules selectively. Such evidence consists of pure measures that
are selectively in¯uenced by the factors, or of a composite measure for which the
e�ects of the factors combine appropriately. Selective in¯uence is also, in itself,
evidence for the modules being functionally distinct.

That the discovery and identi®cation of modules is a central issue in psychology is
re¯ected by the broad range of examples; they include di�erent substantive areas,
species, responses (e.g., stimulus-elicited vs operant), measures, combination rules,
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experimental designs, and relations between modules; they lead to the decomposition
of neural as well a functional processes. By considering such examples together,
within a uni®ed structure that highlights their inferential logic, we come to under-
stand them better, and applications in one area bene®t from lessons learned in
another.

Inferential logic. In the course of this exploration I have suggested rational re-
constructions of the inferential logic associated with the identi®cation of modules,
using measures hypothesized to be pure (Table 2) and composite (Tables 3, 4), with
variant reconstructions in Appendix A.2.3. They are ``rational reconstructions''
because research is often not explicitly guided by such formal considerations, and
experimental results may predate the formulation of such hypotheses. Attempts to
make the inferential logic explicit should help in thinking about what a set of
®ndings may mean, and may suggest preferences for some kinds of experiment over
others.

Several lessons follow from the reconstructions: (1) Along with the researcher's
good fortune in ®nding suitable experimental manipulations (factors), what is
tested in every example is a joint hypothesis: two or more distinct individual hy-
potheses, such that all gain support when evidence for modularity is revealed, while
only one need be faulty for us to fail in an attempt to acquire such evidence. More
generally, failure of the prediction of a joint hypothesis may be less informative
than success. (2) While we are interested in processes, all we have is measures of
them (Section 2.1); whereas change in a measure implies change in the process, the
converse need not be true. (3) Nonetheless, to establish separate modi®ability,
process invariance is critically important; it is indicated by invariance of the value of
a pure measure across levels of a factor, or invariance of the e�ect (or p.e�ect) on a
composite measure of one factor across levels of another. Implications of such
invariance are su�ciently strong that it should not be asserted simply because the
evidence against it is unconvincing. The consequences of this for statistical tests
and reliability assessment are mentioned in Section 1.5, Appendix A.11.2, and
elsewhere (and illustrated by the use of the S.E.s of relevant contrasts); like much
else in the present paper, these consequences need further consideration. (4) While
modularity can be demonstrated (assuming su�ciently precise data), non-modu-
larity cannot: as illustrated by Ex. 3, it is always possible that ``we didn't look
enough'' for appropriate experimental manipulations. Of course, the search for
such factors is not blind, but depends on knowledge related to the functions that
might be carried out by hypothesized modules; as attempts fail we should become
increasingly convinced that these modules re¯ect an erroneous partition of the
process under study, or that the process is simply too integrated to be modular. (5)
A poor choice of measure or measures can cause a search for modules to fail
(Section 13.3; Appendix A.7.2).

Experimental design. Another consequence of the importance of invariance is the
desirability of increasing the chance of revealing any systematic violation, by using
factorial experiments even with pure measures (illustrated in Section 7 and Appendix
A.6, and discussed in Appendix A.9.1 and elsewhere), and by using factors with more
than two levels (illustrated by Exs. 3, 6, 7, and 9, and discussed in Appendices A.2.1,
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A.9.2, and elsewhere). Though not required with pure measures, factorial experi-
ments permit testing the generality of ®ndings of invariance. And factors with
multiple levels permit separating systematic from non-systematic deviations, the
former more damaging to claims of invariance. In Exs. 3 and 9, where multiple-level
factors were employed, I illustrated the use of one-dimensional indices of invariance
violation, based on numerically scaled factor levels, to create focused tests for one
interesting and plausible kind of systematic deviation. We need to consider further
the meaning of ``systematic deviation'', as well as the merit of the meanings proposed
in Sections 7.2 and 15.1.

Brain measures. The use of brain measures to identify modular neural processes
may be informative about the structure of functional processes as well, but brain
measures introduce complexities as well as opportunities. Some of the issues are
discussed in Section 1.7 and Appendix A.1.2, and in the context of the examples
(Sections 6, 10, 11, and 14; Appendices A.10 and A.11). It is advantageous to study
e�ects of the same factors within the same task on both brain and behavioral
measures (Sections 6, 10, and 11; Appendix A.6).

Process decomposition vs task comparison. Because the separate-modi®ability
approach to process decomposition has formal similarities to the popular task-
comparison method and the associated pattern of double task-dissociation, I con-
sider the latter method in Sections 1.6 and 11, and in Appendix A.1. The two
methods have di�erent purposes and strengths; I suggest that task comparison is not
especially helpful in identifying the parts of a complex process.

Limitations. For simplicity, this paper is limited in at least two ways: First, in
illustrating the inferential logic and the treatment of data I discuss the examples
largely as if they are isolated cases, rather than considering them in relation to ex-
isting knowledge and related studies; conclusions normally depend on more context.
Second, the examples are almost entirely restricted to dividing a complex process
into only two parts. With a caveat ( footnote 3), however, this is a reasonable
starting point in decomposing a complex process, and because modules may them-
selves be modular, further partitioning can follow.

Open questions. Among others, these include the following: Are there useful
further elaborations of the inferential logic? What is the best statistical method for
testing a prediction of invariance or additivity? In which patterns of deviation should
we be especially interested? How can we strengthen the inferences from brain mea-
sures to the structure of functional processes? What is the relation between the
modularity of functional processes and of the brain processes associated with them?
What are the relative merits of using pure vs composite measures? For composite
measures are there other combination rules that might be of interest? Can we be
more speci®c about what to do when a partitioning attempt fails? How interesting
are cases of partial modularity (Section 2.3) or approximate modularity (Section
7.2)? Is separate modi®ability too strong or too weak to be a useful criterion for
partitioning a process? What are the relative merits of alternative criteria for mod-
ularity and alternative approaches to module identi®cation? Does the present ap-
proach lead to modules that have other desirable properties? How does it compare to
module discovery in other sciences?
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Appendices

The appendices that follow provide extensions, complements, technical details,
and comments on the methods, and examples described in the body of this ar-
ticle. Each appendix (e.g., A.1, A.2) refers to a di�erent main section of the paper
(e.g., Sections 1, 2). There are no appendices corresponding to Sections 4, 5, 8,
12, or 14.

A.1. Process decomposition vs task comparison

A.1.1. Introduction
The goal of the process-decomposition methods under discussion is to reveal the

separately modi®able sub-processes (modules) of a single complex process. For this
reason, one tries to ®nd experimental manipulations (factors) that perturb or vary
one such complex process, rather than using manipulations that change it into a
qualitatively di�erent process ± one composed of a di�erent set of modules. In almost
all cases, a necessary condition for the complex process to be qualitatively invariant
as factor levels change is for the subject's task (what the subject is instructed to do) to
be kept invariant. However, task invariance in this sense is unfortunately not a
su�cient condition: using a ®xed set of instructions to de®ne the task does not
guarantee the desired qualitative invariance as factor levels are changed. 63 It is for
this reason that the choice of factors has to be considered carefully, as discussed in
Appendix A.2.

Because separate modi®ability is demonstrated by ®nding factors that selectively
in¯uence sub-processes, these process-decomposition methods share some formal
similarities with psychology's much-used ``task-comparison'' method, in which the
interest is in ®nding factors that selectively in¯uence di�erent tasks ± i.e., searching
for dissociations between tasks, each accomplished by a qualitatively di�erent
complex process, rather than dissociations between the sub-processes of one complex
process. Such comparison of distinct but related tasks, such as recall vs recognition
has been an important tool in purely behavioral research (especially related to
memory; see, e.g., Kahana, 2000; Kelley & Lindsay, 1996, pp. 37±41; Richardson-
Klavehn & Bjork, 1988) and also in research on the relations between brain and

63 The ``task'' of free recall of the words in a studied list, when time into the recall period is the factor,

provides an interesting example. The subject responds to one set of instructions throughout the recall

period during a trial. The dissociations between the recency and pre-recency part of the serial-position

curve (reported as evidence for a short-term/long-term memory dichotomy by Glanzer & Cunitz, 1966) are

therefore, nominally, within-task dissociations. However, many believe that there is a qualitative change in

the retrieval process during a trial, from a process that involves output from a short-term store and a�ects

the recency part of the curve, to a process that involves search of associative memory and a�ects the pre-

recency part. (See, e.g., Raaijmakers & Shi�rin, 1981 and, for a di�erent account, Howard & Kahana,

1999.) The dissociations found in free recall between early and late performance are therefore dissociations

of two distinct complex processes, and exemplify ®ndings from task comparison.
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behavior (see Section 11). Because of their formal similarities, it is helpful to consider
the task-comparison method and to distinguish it from process decomposition based
on separate modi®ability. 64

A.1.2. Qualitative task comparison

A.1.2.1. Behavioral studies of memory
Two tasks are dissociated if a factor F is varied in each, and is discovered to

in¯uence a measure of performance in Task 1 but not Task 2. For example, encoding
manipulations during learning, such as variations in ``level of processing'' (F) have
been claimed to in¯uence ``direct'' memory tasks such as recognition that a word is
in a previously learned list (Task 1) but not ``indirect'' tasks such as identi®cation of
a degraded word (Task 2), revealing a qualitative dissociation between the tasks. 65 In
the ideal case, a second factor G is discovered to in¯uence performance in Task 2 but
not Task 1, thus revealing a double dissociation between the two tasks.

If MT
k for k � 1; 2 is the measure of performance in Task k, then the four prop-

erties called ``double dissociation'' are formally the same as the four properties that
de®ne selective in¯uence, described in the second part of Table 2 and discussed in
Section 2.3. As emphasized by the superscript T, however, MT

1 and MT
2 are measures

of performance in di�erent tasks, and are assumed to be neither pure measures of
particular sub-processes nor di�erent composite measures of the same complex
process. Nonetheless, if ``process'' is replaced by ``task'' in Table 2, the argument for
the importance of demonstrating all four properties (Section 2.3) carries over, and
explains the greater power of double dissociation over single.

Such dissociations, indicating the separate modi®ability of classes of tasks, have
been used as evidence for distinct memory systems (e.g., Tulving, 1983), but, as
Richardson-Klavehn and Bjork (1988) point out, the observed patterns of separate
and joint factor e�ects on memory tasks are complex, and the inference from such
task dissociations to distinct memory systems is controversial. With Shoben and
Ross (1986) they argue that ®ndings of separately modi®able tasks can usually be
explained without postulating distinct kinds of memory, and that inferences from
such task dissociations can be strengthened by process decomposition of the indi-
vidual tasks. One way to express the problem is that each task may be accomplished
by a complex process composed of a set of several distinct operations, that inferences
made from the task-comparison method often require valid theories of the complex
processes used in each task, and that process-decomposition methods (such as those
discussed in the present paper) can be helpful in developing and testing such task
theories.

64 Roberts (1987, pp. 165±167; 1993, p. 590) has also discussed this distinction.
65 For a particular example see Jacoby and Dallas (1981); for a review see Richardson-Klavehn and

Bjork (1988); for con¯icting ®ndings see Thapar and Greene (1994). Another such factor is the presence or

absence of the brain damage associated with amnesia.
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In their analysis of the logic of inferences based on task dissociations, Dunn and
Kirsner (1988) argue that the likelihood of observing a dissociation is high only if
two assumptions are satis®ed: (1) Factors F and G can be found that selectively
in¯uence processes A and B, respectively (selective in¯uence of factors on processes,
Section 2.1). (2) Tasks 1 and 2 can be found such that A and B contribute se-
lectively to their measures MT

1 and MT
2 (i.e., MT

1 re¯ects A but not B, and vice versa
for MT

2 ; selective contribution of processes to task measures). They also suggest that
if either of these conditions is not met but a task dissociation is nonetheless dis-
covered, the usual interpretation ± that it excludes a single-process explanation of
the two e�ects ± would be incorrect. And they conclude (p. 97): ``Because the exact
relations between [factors] and processes and between processes and tasks are
rarely known, indeed they are the primary object of investigation, [Assumptions 1
and 2] can rarely be con®dently met.'' The idea that particular pairs of tasks can
be created that satisfy the selective contribution property (such as tasks in which
performance depends on retrieval from implicit or explicit memory, but not both)
has been questioned, e.g., by Jacoby, Toth, and Yonelinas (1993) and Richardson-
Klavehn and Bjork (1988), who suggest, for example, that performance on
``indirect'' tests may re¯ect both.

A.1.2.2. E�ects of sleep deprivation
Perhaps it is the di�culty of ®nding tasks that rely exclusively (or not at all) on

particular processes that led to the dramatic con¯ict between inferences from task
comparison vs process decomposition in attempts to understand sleep deprivation.
The work of Sanders et al. (1982) provides persuasive evidence for process-speci®c
e�ects: the sleep-state factor SLP appears to in¯uence stimulus identi®cation, but
not response selection (Section 16). Additional support for a purely perceptual locus
of sleep-deprivation e�ects is provided by other within-task process-decomposition
data (Humphrey, Kramer, & Stanny, 1994) in which the occurrence time of the P300
peak in the ERP was used to partition the RT into early and late segments. On the
other hand, the wide range of tasks in which performance is impaired by sleep de-
privation has led others (who approached the question by considering its e�ects on
performance in a range of tasks) to the opposite conclusion: According to Dinges
and Kribbs (1991, p. 117), there is ``a generalized e�ect of sleepiness on all cognitive
functioning.'' In this application, task comparison su�ers from the possibility that
there may be no task (in which performance can be measured) that is accomplished
by a process containing no perceptual operations.

A.1.2.3. Task-speci®c e�ects of localized brain lesions
Another domain in which task comparison has been applied is in the study of the

e�ects of localized brain lesions (e.g., Farah, 1984; Shallice, 1988), which sometimes
appear to be remarkably selective, impairing performance (predominantly) on some
tasks but not others. Of special interest in such investigations have been instances
that approximate the ideal case of double task-dissociation, where (to simplify) a
lesion in region Rb impairs performance in Task 1 (MT

1 reduced), but not in Task 2
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(MT
2 invariant), while a lesion in region Rc does the reverse. If the presence or ab-

sence of a lesion in Rb �Rc� is thought of as two levels of factor F (G), then these
instances ®t the framework described in Appendix A.1.2.1. Such ®ndings indicate
that Rb �Rc� is necessary for Task 1 (2), provide evidence for localization of function
within the brain, 66 and encourage hypotheses about distinct processes (each in-
cluded among the component processes used to carry out one of the tasks) that
might be implemented by neural processors in Rb and Rc. (See Section 1.1; for some
of the limitations of such inferences see Glymour, 1994, and Sarter et al., 1996.) The
contrasting process-decomposition approach, with its advantages over task com-
parison, can also be used to investigate the process-speci®city of the e�ects of lo-
calized brain lesions, by using a factor such as F in conjunction with task factors. A
nice example is provided by Rubinstein, Meyer, and Evans (2000) and discussed by
(Sternberg, 1998b, Section 14.5.6).

A.1.2.4. Task-speci®c e�ects on localized brain activation
A more recent domain of application is the use of measures of localized brain

activation to study the brain functions that underlie the performance of di�erent
tasks. One method (complementary to the lesion method mentioned above) uses
fMRI, which provides measures of regional blood oxygenation that re¯ect amounts
of regional neural activity during performance of a task. Here, one popular approach
is to ask how Task 1 di�ers from Task 0 (a ``baseline'' task) in the activation pattern
it produces. 67 In a simple ideal case, there is just one region Rb for which the ac-
tivation measure Mb increases as the task is changed from Task 0 to Task 1. 68 In an
extension of such a ®nding to double dissociation, there is another region, Rc, not
overlapping with Rb, in which an activation measure Mc increases as the task is
changed from Task 0 to Task 2.

What we can learn from such ®ndings depends on having hypotheses about how
the processing operations di�er among the three tasks (functional task theories), and
about how the processing operations are re¯ected in neural activity (neural task
theories). Thus, the functional theories for Tasks 0, 1, and 2 might say that the tasks
are carried out by processes A and D (Task 0); A, B, and D (Task 1); and A, C, and D

(Task 2). The neural theories would say that processes B and C are implemented by

66 While it has been claimed that ``lesioning'' even a non-modular arti®cial network can produce double

dissociations between tasks (e.g., Plaut, 1995), it has also been argued that this occurs only in relatively

small networks (Bullinaria & Chater, 1995).
67 McDermott, Buckner, Petersen, Kelley, and Sanders (1999) provide an example in which each of four

tasks is compared to a baseline.
68 The interpretation of the existence of an increment in Mb, i.e., a di�erence Mb�Task 1�
ÿMb�Task 0� > 0, is probably insensitive to exactly how Rb-activation associated with Task 0 (the

baseline) and Rb-activation contributed by the task di�erence are plausibly combined. However, when the

magnitude of the increment is considered, it is usually obtained by subtraction (resulting in the term

``cognitive subtraction'' for this method); hence, while seldom tested or even discussed, an additive

combination rule is implicitly assumed. Without more secure knowledge of the combination rule, it would

thus be di�cult to decide whether an increment due to one factor is invariant with respect to another

factor that in¯uences activation in the same region.
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neural processes b and c, respectively. These neural task theories also incorporate the
hypotheses that component processes are localized at a level that fMRI can resolve
spatially, and that the set of processes described in the functional theories map one-
to-one onto a set of (localized) processors; see Sarter et al. (1996). The functional
theories also include the assumption, usually untested, that processes A and D re-
main the same, whether carried out alone or with B or C inserted: this is the as-
sumption of ``pure insertion'' on which Donders' (1868) subtraction method
depends. 69 The neural theories also include the analogous assumption that the
pattern of brain activation associated with processes a and d remains invariant as
regions Rb or Rc are activated with the insertion of b or c, respectively. 70 We can
then conclude that while some of the neural processes that carry out Tasks 0, 1 and 2
(those that implement processes A and D) may be the same, b involves activation of
region Rb but not Rc, and c involves activation of Rc but not Rb.

However, such ®ndings give us little evidence that helps us to discover the
modular sub-processes of the complex process used to carry out either task. For
example, in the idealized case above, whereas the task theories assert that Tasks 1
and 2 are each carried out by three distinct processes, there is nothing in the data that
distinguishes between Task 1, for example, being accomplished by a; b, and d and its
being accomplished by a ``single'' process, h1 (which di�ers from the corresponding
h2 for Task 2 in one of the brain regions it uses). Other evidence is needed to dis-
tinguish between these possibilities, such as evidence from a process-decomposition
method (where, for example, in a task carried our by a; b; c, and d it can be shown
that the level of activation of region Rb is selectively in¯uenced by a factor F also
shown to selectively in¯uence B, and similarly for Rc). Moreover, even if the task
theories are correct, our data do not bear on the modularity of the hypothesized
operations within either task: we have not learned whether any of them can be

69 One test of pure insertion is provided if a Task 3 can be found, carried out by all four processes,

A;B;C, and D. For Donders' method, Taylor (1966) recognized the prediction RT 3 ÿ RT 2 � RT 1 ÿ RT 0,

and tested it. For the analogous fMRI application, let A�x� be the activation level, as indexed by the

strength of the fMRI signal, at any location x where it is measured. The corresponding prediction is then

A3�x� ÿ A2�x� � A1�x� ÿ A0�x�, which should be satis®ed for each x. (Unlike the case of RT , where there is

only one test for a set of four tasks, here there are as many tests as locations x.) To carry out such tests it is

critical for the presence of processes b and c to be varied factorially. Suppose instead that we had no Task

2, but just a series of tasks of increasing complexity, Task 0 �a; d�;Task 1 �a;b; d�; and Task 3 �a; b; c; d�.
For such a case, Posner and Raichle (1995, p. 374) suggest testing the prediction A3�x� ÿ A0�x� �
�A1�x� ÿ A0�x�� � �A3�x� ÿ A1�x��. This test would always be satis®ed, however, as it is an algebraic identity.

For more on the pure insertion assumption, see Sternberg (1998b, Section 14.4.2), and references therein.
70 Also relevant to the interpretation of such data are: (a) The fRMI signal is increased by the activity of

the numerous inhibitory neurons in the cortex, as well as the excitatory ones (Raichle, 1998), but the

relation between these two e�ects seems not to be known. (It therefore seems possible for the signal to

increase when a process is actually deleted.) (b) We do not know the extent to which the fMRI signal

re¯ects neural activity that produces no action potentials (Wandell, 1999, p. 148).
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modi®ed at all, or whether they can be modi®ed selectively, nor, if they can be, by
which factors.

Thus, whether it is used to study behavior or brain function, qualitative task
comparison does not readily permit inferences about how a complex process should
be divided into parts.

A.1.3. Quantitative task comparison: subtraction and division methods
In some cases researchers are willing to create su�ciently detailed theories of two

tasks such that, if the theories are correct, quantitative properties of sub-processes
(i.e., derived pure measures) can be estimated from the performance measures in the
two tasks. The goal here is typically not to test the task theories, but rather to use
them to provide such estimates.

A.1.3.1. Donders' subtraction method
Perhaps the most venerable task-comparison method of this kind is Donders'

(1868) subtraction method, for two tasks, Tasks 1 and 2, in which only composite
measures, MT

1 and MT
2 (here, mean RTs) are available. The joint hypothesis consists,

®rst, of a pair of task theories ± HY1 and HY2 ± that specify the constituent pro-
cesses of each task, and second, HY3, a combination rule. For example, we might
have the following hypotheses:

HY1: Task 1 is accomplished by process A (which may consist of more than one
sub-process).

HY2: Task 2 is accomplished by processes A and B, where A is identical (at least
in duration) to the corresponding process in Task 1 (the ``pure insertion'' assump-
tion).

HY3: Contributions of the processes to the composite measures combine by
summation (as in Table 3, and implied by Donders' assumption that the processes
are arranged in stages).

Given these hypotheses, it follows that MT
1 � RT 1 is an estimate t̂a of the mean

duration of A, MT
2 � RT 2 is an estimate t̂a � t̂b of the sum of the mean durations of A

and B, and therefore, by subtraction, t̂b � MT
2 ÿMT

1 is an estimate of the mean
duration of B. 71

A.1.3.2. Jacoby's division method
The ``process-dissociation'' method devised by Jacoby (1991) for separating the

contributions of conscious and unconscious memory to performance in memory
tasks has aroused considerable interest (see, e.g., Buchner, Erdfelder, & Vaterrodt-

71 Unlike the methods exempli®ed in Sections 13±16, in which separate modi®ablity is tested with

composite measures (where no pure-insertion assumption is required, and where a successful test supports

the combination rule), application of the subtraction method has often embodied a test of neither the

combination rule nor pure insertion. That is, the task theories are assumed but not tested, even though

such tests may be possible (footnote 69; Appendix A.1.3.3).
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Pl�unnecke, 1995; Jacoby et al., 1993; McBride & Dosher, 1999) and can be re-
garded as a modern ``division method'', by analogy to the subtraction method,
but with a combination rule of multiplication (as in Table 4) rather than sum-
mation (as in Table 3). Development of the method was motivated by the idea
that qualitative uses of the task-comparison method for ``direct'' and ``indirect''
memory tasks (such as old-new recognition and word-fragment completion, re-
spectively) were limited by the incompleteness of our knowledge about the com-
plex processes associated with each such task, and that performance measures in
the two tasks were probably not pure measures of ``explicit/controlled/conscious''
memory on the one hand, and ``implicit/automatic/unconscious'' memory on the
other. The goal was to develop pairs of tasks, each of which is acknowledged to
re¯ect contributions of both kinds of memory, but constructed such that data
from the two tasks can be combined to provide separate estimates of the two
contributions.

In a simpli®ed illustrative experiment, subjects are ®rst exposed to a list of words,
and then given a mixture of two kinds of stem-completion trials, for which the list is
a possible source of completions. On Task IN (``inclusion'') trials, subjects are asked
to complete the stem to produce any word that comes to mind (including a word
from the list). On Task EX (``exclusion'') trials, subjects are asked to complete the
stem to produce any word other than a word from the list. The tasks are assumed to
depend on retrieval from both conscious memory (process C) and unconscious
memory (process U), but in di�erent ways.

As in the subtraction method, the joint hypothesis consists of a pair of task
theories and a combination rule. In a simple version of the method, the hypotheses
are:

HY4: For Task IN, a completion is generated if and only if U and/or C succeed in
producing one.

HY5: For Task EX, a completion is generated if and only if U succeeds in pro-
ducing one and C fails, where U and C are identical (at least in success rate) to the
corresponding processes in Task IN.

HY6: Generation of completions by U and C are uncorrelated events.
Given this joint hypothesis, it will be seen that the measures de®ned below for the

two tasks can each be thought of as estimates of the probabilities of the joint oc-
currence of two uncorrelated events, thus depending multiplicatively on the indi-
vidual event probabilities, as in Ex. 7. 72 Let PIN and PEX be the probabilities of
completion in Task IN and Task EX, respectively. Let pu and pc be the respective
probabilities that U and C succeed in generating completions. And let
QIN � 1ÿ PIN ; qu � 1ÿ pu, and qc � 1ÿ pc be the probabilities of failure. For Task
IN, no completion will be generated if and only if both U and C fail. Hence

72 The simple task theories described here have had to be complicated by the incorporation of baseline,

guessing, and bias e�ects (Buchner et al., 1995). Moreover, hypothesis HY6 (on which the multiplicative

combination rule depends) is controversial (see, e.g., Curran & Hintzman, 1995).

S. Sternberg / Acta Psychologica 106 (2001) 147±246 219



MT
IN � QIN � qu � qc� �16�

For Task EX, a completion will be generated if and only if U succeeds and C fails.
Hence

MT
EX � PEX � pu � qc� �17�

Dividing the measure for Task IN by the measure for Task EX to form the ratio RT

(hence ``division method''), qc is eliminated, and we have a pure measure of pu:

RT � MT
IN

MT
EX
� qu

pu
� 1ÿ pu

pu
; �18�

or p̂u � �1� RT �ÿ1
, and it follows from this and Eq. (16) that q̂c � MT

IN �MT
EX . We

thus have estimates for the underlying processes U and C, respectively. 73

A.1.3.3. Derived pure measures from subtraction and division methods
In applying Donders' or Jacoby's method to obtain estimates of process param-

eters from measures in two di�erent tasks, one is not testing the assumed task the-
ories. However, assuming the theories to be valid, the estimates can be regarded as
derived pure measures of the hypothesized processes to which they correspond.
Thus, for the subtraction method, MA � MT

1 ; and MB � MT
2 ÿMT

1 . And for the di-
vision method, MU � RT , and MC � ST , where ST � MT

IN �MT
EX is the sum of the two

task measures. The response of these pure measures to changes in the levels of
suitable factors can be studied, just as described in Table 2, to test the hypothesized
processes for separate modi®ability. And, insofar as factors are found that in¯uence
them selectively, we have support for the task theories that justify the pure measures,
as well as for separate modi®ability. For example, for the subtraction method, (1) a
factor that selectively in¯uences B should in¯uence only MT

2 , and (2) the e�ects on
MT

1 and MT
2 of a factor that selectively in¯uences A should be equal. (The second

property depends jointly on ± and hence supports ± the pure-insertion assumption
together with separate modi®ability.)

The important di�erence between these quantitative task-comparison methods
and Exs. 1-6 is that here the data are from two separate tasks, each believed to in-
volve a di�erent complex process. What makes these methods possible is that the
theoretical starting points on which the inferences depend are strong, stronger than
those in Exs. 1-6: a pair of task theories that specify the exact relationship between
the complex processes in two di�erent tasks.

73 This treatment of Jacoby's method is equivalent to the one often provided, in which

MT
in � 1ÿMT

IN ;M
T
ex � MT

EX ; and pc � MT
in ÿMT

ex.
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A.2. Considerations in the choice of factors

A.2.1. Unitary factors and qualitative process invariance
Our goal is to understand the structure of a complex process ± in particular, to

identify its modules (if any); our strategy is to vary experimental conditions (factor
levels) so as to in¯uence that process. Interpretation of the ®ndings depends on the
process being the ``same'' (in a poorly de®ned sense) under all the conditions tested.
If a factor-level change replaces one operation by (or adds) a qualitatively ``di�erent''
one, then we are comparing two di�erent processes rather than revealing the
structure of one. (Another way to phrase this is that a change in factor level should
not change the subject's ``task'' into a qualitatively di�erent one. If so, we would be
engaged in task comparison rather than process decomposition.) Accordingly, across
the ranges of factor levels examined, it should be possible to make a persuasive
argument that the process is the same, in the sense of including the same set of
processing operations; the strength of our conclusions depends on the persuasiveness
of that argument. 74 Such an argument can be based on prior knowledge of the
process and the factors; another basis is the pattern of factor e�ects. The concept of a
unitary factor can be helpful here: A factor is unitary within the selected range of
levels if each change in level in¯uences the same operations and leaves the same other
operations invariant. If a factor is unitary, its e�ects should be qualitatively the same
across more than one change in its level, and across several levels of the other factor
or factors. 75 This is one of the reasons for selecting factors that can have more than
two levels, and for using more than two levels when feasible, despite the complexities
this may add to the experimental design. Other reasons are discussed in the context
of the examples and in Appendix A.9.2.

A.2.2. Manipulated vs selective factors
Even if a process is modular, some factors may not reveal this. For example, a

factor that in¯uences a module selectively may not be one of those manipulated or
controlled in an experiment, but may instead be a function of the levels of two
factors that are manipulated, which might then be found to have non-selective ef-
fects. As discussed in Section 7, this may have occurred in applications of signal-
detection theory to ``yes±no'' experiments, in which the factor that may in¯uence the
decision process selectively is RR rather than PM. Because RR depends on signal
discriminability (ST , an s-factor) as well as on PM (a d-factor), ostensibly pure
measures of sensory and decision processes failed to satisfy the requirements of
separate modi®ability when factors ST and PM were used, but appear to approxi-
mate them well with factors ST and RR. Thus, in interpreting a test of separate

74 Factors that determine the number of multiple similar operations (such as the number of non-targets

in some search tasks) are unlikely to be regarded as ``changing the task'' in this sense.
75 See footnote 63 for a factor (time during free recall) that may be non-unitary. For an example of

extending the range of a factor such that it becomes non-unitary, see Sternberg (1998a, p. 389).
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modi®ability, it has to be kept in mind that the manipulated factors may not be the
ones that in¯uence the hypothesized modules selectively, even when such factors
exist.

A.2.3. Inferential logic when hypotheses about modules specify the factors
If the hypotheses about processes A and B are su�ciently detailed, they may

specify particular factors that should in¯uence A and B selectively. This possibility is
not well represented by the formulations in Tables 2±4, which treat F and G as
members of a larger set of plausible candidates to be tested. In alternative formu-
lations of the inferential logic, the speci®cation of factors F and G can be included in
the joint hypothesis, with the remainder of the reasoning adjusted accordingly. For
Tables 2 and 3, this is shown by Tables 7 and 8, respectively, in which I have replaced
H1 by H1�, which is stronger than H1 and implies it; a similar reformulation can be
created for Table 4.

Given the initial conceptualization of band-limited analyzers, Table 7 is probably
more appropriate than Table 2 for Ex. 4. For the same reason, a reformulation of
Table 4 is probably more appropriate for Ex. 7. And similarly, Table 8 is probably
more appropriate than Table 3 for the part of Ex. 10 involving SQ and MF, given
that the two hypothesized modules are S and R.

Table 7

Alternative inferential logic for pure measuresa

a See footnote 14 for the distinction between p0k and pk .

222 S. Sternberg / Acta Psychologica 106 (2001) 147±246



A.3. Composite measures, combination rules, and stochastic independence

A.3.1. Measures, combination rules, and plausibility
In the illustration of Section 3.1.1, we reasoned from an hypothesized process

structure or ``mental architecture'' (here, stages) to a combination rule (here, sum-
mation) that applies to a particular measure MAB of the complex process (here,
duration). It is plausible that the duration of a process would be the sum of durations
of its parts, and we can show (Eq. (3)) that, with selective in¯uence of F and G , we
expect their e�ects on RT to be additive. But we would probably not be interested in
considering an application of Table 3 in which MAB was a non-linear transformation
of RT, such as its square root. Why not? Because it is hard to think of a plausible
mechanism in which contributions of two separately modi®able processes to

�������
RT
p

would combine by summation. Conversely, suppose we discovered that the e�ects of
two factors on

�������
RT
p

are additive in a particular experiment. This ®nding can be used
as an argument for modular processes (selectively in¯uenced by those factors) only if
there is a plausible mechanism that is consistent with summation being the combi-
nation rule for that measure; but there appears to be no such mechanism.

For Exs. 7 and 9 there are plausible structures that lead to multiplicative com-
bination rules for certain measures. Section 3.2 shows that such a rule implies

Table 8

Alternative inferential logic for a composite measure with summation as the combination rule
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multiplicative factor e�ects and, also, that if such measures are transformed by
taking logarithms, the factor e�ects become additive. Here, ®nding additive e�ects on
the logarithmically transformed measure is relevant to the discovery of modules
because there is a plausible modular process structure which, when combined with
selective in¯uence, would lead to additive e�ects on that measure.

In Section 13 we saw that a plausible detection mechanism involving two modules,
A;A0, leads to a multiplicative combination rule for their contributions to
MAA0 � PND, the probability of not detecting a signal. In contrast, we shall see in
Appendix A.13 that under some conditions, the transformed measure
Odds�PND� � PND=�1ÿ PND� reveals multiplicative e�ects of two factors, and there-
fore that logit �PND� � log�Odds�PND�� exhibits additive e�ects. (Actually, PND must
be ``corrected for guessing'' for the Odds transformation to work in this way.) Here,
whereas it is easy to explain such additive e�ects on this transformation of PND as
arising if both factors in¯uence a particular plausible single module, there appears to
be no plausible structure of two modules selectively in¯uenced by the two factors
that could also explain it.

Hence, whereas suitable transformation of a measure may render factor e�ects
additive or multiplicative, and whereas this can be interesting, it may not support a
claim of modularity. In general, data may be transformed so as to create measures
that behave in orderly, simple ways, but such patterns become important for the
inference of modularity only if a plausible modular mechanism can generate them.
Of course, what is plausible is subject to change.

A.3.2. Multiplication as the combination rule: implications for data analysis of the
zero-correlation requirement

The requirement expressed in hypothesis H5 (Table 4) has implications for how
data should be treated so as to minimize the likelihood and/or extent to which
failures of that hypothesis interfere with testing H1 and H4. Consider the application
discussed in Section 15, where the measure is the response rate of a rat in a bar-
pressing experiment. For ease of exposition, let our measure instead be the inter-
response time, IRT, the reciprocal of response rate. The data for a particular pair of
factor levels is a summary of the bar-press times on each of the set of trials at those
levels. One obvious approach to creating that summary would be to determine the
mean IRT for each trial, and then average those means over that set of trials. At this
point one could apply the logarithmic transformation and test for additivity of factor
e�ects.

In relation to H5 there are at least two potential sources of correlated variability
of uA and vB: variation across the IRTs that comprise a trial, and variation across
the trials that comprise the set of trials. If these are substantial and we use the
method described above, H5 will be violated. However, by applying the logarithmic
transformation to individual IRTs (before any averaging), so that the averaging is
of sums rather than products of the contributions of A and B to the (transformed)
measure, we render these two potential sources of correlated variation irrelevant
(see, Eqs. (1) and (2)). Whether this eliminates all potential sources of correlated
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variation depends on details of the mechanism: If single values of uA and mB

determine any particular IRT, then there is no other source, Eq. (4) applies to
individual IRTs, and the need for H5 in testing independence in mean is elimi-
nated. 76 In general, by applying the logarithmic transformation as early as possible
± before any explicit summing or averaging operations ± we are likely either to
reduce the impact of violations of H5 in testing H1 and H4 or eliminate the need
for H5 altogether. 77

A.3.3. Stochastic independence of process contributions as further evidence of
modularity

In the discussion of composite measures thus far we have been concerned with
whether two processes obey ``independence in mean'' ± that is, whether their mean
contributions to a composite measure can be separately modi®ed. Whatever the
processes and whatever the measure, it is highly likely that their contributions (and
the measure itself) have non-zero variability. This raises the question whether such
variation is correlated across the two processes. The evidence for the modularity of
these processes would be strengthened if their contributions to the measure were
found not only to be independent in mean, but also to be stochastically independent
(or even if they were found to be merely uncorrelated ± often a weaker property). 78

As we saw in Section 3.2, the assumption that contributions are uncorrelated (have
zero covariance) is required when the combination rule is multiplication (H4 in Table
4), even to get predictions about the pattern of mean p.e�ects. (Finding multipli-
cative p.e�ects therefore supports H5; Exs. 7, 9.) When the combination rule is
summation, however, the zero covariance or (stronger) stochastic independence
property can be tested separately from independence in mean. Thus, if the contri-
butions are uncorrelated, then the combination rule for their contributions to
var�MAB� is also summation, and we should ®nd additive factor e�ects on var�MAB�
as well as on its mean; if the contributions are stochastically independent, this im-
plies not only the latter, but also additional powerful constraints on the data from a
factorial experiment (Roberts & Sternberg, 1993; Sternberg, 1969). If meaningful
pure measures are obtained on individual trials, questions about independence can
be asked for such measures also.

If one process directly in¯uenced another (Section 2.1) then they would not be
separately modi®able, and we would expect their pure measures (if based on indi-
vidual trials), or their contributions to composite measures, to be correlated. It has

76 Alternatively, suppose each IRT comprises a sequence of unobserved sub-intervals, each determined

by a possibly di�erent (u, v) pair. Eq. (4) then applies to each sub-interval, but, unless H5 is true across the

sub-intervals of an IRT, Eq. (4) does not apply to the IRT, the sum of these sub-intervals.
77 For this approach to be used, all values of the measure to which it is applied must be positive; this

excludes cases like Ex. 7.
78 In research on memory, the relevance of stochastic independence has been recognized for measures of

di�erent tasks (Appendix A.1.2.1). Interpretations di�er, however; see Kahana (2000) and Richardson-

Klavehn and Bjork (1988).
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to be recognized, however, that there may be factors that in¯uence both of the two
processes in question, are not under the experimenter's control, and whose levels
¯uctuate from trial to trial. Because this can induce covariation of their contribu-
tions, the predictions mentioned above can fail, even when the two processes are
modular.

A.6. Evidence for neural and functional modules that correspond

A remarkable study by Smulders, Kok, Kenemans, and Bashore (1995) provides
a supplement to Exs. 2, 5, 6, and 10. In relation to Ex. 2, their ®ndings are among
those that give us reason to believe that the onset time of the lateralized readiness
potential (LRP) is psychologically meaningful. In relation to Ex. 5, their experi-
ment is an analog in which an aspect of the ERP is used, instead of single-neuron
activations, to index a possible boundary between neural processing stages. As in
Ex. 10, their RT data can be used as a composite measure to test a hypothesis
about modular functional processes arranged as stages. And in relation to Ex. 6,
their ®ndings provide evidence for corresponding neural and functional modules
from brain and behavioral measurements, respectively, as advocated in Section
11. 79

In a two-choice RT experiment with single-digit stimuli mapped on left-hand and
right-hand responses, Smulders et al. varied two factors, SQj (digit intact vs de-
graded) and response complexity, RCk (one keystroke vs a sequence of three key-
strokes made by ®ngers of the responding hand). They measured RTjk, and also the
onset time of the LRP, based on both stimulus-locked (LRPs) and response-locked
�LRPr� averaging of the scalp-potential functions. (See Section 6, where we consider
only LRPs, based on scalp potentials treated as functions of time from stimulus
onset.) Let Tsjk and Trjk be the corresponding LRP onset times measured from the
stimulus, and let T�jk be their mean. Averaging over the four conditions, RT�� � 416
ms, and T��� � 264 ms. If a is the process from stimulus to LRP onset, and b is the
process from LRP onset to response, then these values give us measures of their
mean durations (direct pure measures of a and b): Da � T��� � 264 ms and
Db � RT�� ÿ T��� � 152 ms.

The LRP data fT�jkg are separated by condition in Fig. 15. Because Tsjk and Trjk

give similar estimates for e�ects of the two factors on Da and Db, the estimates are
based on T�jk . The evidence indicates that the two factors SQ and RC have selective
e�ects on Da and Db, supporting the hypothesis that in this situation the LRP onset

79 The error variance values reported by Smulders et al. (1995) and the S.E. estimates provided here are

likely to be overestimates (because balanced condition-order e�ects were treated as error variance), and the

data required to calculate better values are no longer available (F.T.Y. Smulders, personal communi-

cation, 1999).
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indeed de®nes a boundary between two neural processing modules that are arranged
as stages, and consistent with the reasoning in Table 2.

The same study permitted Smulders et al. to use the composite measure RT to ask
about the functional structure of the entire process (Section 3.1.1, Table 3). If the RT
is generated by two processes A and B arranged in stages, then it may be possible to
®nd factors that have additive e�ects on RT . Indeed, SQ and RC are such factors, as
shown by the excellent ®t of the best-®tting additive model displayed in Fig. 15C: the
interaction of SQ and RC was a negligible 2� 5 ms.

Finally, suppose that the (functional) processes A and B responsible for the ad-
ditive RT e�ects are implemented by a and b, respectively, the (neural) processes
demarcated by the LRP. Then, not only is it unsurprising that the same factors
in¯uence them selectively, but also, the sizes of their e�ects should be the same
(ignoring some possible problems in estimating Ts and Tr). Agreement among the
e�ect-sizes can be examined by assuming that the two factors indeed have perfectly
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Fig. 15. Means over 14 subjects of data from Smulders et al. (1995). Estimated durations Da of Stage a,

from stimulus presentation to LRP onset (panels A1, B1); and Db of Stage b, from LRP onset to response

(panels A2, B2). These are shown as functions of SQ (panels A1, A2), and of RC (panels B1, B2). Data in

panels A1 and A2 are separated by level of RC; those in panels B1 and B2 are separated by level of SQ.

Also shown in panels A2 and B1 are null-e�ect models. Main e�ects of SQ on Da and Db are 34� 6 (panel

A1) and 1� 8 ms (panel A2), respectively; the corresponding main e�ects of RC are 4� 8 (panel B1) and

21� 7 ms (panel B2), respectively. The RT data are shown in panel C, together with two ®tted models. One

is the best-®tting additive model (mean absolute deviation 0.5 ms); the other is an additive model based on

the LRP data (see text; mean absolute deviation 1.8 ms).
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selective e�ects on the a and b processes demarcated by the LRP, and by using the
appropriate subset of the LRP data to ``predict'' the pattern of the fRT jkg. Thus, we
should be able to use just the data in panel A1 (averaging over RC levels) to estimate
Da�SQ1� and Da�SQ2�. Similarly, we should be able to use just the data in panel B2
(averaging over SQ levels) to estimate Db�RC1� and Db�RC2�. If RT � Da � Db we
have the ``predictions'' RT �jk � Da�SQj� � Db�RCk� for the four conditions. 80 Fig.
15C shows that the agreement is good: RTjk � RT �jk. Numerically, the e�ects of SQ
and RC on the composite measure RT are 35� 3 and 25� 7 ms, respectively, close to
their e�ects (34 and 21 ms) on the pure measures Da and Db. 81

This study is distinguished from the other examples in the present paper by its
independent use of two methods: pure measures to ask about the structure of a
neural process, and a composite measure to ask about the structure of a corre-
sponding functional process.

A.7. Details of the analysis of brightness discrimination by pigeons

A.7.1. Support for the equal-variance Gaussian detection model
With six birds and ®ve levels of LR, 30 ROCs are de®ned, each with three points,

one for each level of RR. The slope of each ROC was estimated by ®tting a line to the
®rst and third point. The mean slope of this line is 0:99� 0:06, and there is no
signi®cant e�ect of discriminability on slope. The deviation from linearity was
measured by determining the perpendicular distance (in z-z space) from the second
point to the ®tted line, and giving it a sign, positive if the second point was above the
line, and negative otherwise. The mean signed distance is ÿ0:03� 0:05, and there is
no signi®cant e�ect of discriminability on signed distance. The )0.03 value is only
about 1% of the di�erence between the mean d 0-values for highest and lowest dis-
criminability levels (the distance between the corresponding ROCs) of 3.59. Note,
however, that the mean over birds of the absolute distance increases signi®cantly with
discriminability, with values 0.06, 0.08, 0.26, 0.19, and 0.44, as LR increases. It is
tempting to believe that this re¯ects the greater variability in z�p� as p approaches
zero or unity, but an analysis of between-bird variability in both z�PrfRT jST g� and
z�PrfRT jSNT g� by condition (after correcting for mean di�erences among birds)
shows it to be larger than the theoretical value (Gourevitch & Galanter, 1967), and
approximately constant.

A.7.2. Evaluation of an alternative measure of the decision process
In most of the examples we have not considered alternatives to the hypothesized

measures (H2, Table 2). One feature of SDT is that more than one appealing and

80 This way of deriving the fRT �jkg forces their means into agreement: RT ��� � RT��; the question of

interest is whether the di�erences among the four values agree.
81 Such good agreement is unexpected, given the possibility of artifacts associated with estimating Ts and

Tr from the ERP voltage wave after averaging it over trials (Section 6.1).
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plausible MD ± re¯ecting the response bias ± has been considered and used. The one
considered in Section 7.2 is MD � c, a value on the scale on which XT and XNT have
Gaussian distributions; the origin for c is �X T � X NT �=2. An alternative criterion is
the likelihood ratio associated with X � c: M 0D � b � /T �c�=/NT �c�, where /T is the
density function for XT , and /NT for XNT . One advantage of b is that with a ®xed set
of costs and bene®ts (a ®xed PM) the criterion that maximizes the expected value of a
trial, expressed as the optimal b-value, is invariant over levels of discriminability. For
the present data, however, whereas c-values are approximately invariant across levels
of LR for ®xed RR, the corresponding actual b-values change systematically with
LR, falling from 0.94 to 0.47 for RR � 0:2 �F �4; 20� � 14:1; p < 0:0001� and rising
from 1.05 to 12.82 for RR � 0:8 �F �4; 20� � 11:7; p < 0:0001�. 82 Thus, whereas
MD � c may be a pure measure of a D module, M 0D � b is apparently not.

A.9. Factorial experiments and multiple-level factors with pure measures

In this section we consider two issues in the design of experiments to assess
separate modi®ability when pure measures are hypothesized, in the context of Ex. 4.

A.9.1. Advantages of a factorial design
For composite measures, levels of the factors F and G must be combined facto-

rially to test selective in¯uence, whether or not the combination rule is also to be
tested: for each level of F, measurements must be made at each level of G. With pure
measures a factorial experiment is not required, as shown by Exs. 1, 2, 4, and 6.
However, insofar as such a design is feasible it o�ers advantages, an important one
being a test of the generality of selective in¯uence described in Sections 1.4, 5.2, and
11, and illustrated by Ex. 3. (Given the joint hypothesis, selectivity of a factor's e�ect
should normally obtain for all pairs of levels of that factor, and at all levels of the
other factor, and not be an accident of particular levels.) Thus, if we ®nd that LA
in¯uences measure ML and not MH when HA � HA1 � 0%, we would also like to
determine whether the e�ect of LA is numerically the same (subject to sampling
variability) when HA is changed to HA2 � 80%.

Consider the design that underlies the analysis shown in Fig. 6A and C. The three
conditions used, which permit examining the e�ects of adapting with simple (one-
frequency) gratings, are those in bold type in Table 9. A complete factorial design
would also include the fourth condition, in which the adapting grating is a com-
pound (superposition of two simple gratings). According to the joint hypothesis, not
only should the main e�ects of LA and HA on ML and MH be appropriately selective,
but also the interaction of their e�ects on each measure should be zero: One factor
should not modulate the e�ect of the other. This property is testable only with the

82 When data for the highest LR (for which the ROCs were unusually irregular) are removed, the failure

of invariance remains: For RR � 0:2 and 0.8, F �3; 15� � 22:2 �p < 0:0001� and 6:0 �p � 0:007�, respec-

tively.
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complete design. What would we expect if the fourth condition had been included?
Several experiments (see Graham, 1989, pp. 118±120) have shown that the adapting
e�ect of a two-frequency (f1; f2) compound grating on the contrast threshold for fk,
(k� 1 or 2) is smaller than the adapting e�ect of a simple (fk) grating on the contrast
threshold for fk, (k� 1 or 2). 83 One explanation is that when analyzers such as L

and H are stimulated at the supra-threshold contrasts of adapting gratings, they
inhibit each other rather than being modular; when the compound is used as an
adapting stimulus, the amount of adaptation of each analyzer is therefore re-
duced. 84 Hence, while the separate modi®ability of these analyzers can be demon-
strated with simple adapting gratings, the generality of selective in¯uence (Section
1.4) that we would normally require does not obtain, and the test of interaction
mentioned above would fail. Such failure would inform us about limitations on the
selectivity of the in¯uence of LA and HA on L and H that might have been erro-
neously inferred from the incomplete design.

A.9.2. Advantages of multiple factor levels
In many experiments, factors are selected for which only two levels can be de®ned,

or factors for which multiple levels could be de®ned are examined at only two. In the
present example, a continuum of levels is possible for the factors (such as LA, the
contrast of the low-frequency adapting gratings), and it is known from other data
that the threshold elevation caused by adaptation increases with adapting contrast
(e.g., Graham, 1989, Chapter 3). The use of multiple levels has several advantages.
First, it provides additional tests of the generality of selective in¯uence mentioned
above. Second, it helps determine whether a slight failure of invariance re¯ects a
systematic trend or random variation, as in Ex. 3. Third, multiple levels are required
for testing whether the factor is unitary over its range (Appendix A.2.1). And fourth,
if the e�ect of a factor with potentially more than two levels might be non-monotone,
then apparent invariance in data taken at just two levels might be an accident. As

Table 9

A factorial design with each factor at two levels

83 For example, consider the thresholds MH in Fig. 6A, which were determined when HA � HA1 � 0%.

We see an excellent approximation to invariance with respect to LA. The corresponding MH -values for

HA � HA2 � 80% would be closer to 1% than 0.4% (see upper curve in Fig. 6C). However, if HA � HA2,

we would expect the MH value to decrease from LA � LA1 (simple-grating adaptation) to LA � LA2

(compound-grating adaptation), violating the expectation of invariance of MH with respect to LA, and

indicating that LA modulates the e�ect of HA.
84 De Valois and De Valois (1988, pp. 186±187) suggest that such inhibitory interactions are relatively

minor.
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discussed in Section 15.1, the use of multiple levels is also helpful with composite
measures, where the joint hypothesis is often tested by evaluating an interaction.

Table 10 illustrates a possible multiple-level design that could be used in relation
to Ex. 4. A set of conditions that avoids compound adapting gratings (not a factorial
experiment) is shown in bold type; a complete factorial design would include the
other as well. I was unable to ®nd data from an experiment with both a wide range of
adapting frequencies and multiple adapting contrasts.

A.10. Inferring neural processing stages from single-unit recordings

A.10.1. Classi®cation of neurons
Analyses included only correct trials. Activations of cells� classi®ed as sensory-

SC2 had to be stimulus-speci®c, occurring on all f -F and f -T trials but on no t-F or
t-T trials, or vice versa. Activations of cells� classed as sensory-SC4 had to occur with
similar magnitudes on all trials of all four types. Also, SC4 activations had to be as
closely coupled temporally to the stimulus (vs the response) as SC2 activations.
Relative closeness of coupling was measured by logf�var�Tr ÿ Ta��=�var�Ta ÿ Ts��g,
large for stimulus-coupled activations, small for response-coupled activations. Ac-
tivations of cells� classed as motor-MC2 had either to be response speci®c (occurring
on all f -F and t-F trials, but on no f -T or t-T trials, or vice versa), or to occur on all
trials of all four types and show a response preference (such that activation mag-
nitude with one response was at least twice as great as with the other). Activations of
cells� classed as motor-MC4 had to occur during all trials of all four types with
similar magnitudes. Also, MC4 activations had to be as closely coupled temporally
to the response (vs the stimulus) as MC2 activations.

The number of measured cells� in classes SC2; SC4;MC2, and MC4 were 15, 49,
43, and 10, respectively, each measured on many trials. 85 In relation to the func-
tional localization assumption of Section 11, it is noteworthy that of the 64 sensory
cells�, 55% were in area M1 (with about the same Ta as those from area S1), and of

Table 10

A factorial design with each factor at four levels

85 Among the SC2 cells�, 9 responded on f trials, 6 on t trials. Among the MC2 cells�, 37 responded on F

trials, 6 on T trials. Values reported here for SC2 and MC2 cells� are equally weighted means of the values

for their two subclasses. The data in Table 2 of Mouret and Hasbroucq (2000) re¯ect a di�erent way of

combining data over these subclasses.
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the 53 motor cells�, 32% were in area S1 (with a Ta about 50 ms later than those from
area M1). These ®ndings of inhomogeneous cell types are similar to those of Requin,
Riehle, and Seal (1988, 1993), which demonstrate the ``functional heterogeneity of
structurally de®ned neuronal networks'' (1988, p. 179).

A.10.2. Combining activation times over neurons
It is reasonable to believe that large numbers of neurons participate in any mental

operation of the kinds that are of interest in the present paper. Yet, in an experiment
of this type, only one cell� of one class is measured on any particular trial. Each
measurement provides a single latency; if other cells� of that class had been measured
on the same trial, their latencies would probably di�er, and we would have a dis-
tribution of latencies. Suppose we had such a distribution. One of the limitations of a
study of this kind arises because we know very little about the behavior of popu-
lations of neurons as they participate in complex processes; we have little guidance in
choosing a statistic of that latency distribution ± perhaps a location measure such as
the minimum, median (or other quantile), mean, or maximum ± that is appropriate
for de®ning a boundary between one stage and the next. 86 That the system would
require the activation of only one relevant cell (implying the minimum as the mea-
sure) or of all relevant cells (implying the maximum) before proceeding to the next
stage both seem implausible. Because computing the mean requires activation times
of all participating cells, the mean also seems unlikely to be the appropriate location
measure, especially in a speeded task.

What problem is caused by our uncertainty about the appropriate population
statistic? To assess separate modi®ability in this case we have to quantify the changes
in stage durations as we manipulate factor levels (here, levels of S-R compatibility).
In the present example we compare the e�ects of compatibility on the times of neural
and overt responses. If factor manipulations cause changes in only the location of the
population latency distribution, any of the location measures could serve; the mean
would be ®ne. But factor manipulations may also change the spreads or shapes of
such distributions. Now, while only one neuron was measured on each trial by
Mouret and Hasbroucq (2000), that neuron, and each of many others, was measured
on many such trials. It may be possible to use within- and between-neuron variation
to provide estimates of population latency distributions, and thus to determine how
those distributions change with compatibility level. This could inform us roughly
about the extent and direction in which e�ect-size estimates based on means are
likely to di�er from estimates based on other location measures. Mouret and Has-
broucq did not obtain such estimates of latency distributions, however, and this issue
should be kept in mind in considering the ®ndings. The values reported here are
based on ®rst getting the mean of the activation latencies of each cell� in each
condition of the experiment in which it responded, and then determining means of

86 Parker and Newsome (1998) show that evidence from behavioral vs single-neuron perceptual

thresholds is divided between favoring the ``lower envelope principle'' (which suggests the minimum

latency) and the ``pooling'' (physiological summation) model (which suggests a higher quantile).
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these values over cells� within classes and subclasses. As a working hypothesis, I
assume, with Mouret and Hasbroucq, that the use of means does not substantially
bias the e�ect-size estimates. This is justi®ed to the extent that S-R compatibility
in¯uences only the location of the latency distribution of the MC2 and MC4 cells�,
and not the shape of that distribution.

A.10.3. E�ects of stimulus and response factors on stage durations
Given the Mouret±Hasbroucq experiment, stimulus and response factors can be

de®ned: just as the contrast for activation time Ta associated with SRM is
�Ta;tF � Ta;fT �=2ÿ �Ta;tT � Ta;fF �=2, the orthogonal contrast for the stimulus factor
STIM (levels f ; t) is �Ta;tF � Ta;tT �=2ÿ �Ta;fT � Ta;fF �=2, and for the response factor
RESP (levels F ; T ) is �Ta;tF � Ta;fF �=2ÿ �Ta;tT � Ta;fT �=2. Ideally, STIM would in-
¯uence only a, and RESP would in¯uence only c. While there was no consistent
e�ect of RESP on RT , there was a consistent e�ect of STIM: RT was longer by 19 ms
for f than t. Unfortunately, insofar as the neuronal data permit localizing the STIM
e�ect in one of the three stages, it appears to be in b rather than a. If these ®ndings
were borne out by data with greater precision and, ideally, larger e�ects, then this
would not violate the conclusion that SRM selectively in¯uences b, but it would say
that if there is a separate stage in¯uenced selectively by STIM, the choice of neurons
to measure has not isolated it.

A.11. fMRI and modular processes: requirements and statistical issues

A.11.1. Requirements for a process-decomposition study
Some of the requirements for a study of the kind described in Section 11 are as

follows:
(1) The subject should be performing a task as measurements are taken. Even in

sensory studies enough evidence has emerged for task e�ects at early levels of
cortical processing (e.g., Martinez et al., 1999) so it is no longer appropriate
merely to present stimuli to a passive observer.

(2) The subject should be performing the same task as factor levels are varied. By
``same task'' I mean that a persuasive argument can be made that for all com-
binations of factor levels, the same set of processing operations is involved,
varying only ``quantitatively''. A change in level should not replace one pro-
cess with another, or introduce an additional process. Another way to say
this is that factors should be unitary (Appendix A.2.1); using the data to pro-
vide a partial check of whether this criterion is met requires at least three
levels of each factor.

(3) Because the invariance of a measure (e.g., Mb in Fig. 9A) across levels of a
factor (e.g., F) is at least as important in our inferences as the in¯uence of
that factor on another measure (e.g., Ma), it is critical that we have some in-
dex of precision for the size of an e�ect when the e�ect is claimed to be nil.
Insofar as the precision of the data is poor, a test can fail to reach signi®cance
even if the ``true'' e�ect is large (Section 1.5; Appendix A.11.2).
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(4) Because activation levels of selected voxels are the quantities of interest, it is
they that should be reported, rather than only quantities (such as the t-values
of ``statistical maps'') that re¯ect both means and variances of such activa-
tion levels. (Compare Figs. 1 and 2 in McDermott et al., 1999, for example.)

(5) The sets of voxels that de®ne regions such as a and b should, ideally, be se-
lected before the experiment, based on prior knowledge. If that is not possi-
ble, their selection should be based on measurements within the experiment
that can be shown to be independent of the measures Ma and Mb used to test
the joint hypothesis. Otherwise the selection process may bias the obtained
values of those measures.

Non-essential desiderata include factorial designs and, as mentioned in Section 11,
testing for analogous patterns of e�ects of the same factors in behavioral data.

As researchers gain more experience with fMRI, studies are appearing that in-
creasingly adopt these requirements and desiderata, such as the use of factorial
designs (e.g., McDermott et al., 1999) the use of such designs where factors are
plausibly unitary (Appendix A.2.1; e.g., Cohen et al., 1997), and the use of factors
with multiple levels (e.g., Braver et al., 1997).

A.11.2. Statistical issues
Because the data in Fig. 9 are hypothetical and idealized, no tests or measures of

precision are reported. With real data, we would of course have to show: (1a) the
e�ects of F on Mb and of G on Ma are convincingly negligible (Section 1.5); as well as
(2a) the e�ects of F on Ma and of G on Mb are convincing. Initial global tests could
use four ANOVAs. Insofar as we expect monotonic e�ects, more focused tests would
use one-dimensional measures of e�ect size such as the mean slopes of lines ®tted to
the four functions for each subject, each with an estimated S.E. based on between-
subject variation. Letting M�x �Y � be the slope of Mx�Y �, we would then have to show:
(1b) M�b�F � and M�a �G� are convincingly close to zero; as well as (2b) M�a �F � and
M�b�G� are convincingly greater than zero.

We could show (2b) if the two mean slopes are substantially greater than their
S.E.s. For (1b), consider M�b�F �. One minimal requirement is that it does not di�er
signi®cantly from zero. However, this can occur simply because the experiment is
insu�ciently precise, the S.E. large. Another minimal requirement, worth checking,
is for M�b�F � to be signi®cantly less than M�b�G�. But it would seem important also to
consider the power of the test of M�b�F � 6� 0 (or of M�b�F � > 0), expressed, for ex-
ample, by the smallness of its S.E., or by using the S.E. to specify maxnsfM�b�F �g, the
largest value of M�b�F �, given the data, that would not di�er signi®cantly from zero.
However, to determine how small maxnsfM�b�F �g must be to declare invariance re-
quires a complex judgement, based on relevant information from outside the ex-
periment as well as on (a) the sensitivity of Mb and (b) the potency of F (Section 2.3).
One might think of using M�b�G� and M�a �F � as measures of (a) and (b), respectively;
unfortunately, however, the former also depends on the potency of G, and the latter
on the sensitivity of M�a .

Instead, it may be worth basing a decision about whether selective in¯uence is
satis®ed on the relationship between two quantities: One, the mean absolute value of
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M�a �G� and M�b�F �, combines the magnitudes of the evidence against the two kinds of
invariance that selective in¯uence requires. The other, the mean absolute value of
M�a �F � and M�b�G�, combines the magnitudes of the evidence favoring two kinds of
in¯uence that it requires. Both quantities re¯ect the potency of both factors together
with the sensitivity of both measures. To declare invariance, the ®rst quantity could
be required to be no greater than a small percentage (e.g., 10%) of the second.

A.13. Fitting and testing one-channel and two-channel models of detection

In Section 3.2 I noted that the logarithmic transformation can be useful when
proportional factor e�ects are multiplicative. However, in the present example, P̂ND

takes on values that can be close to zero, which introduces considerable heteroge-
neity in the S.E.s of its log-transformed values. Because this renders plots somewhat
misleading, the data displayed in Fig. 10 were not logarithmically transformed.
However, more standard ®tting and testing of the two-channel model was done by
using a generalized linear model with the logarithm as the link function and the
variance speci®ed as l=�1ÿ l�. 87 The conclusions are the same as those stated in
Section 13.2, in relation to both overall tests and tests focused on linear and qua-
dratic patterns of deviation.

Fig. 10 also shows the results of ®tting a broadband single-channel model. 88 For
this model, the shape of the psychometric function (PrfDetectg vs contrast) becomes
relevant; Sachs et al. (1971) showed that for most of their sets of simple-grating data
it is well-approximated by multiplying �1ÿ png� by the Gaussian cumulative distri-
bution function (cdf), which is similar to the logistic cdf. For the data in panel B, the
relation between PND�Cfj; 0� and PND�Cfj;Cf 02� is better captured by assuming the
logistic. Letting P �ND � PND=png (the non-detection proportion corrected for guessing)
we then have P �ND � �1� ea�bx�ÿ1, where x is contrast. If a second grating is added to
the ®rst, with f 0 su�ciently close to f so that detectability is determined by a single
analyzer, then adding the second grating should be equivalent to an increase in the
contrast of the ®rst. The contrast modulation x can then be regarded as the sum of
two parts, y � y�Cfj� and y0 � y0�Cf 0k�, due to the f- and f 0-gratings, respectively.
Letting Odds�ND � P �ND=�1ÿ P �ND� be the guessing-corrected odds of non-detection, it
follows that

Odds�ND�Cfj;Cf 0k� � eÿby�Cfj� � eÿby0�Cf 0j � � eÿa: �19�
Thus, a consequence of the form of the psychometric function is that for the com-
posite measure Odds�ND;Cf and Cf 0 are multiplicative factors as in Eq. (8). (This

87 See ``quasi-likelihood'' in McCullagh and Nelder (1989).
88 For a broadband analyzer (required for a single-channel model), a composite grating (but not a

simple one) varies in amplitude across spatial locations. The single-channel model discussed by Sachs et al.

(1971) and described here would today be regarded as primitive, partly because it does not re¯ect the

combining of information across such locations (Graham, 1989, Chapter 5). One consequence is that the

behavior of a more modern single-channel model would be closer to that of the multiple-channel model.
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emphasizes the situation mentioned in Appendix A.3.1, where transforming a
measure causes the expected p.e�ects of two factors to be multiplicative, but where
this property can be plausibly explained if they in¯uence the same module, and not if
they selectively in¯uence di�erent modules.) For the present experiment, y0 is either
y01 � 0 (simple grating) or a ®xed positive value y0 � y02 (compound grating). It fol-
lows that

Odds�ND�Cfj;Cf 02� � g Odds�ND�Cfj; 0�; �0 < g < 1�; �20�
where g is the constant eÿby0

2 . Note the similarity to Eq. (10): here the predicted result
of adding the f 0-grating is multiplication of Odds�ND (rather than PND) by a constant.

Shown in each panel of Fig. 10 is the ®t of Eq. (20) to the compound-grating data
(with png and g estimated by least squares), given the simple-grating data. While the
one-channel model fails systematically in panels A and C (where the two-channel
model ®ts well), the one-channel model ®ts very well in panel B, where the two-
channel model fails.

A.15. Numerical scaling of factor levels for multiplicative and hybrid combination rules

In Sections 7.2, 13.2, and 15.1 I pointed out the usefulness of linearized data for
discovering and assessing the extent to which deviations from a model are system-
atic. In addition to this advantage, constraints on the data that are implied by Eq. (5)
are rendered simple and easy to test by such linearization. As Roberts (1987) rec-
ognized, the same advantage of linearizing also applies to the more elaborate process
structure and the associated hybrid combination rules of Eq. (11). For simplicity I
disregard sampling error. What follows is a minor reformulation of his ®ndings.

Let us write Eq. (5) as

Variant 0 : Mjk � ujvk; �21�
where j and k index the levels of factors F and G, respectively. Instead of plotting Mjk

for each k as a function of the level index j of factor F, plot it as a function of a
numeric variate, Fj � Mj�. The result of such scaling is that for each level k of factor
G, the values of Mjk vs Fj fall on a line, Mjk � v0kFj, where v0k � vk=v�. Note that all
the resulting lines intersect at the same point ± the origin (0,0) ± and that their mean
slope v0� � 1. The ®tted lines in Fig. 13A provide an example. Next consider three
variants that generalize the simple multiplication rule by incorporating an additive
term, described in Section 15 as hybrid (multiplicative-additive) combination rules.

In Variant 1 the additive term, w, is constant with respect to j and k:

Variant 1 : Mjk � ujvk � w; �w 6� 0�: �22�
Again the values of Mjk for each k fall on a line, Mjk � v0kFj � �wÿ wv0k�, and the
lines intersect at a common point, but here the point is �w;w�. Because w is unknown,
the diagnostic feature is the existence of a common point of intersection other than
(0,0). Because Variants 0 and 1 are both symmetric with respect to j and k, the same
properties obtain if Mjk is considered, for each j, as a function of Gk � M�k.
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In Variant 2 the additive term wk can vary with the level of G, but not with the
level of F:

Variant 2 : Mjk � ujvk � wk: �23�
Again the values of Mjk for each k fall on a line, Mjk � v0kFj � �wk ÿ w�v0k�, but here
the lines need not intersect at a common point. To distinguish Variants 1 and 2
requires at least two pairs of intersecting lines, hence at least three levels of factor G.

In Variant 3 the additive term wj can vary with the level of F, but not with the
level of G:

Variant 3 : Mjk � ujvk � wj: �24�
In this case the functions, Mjk � v0kFj � �wj ÿ wjv0k�, need not be linear. However,
the plot obtained by reversing the roles of F and G and plotting Mjk against Gk has
the same properties as Variant 2. 89

In conclusion, for the simple multiplicative combination rule (Variant 0) and all
three of the hybrid rules (Variants 1, 2, and 3) the data can be represented, by
suitable numeric scaling of factor levels, as points on a set of lines with di�erent
slopes. The rules di�er in three ways: (a) which of Fj or Gk produces linearity (both
do for Variants 0 and 1, only Fj for Variant 2, and only Gk for Variant 3); (b)
whether there is a common point of intersection for the set of lines (there is for
Variants 0 and 1, but not for 2 and 3); (c) the location of a common intersection
point if there is one [(0,0) for Variant 0, �w;w� for Variant 1]. Which pattern char-
acterizes the data has important implications for the underlying process.

A.16. Processing stages as modules

A.16.1. Multiplicative combination rule for the proportion of response omissions
As often found in sleep-deprivation experiments, the rate of response omissions

was high; on average, responses were produced on only 89.2% of trials. 90 The way in
which factors SLP, SQ, and MF combine in in¯uencing the probability of re-
sponding (like RT , a composite measure) may also provide useful information about
the underlying process. For the analysis of errors of commission in processes be-
lieved to be arranged in stages, Schweickert (1985) found that in several data sets,
factors had multiplicative p.e�ects (Section 3.2) on the proportion of responses that
were correct. He explained this by a plausible multiplicative combination rule similar
to Roberts' (1987; Ex. 9): Roughly, for a response to be correct, each required stage
must function correctly. If such events are mutually independent stochastically, then
PrfResponse Correctg is a product of the corresponding stage probabilities.
(Schweickert's examples are additional instances of analysis of a composite measure

89 Among the many data patterns considered by Roberts (1987) some are consistent with each of Eqs.

(21)±(23); this is also true for the various ``linear fan'' patterns discussed by Anderson (1996).
90 Given that a response was produced, SLP had virtually no in¯uence on whether it was correct.
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with multiplication as the combination rule.) For the present experiment we might
expect, by analogy, that a response is produced (rather than omitted) on a trial only
if each stage functions so as to permit it. Again, if such events are mutually inde-
pendent we should have a multiplicative combination rule for the contributions of
each stage to response occurrence. This implies (Table 4) that factors that in¯uence
di�erent stages selectively should have multiplicative p.e�ects on PrfResponseg.

Fortunately, whether one considers either e�ects or p.e�ects, analysis of the
proportion of trials on which responses were produced tells the same story. But this
story di�ers slightly from the inferences from RT : As they do for RT , each of the
three factors has substantial main e�ects, and SLP modulates the e�ect of SQ
substantially while leaving the e�ect of MF virtually invariant. However, for
PrfResponseg;MF and SQ do appear to interact slightly. 91 It would of course be of
great interest if two di�erent composite measures, RT and PrfResponseg provided
convincing evidence for the same process decomposition.

A.16.2. What is a `stage'?
Suppose we are persuaded that a particular process is organized as a sequence of

processing stages: what does this mean? A stage is a function carried out during an
epoch in time; it is not necessarily associated with a distinct neuroanatomical
processor. Too often, an inferred ¯owchart, which describes the temporal ar-
rangement of a set of operations (and is inherently ordered, because of the nature of
time), has been confused with a circuit diagram, which indicates how processors are
connected.

When a two-stage model is supported, all we ``know'' in the simplest case is that
the complex process between stimulus and response can be cut at some time point,
de®ning stage a (before the cut, and the epoch during which process A takes place)
and stage b (after the cut, and the epoch during which process B takes place). 92 In
some cases, such as the present one, it is plausible that the processes are connected, in
the sense that R (response selection) uses information provided by S (stimulus
identi®cation). That is, S and R probably have a relation of data-dependence. This
does not necessarily mean that the two processes are accomplished by distinct neural
processors. However, insofar as distinct functions are carried out by special-purpose
neural processors (possibly localized in di�erent regions of the brain), it is also
plausible, for the present example, that S and R are carried out by di�erent pro-

91 The discussion of omissions in Sanders et al. (1982) suggests that this last interaction, while

proportionally greater than in the RT data, is not statistically signi®cant, whereas the main e�ects and the

SLP � SQ interaction are. As the basic data are no longer available, and no analysis of p.e�ects was

reported, we do not know about statistical signi®cance of the corresponding p.e�ect interaction.
92 The alternation (multiplexing) of two processes, A1 ! B1 ! A2 ! B2; . . . ; is an example of an

arrangement whose behavior is similar in some ways, and, given only MAB � RT , is indistinguishable from

A! B. See Appendix A.6 for combining the RT measure with evidence from pure measures of two neural

processes, to distinguish the two.
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cessors, as their functions seem to be so di�erent. In other instances, multiple op-
erations (such as the recognition of each of two unrelated words, see, e.g., Sternberg,
1998b, Section 14.5.11) may be arranged sequentially, not because of data-depen-
dence but perhaps because of capacity limitation. Indeed, in such a two-word rec-
ognition task it is plausible that the same neural processor is responsible for both
operations, as their functions are the same.

The confusion of ¯ow-charts with circuit-diagrams has led to unwarranted over-
interpretations of the class of models that the AFM suggests. Broadbent (1984, p. 55)
provided one example when he described a stage model as ``a pipeline . . . through
which information ¯ows from the senses to the e�ectors'' and suggested that stage
models are consistent only with ``bottom-up'' theories. 93 An example of an alter-
native is a possible model for the recognition of a degraded printed word during
reading: There is no obstacle to having one stage A during which a ®rst interpre-
tation of a word is developed, based on an initial sample of letter and word-shape
features and in¯uenced by context, followed by a second stage B during which the
same process is repeated, now guided by the ®rst interpretation as well, involving a
new sample of features, and producing a revised interpretation. The ¯ow-chart for
this part of the process would contain two boxes, with an arrow from A to B that
represents succession in time (not information ¯ow, although some of the infor-
mation used by B is provided by A). In contrast, the corresponding circuit diagram
might contain just one box, with an arrow (representing the ¯ow of information)
from its output to its input. (See Sternberg, 1998b, Section 14.6.1.)

A.16.3. Additive e�ects of factors on mean reaction time: alternative interpretations
Additive e�ects on RT have been of su�cient interest so that alternatives to stage

models have been considered as explanations. It has been discovered that under
some conditions, other models, quite di�erent in spirit from stage models, can also
generate such additive e�ects. Thus, McClelland's (1979) cascade model as further
developed by Ashby (1982) (see also Roberts & Sternberg, 1993) can produce close
approximations to additivity of factor e�ects on both means and variances. (Additive
e�ects on variance are predicted from a stage model if the model is elaborated by
assuming that stage durations are stochastically independent.) Miller, van der Ham,
and Sanders (1995) have shown that a range of models with temporally overlapping
processes can approximate additive e�ects on means, and in a few cases on variances
as well. 94 And Roberts and Sternberg (1993) described an alternate-pathways model
that produces exactly additive e�ects on means, but fails miserably for variances. In
all these cases, the prediction of means additivity derives from modularity plus se-
lective in¯uence; hence, from the viewpoint of discovering modules (but not of how
these modules are organized), the existence of these alternative possibilities does not

93 Others sharing this misunderstanding include, e.g., Neisser (1976, p. 23) and Rabbitt and Maylor

(1991, p. 277).
94 On the other hand, Miller (1993) developed and explored another family of models in which

overlapping processes are permitted, and found that in general they do not produce additive factor e�ects.
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weaken the argument outlined in Table 3. Their discovery, however, decidedly
weakens the inference from the additivity of factor e�ects on RT to the organization
in stages of the corresponding modules. Other aspects of the RT data can sometimes
help distinguish among such alternatives; by elaborating stage models with the as-
sumption that stage durations are stochastically independent, Roberts and Sternberg
(1993) have shown how properties of the RT distributions can help to select among
competing models; in their analysis of ®ve data sets, the elaborated stage model
survived, while its competitors did not. Stage models without the elaborations
provided by uncorrelated or (stronger) stochastically independent stage durations
are, however, of interest, and at present there appear to be few ways to distinguish
them from some of their competitors. Other approaches to selection among such
models include techniques such as speed-accuracy decomposition (e.g., Meyer et al.,
1988, Section 5) and concomitant measurements that might be electrophysiological
(e.g., Appendix A.6; Magliero, Bashore, Coles, & Donchin, 1984; Meyer et al., 1988,
Sections 7 & 8) or behavioral (e.g., Sternberg, 1998b, Section 14.5.7).
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Glossary

Here I provide a list of the main abbreviations used, with numbers of the sections or ap-

pendices in which they are introduced, and brief de®nitions. It may also be helpful to review

Section 1.2.

AFM 1 additive-factor method

ERP 1 event-related potential

ERP�t� 6 event-related potential as a measure

FF 15 frequency of feeding

FF 15.1 FF as a numeric variable

fMRI 1.7 functional magnetic resonance imaging

GND 6 Go±NoGo discriminability

H1, H2 2.2 hypotheses

H1* A.2.3 hypothesis

H3 3.1.1 hypothesis

H4, H5 3.2 hypotheses

HA 9 high-frequency adaptation

HD 15 hours of food deprivation

HD 15.1 HD as a numeric variable

IRT A.3.2 inter-response time

LA 9 low-frequency adaptation

LR 7.2 luminance ratio

LR 7.2 LR as a numeric variable

LRP 6 lateralized readiness potential

MA 9 medium-frequency adaptation

MF 11 stimulus-response mapping familiarity

PF 5 probability of food

PM 7 payo� matrix

PM 7 payo� matrix as a factor

RC A.6 response complexity

REL 14.1 semantic relatedness

RESP A.10.3 response (as a factor)

ROC 7.2 relative (or receiver) operating characteristic

RR 7.1 as a factor (Section 7; Appendix A.2.2): reinforce-

ment ratio

RR 15 as a measure (Section 15): response rate

RR 7.2 RR (reinforcement ratio) as a numeric variable

RT 1 reaction time

RT 1 reaction time as a measure

S.E. 1.5 standard error

SAT 14.1 semantic satiation

SDT 1 signal-detection theory

SLP 16 sleep state

SQ 11 stimulus quality

SRM 6 stimulus-response mapping

STIM A.10.3 stimulus (as a factor)

TD 16 time of day

TF 5 time of food

VI 7.2 variable-interval reinforcement schedule
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