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A SIMPLE TAXONOMY OF PROBABILISTIC REPRESENTATIONS
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probability distribution spatio-temporal neural activity patterns

on the statistical characteristics of the traces and cues and the nature of
the lossiness of storage.
More concretely, consider a network of N neurons (Fig. 1a), fully

connected by N ! (N – 1) synaptic connections, and storing
M memory traces. Memories are represented by distributed patterns
of neural activity, with scalar variable xi

m characterizing the ith neuron
in the mth memory trace. Here, we treat xi

m as neuron i’s spiking time
relative to a reference point of an ongoing field potential oscillation,
such as the peak of theta oscillation16,35. Storage amounts to changing
the synaptic weights between neurons according to their activities in a
memory trace using a synaptic plasticity rule:

Dwij ¼ Oðxmi ; x
m
j Þ ð1Þ

This rule is local in that the change to the synaptic weight wij between
presynaptic neuron j and postsynaptic neuron i depends only on the
activities of these two neurons and not those of other neurons. Except
for this constraint, we allow O to be an arbitrary function. We also
make the simplifying assumption that synaptic plasticity is additive
across the memories:

wij ¼
X

m

Oðxmi ; x
m
j Þ ð2Þ

Local and additive plasticity loses information in storing memories,
because O transforms pre- and postsynaptic activity into a single scalar

contribution. Indeed, equation (2) is noninvertible, with many differ-
ent combinations of synaptic weight changes potentially leading to the
same total synaptic weight. This lossiness implies that recall from a
noisy or partial cue involves a process of combining probabilistic
information from (i) the general statistical properties of the traces
(that is, the prior distribution), (ii) the cue itself and (iii) the synaptic
weights. Finding the statistically most likely memory trace involves
complex, nonlocal operations. However, it can be well approximated
(Supplementary Note online) by a form of neural dynamics among the
recurrently coupled neurons in which there are explicit terms corre-
sponding exactly to each of these three sources of information.
Under this account, synaptic interactions between neurons of the

network implement a ‘search’ for the activity pattern associated with
the original memory trace that was most likely to have led to the cue.
Over the course of search, each neuron gradually changes its spike
timing such that the activities of it and its synaptic partners are
increasingly likely to reflect a pattern consistent with the corresponding
synaptic weights. As a result, the contribution to the dynamics of
neuron i associated with the synaptic weight term involves a linear sum
of influences from its presynaptic afferents j, with each element in the
sum taking the form

Hðxi; xjÞ ¼ wij
@

@xi
Oðxi; xjÞ ð3Þ

This has the obvious appealing characteristic that the strength of the
interaction between two neurons is scaled by the synaptic weight. Less
obvious is our key suggestion that the interaction should be determined
by the derivative of the synaptic plasticity rule that was used to store
memories in the network. We can derive an intuition about this rule by
considering what happens if the synaptic weight is positive; that is,
above an average value. This large synaptic weight arises from the
weight changes associated with the memory traces. Therefore, the
neuron should change its activity to increase the contribution that it
and its synaptic partner would have made to the synaptic weight had
their present activity indeed been associated with one of the memories
that caused this excess synaptic weight.
Here, we study the case of area CA3 in the hippocampus, in which

the synaptic plasticity rule involves STDP. We show that the optimal
dynamics for neurons representing memory traces in terms of the
phase of firing relative to an underlying oscillation is determined by a
particular shape of PRC that we experimentally validate.

Spike timing-based memories
The hippocampus, as well as other areas involved in memory proces-
sing, demonstrates prominent local field potential oscillations (LFPOs)
under a variety of conditions, including both awake and sleep states36.
In such cases, the phases of the spikes of a neuron relative to the LFPO
have been shown to be carefully controlled19 and even to convey mea-
ningful stimulus information, such as information about the position
of the animal in its environment16. The discovery of STDP, for which
the relative timing of pre- and postsynaptic firings determines the sign
and extent of synaptic weight change, offered new insights into how the
information represented by spike times might be stored37. However,
except for some interesting suggestions about neuronal resonance12,
it is less clear how one might correctly recall this information.
Our theory allows a systematic treatment of this case, if we interpret

neuronal activities as the phases of firing relative to an ongoing LFPO.
This description is valid in the limit that neurons are driven to spike by
a perithreshold oscillation approximately once in each cycle of the
LFPO. First, we interpret storage (O in equation (1)) in terms of an
STDP rule (Fig. 1b; recorded in cultured hippocampal neurons34), with
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Figure 1 Normative theory of spike timing–based autoassociative memory.
(a) Schematic diagram of a recurrent network of neurons. Neurons are
numbered i ¼ 1 y N and are characterized by their respective activities,
x1 y xN. Presynaptic neuron j is connected to postsynaptic neuron i through
a recurrent synapse with efficacy (weight) wij. Although all-to-all connectivity
(excluding autapses) was assumed for the theoretical derivations, here only
a few synapses are shown for clarity. (b) Memories are stored by a spike
timing-dependent plasticity (STDP) rule derived from experiments on
cultured hippocampal neurons34. tpre and tpost represent times of pre- and
postsynaptic firing. Gray lines are exponential fits24 to data from ref. 34.
Black line is a continuous fit taken to be the synaptic learning rule (O) in
equation (1). (c) Optimal coupling function (H) for retrieving memories stored
by STDP (black line in b), as derived in equation (3). This shows how the
firing phase of the postsynaptic neuron should change as a function of the
phase difference between pre- and postsynaptic firing, if neurons were to
interact continuously. fpre and fpost represent firing phases of pre- and
postsynaptic cells relative to a local field potential oscillation. (d) Optimal
phase response curves (PRCs) derived from the optimal coupling function
(shown in c), showing how neurons should interact through spikes. Different
curves correspond to linearly increasing synaptic weights (in increasing order:
red, yellow, green, blue). ‘Zero’ phase is the phase of the postsynaptic spike.
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r2(t)

y2
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rN

P̃(y; r)

r(t)

r

x

sampling-based

r ⇠ P(y = r|x)

parametric

instantaneous

iterative

mean field

r = argmin KL
h
P̃(y; r) k P(y|x)

i

d

dt
r = �rr KL

h
P̃(y; r) k P(y|x)

i

predictive coding

probabilistic population codes  
(product of experts)
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NEURAL REPRESENTATIONS OF UNCERTAINTY
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sampling mean-field prob. pop. code

neurons represent variables variables parameters

neurons / variable 1 1 many (~100—1000)

distributions are 
represented

by iterative 
sampling

by iterative 
dynamics / 

instantaneously
instantaneously

correlations  
(limiting factor)

✓ 
(time) ✗ ✓ 

(neurons)

cue combination ✓ ✓ ✓
marginalisation ✓ ✓ ✓?

dynamics stochastic deterministic deterministic

neural variability  
for computation useful harmful harmful

learning ✓ ✓? ?

stimulus-dependent 
noise correlations

✓ ✗ ✗

too many?

too slow!?

robustness?
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A PROTO-MODEL: GAUSSIAN SCALE MIXTURE
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pixels

visual features intensities contrast level

Wainwright & Simoncelli 2000, Schwartz & Simoncelli 2001, Coen-Cagli et al 2012

u

z

x

z ⇠ Gamma(k, ✓)u ⇠ N (0,C)

Avisual features 
(eg. Gabor filters)

x = zAu+ �
x

✏ ✏ ⇠ N (0, I)

visual cortical activities u ⇠ P(u|x)

http://www.eng.cam.ac.uk/~m.lengyel


Máté Lengyel  |  A sampling-based representation of uncertainty http://www.eng.cam.ac.uk/~m.lengyel11 Sept 2015, Probabilistic inference and the brain, Paris

PLAN OF THE TALK

5

❖ neural circuit models  
 
analog variables 
speed 
E-I networks 

❖ empirical evidence (almost model-free)  
 
neural: evoked-spontaneous activity → József Fiser’s talk yesterday 
behavioural: role of time 
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NEURAL NETWORK DYNAMICS: A SIMPLE CASE STUDY
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u

x

u ⇠ N (0,C)

u|x = N (µ(x) ,⌃)

⌃ =

✓
C�1 +

1

�2

x

AAT

◆�1

x = Au+ �
x

✏

✏ ⇠ N (0, I)

µ(x) =
1

�2

x

⌃A

T
x

posterior

generative model:  
factor analysis

linear network dynamics

du =
dt

⌧m
(�u+Wu+ Fx)+

+ �⇠

r
2

⌧m
d⇠

d⇠ ⇠ N (0, I)

stationary distribution

u|x = N
⇣
µ̃(x) , ⌃̃

⌘

(W � I) ⌃̃+ ⌃̃ (W � I) = �2�2
⇠ I

µ̃(x) = (I�W)�1
Fx

Hennequin et al, NIPS 2014

u

x
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LANGEVIN SAMPLING IS VERY SLOW
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dynamics slow down horribly as N grows!

standard solution (Langevin, Gibbs): 
symmetric weight matrix → detailed balance

W = I� �2
⇠ ⌃

�1
F =

�2

⇠

�2

x

ATand

Langevin sampling is slow in high dimensions

WL ≡ I− σ2ξΣ−1

these synaptic interactions are symmetric

sample autocorrelation dominated by the slowest eigenmode of WL − I

correlation length τc ≈ −τm/λmax(WL − I)

τc ≈ τm/
[

σ2ξλmin
(

Σ−1
)]

= τmλmax(Σ)/σ2ξ

Σ is normal, so λmax(Σ) ≥
√

∑

i ,j

Σ2ij/N

Σi j

n
e
u
ro
n
i

neuron j

-2 0 2 4

−1 −0.5 0 0.5 1

var(ri j) ≡ σ2r

ri j ≡ Σi j/
√

Σi iΣj j

τc ≈ τm
⟨Σii ⟩
σ2ξ

(⌊σ−2r ⌋ − 2)
(

√

N − 1+ ⌊σ−2r ⌋ −
√
N

)−2

Σ ∼ inverse-Wishart

Rudelson and Vershynin, Comm. on Pure and Applied Math. 2009

O(N)

Langevin sampling is slow in high dimensions

WL ≡ I− σ2ξΣ−1

sample autocorrelation dominated by the slowest eigenmode of WL − I

correlation length τc ≈ −τm/λmax(WL − I)

τc ≈ τm/
[

σ2ξλmin
(

Σ−1
)]

= τmλmax(Σ)/σ2ξ

Σ is normal, so λmax(Σ) ≥
√

∑

i ,j

Σ2ij/N

τc ≈ τm
⟨Σii ⟩
σ2ξ

(⌊σ−2r ⌋ − 2)
(

√

N − 1+ ⌊σ−2r ⌋ −
√
N

)−2

Σ ∼ inverse-Wishart

Rudelson and Vershynin, Comm. on Pure and Applied Math. 2009

τc ≥ τm
⟨Σii ⟩
σ2ξ

√

1+ Nσ2r
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sample autocorrelation dominated by the slowest eigenmode of WL − I

correlation length τc ≈ −τm/λmax(WL − I)

τc ≈ τm/
[

σ2ξλmin
(

Σ−1
)]

= τmλmax(Σ)/σ2ξ

Σ is normal, so λmax(Σ) ≥
√
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Σ2ij/N
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σ2ξ
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(

√
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√
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)−2

Σ ∼ inverse-Wishart

Rudelson and Vershynin, Comm. on Pure and Applied Math. 2009

τc ≥ τm
⟨Σii ⟩
σ2ξ

√

1+ Nσ2r

simulation (inverse Wishart)

theory (inverse Wishart)

lower bound (general)

Langevin sampling is slow in high dimensions

WL ≡ I− σ2ξΣ−1

sample autocorrelation dominated by the slowest eigenmode of WL − I

correlation length τc ≈ −τm/λmax(WL − I)

τc ≈ τm/
[

σ2ξλmin
(

Σ−1
)]

= τmλmax(Σ)/σ2ξ

Σ is normal, so λmax(Σ) ≥
√

∑

i ,j

Σ2ij/N

τc ≈ τm
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(

√
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)−2

Σ ∼ inverse-Wishart

Rudelson and Vershynin, Comm. on Pure and Applied Math. 2009

τc ≥ τm
⟨Σii ⟩
σ2ξ

√

1+ Nσ2r

σr = 0.10
σr = 0.20
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(≈ N (0,σr ))

pairwise corr. ri j

Hennequin et al, NIPS 2014
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THE PROBLEM WITH LANGEVIN
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Hennequin et al, NIPS 2014
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A MORE GENERAL SOLUTION
W = I� �2

⇠ ⌃
�1+S⌃�1 8 ST = �S

extra            degrees of freedom!O�
N2

�

a measure of slowness: total autocovariance

K(⌧) =
D
x(t+ ⌧) x(t)T

E

t

��K(⌧)
��
F

where
��M

��2
F
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X

ij

|Mij |2and

total slowness

Si<j ⇠ N
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Hennequin et al, NIPS 2014
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OPTIMIZE FOR SPEED
W = I� �2

⇠ ⌃
�1+S⌃�1 8 ST = �S

extra            degrees of freedom!O�
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a measure of slowness: total autocovariance
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NON-NORMAL AMPLIFICATION TO THE RESCUE
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Murphy & Miller, 2009; Hennequin et al, 2014

Hennequin et al, NIPS 2014
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E/I BALANCE
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Balance of excitation and inhibition

−1 0 1 −1 0 1 −1 0 1
E/I corr. E/I corr. E/I corr.

Langevin optimized optimized E/I

Hennequin et al, NIPS 2014
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NONLINEAR CASE
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Nonlinear case

chaotic network

optimized network

500 ms
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E/I NETWORKS FOR SAMPLING
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E/I  BALANCE AND OSCILLATIONS

u v

I

input

W

vu

W

uv

W

vv

W

uu

Figure 2. The architecture of the Hamiltonian network. Arrows imply excitation, bars
imply inhibition. See text for details.

First, recurrent dynamics were given by the first two terms in Equations (2a) and (2b),
W

uu

u�W

uv

v and W

vu

u�W

vv

v. As the elements of the Wmatrices were all pos-
itive (see above), the recurrent circuit implied by these dynamics had an EI structure,
with u

i

corresponding to excitatory cells and v

i

to inhibitory cells.

Second, there was an input current I
input

, whose strength was scaled by the contrast
variable z (Eq. 2c). This input current conveyed a prediction error, i.e. the difference
between the input image, x, and the image predicted by the current activities of the ex-
citatory neurons, zAu, plus a term penalizing the violation of prior expectations about
u. The dependence of I

input

on u could be either implemented by a separate popu-
lation of neurons directly representing the prediction error (x� zAu) as in theories
of predictive coding [17, 44], or could form additional contributions to the recurrent
weights of the E and the I population [45,46]. As our focus here was on the interaction
between E and I populations, and their effects on network dynamics, we did not specify
further the precise source of the prediction error signal.

Finally, the last term in Equations (2a) and (2b) represented noise. Although these
dynamics were clearly simplified in that they were fundamentally linear, such dynam-
ical systems have still been found to provide a good match to the dynamics of cortical
populations at the level of field potentials [47], calcium signals [48], and firing rate
trajectories [45,49]. We set the three parameters of the network, M�1, ⌧ , and ⌧

L

to lie
in a biologically realistic regime (Methods).

Oscillations contribute to efficient sampling

When given an input image, our network exhibited oscillatory dynamics due to its in-
trinsic excitatory-inhibitory interactions (Fig. 3A). Intuitively, these oscillations were
useful for inference as they allowed the network to cover a broad range of plausible
interpretations of its input within each oscillation cycle. In order to assess more rig-
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Figure 4. Excitation and inhibition are balanced in the Hamiltonian network. A Trial-
average excitatory input vs. trial-average inhibitory input across trials (dots) for a ran-
domly selected individual cell in the network. B Total inhibitory input to a single cell
(blue) is lagging behind total excitatory input (red) over the course of a trial. C The
cross-correlation between the average excitatory and average inhibitory membrane po-
tentials shows strong oscillations that peak away from 0 time.

in turn implied that excitation and inhibition needed to track each other across differ-
ent stimuli (Figure 4A). However, as Langevin is equivalent to having these terms set
to zero, for HMC to realize its advantage over Langevin, the variance of the recurrent
term needed to be sufficiently large, which implied that the magnitudes of net excitation
and net inhibition each needed to be large and momentarily imbalanced (Figure 4B).
These features, large excitatory and inhibitory currents that are tracking each other with
momentary perturbations, are thought to be fundamental properties of the dynamical
regime in which the cortex operates [38], and thus arise naturally from HMC dynam-
ics in our EI network. Furthermore, as expected in a network with an EI architecture,
excitation led inhibition in our network (Figure 4C).

Stimulus-dependent oscillations

Oscillations are a ubiquitous property of cortical dynamics [51], and we have shown
above that efficient sampling in HMC necessarily leads to oscillatory dynamics in gen-
eral (Figs. 3-4). However, when applied specifically to perform inference based on
visual images (Fig. 1), our model also reproduced some more specific and robust prop-
erties of gamma-band oscillations in V1, namely that the precise frequency of these
oscillations increases with stimulus contrast [30, 39] (Fig. 5).

In order to extract an LFP from our model, inline with previous approaches (e.g. [52]),
we computed the sum of membrane potentials of all cells. (Using the sum of input
currents instead would have yielded qualitatively similar results.) The fact that LFP
oscillations in our model were in the gamma band, i.e. around 40 Hz, was simply due to
our choice of a realistic single neuron time constant, ⌧ = 10ms. Within this band, the
modulation of the oscillation frequency by the contrast of the input image was a more
fundamental characteristic of the dynamics of our network. As contrast increased, the

9

●
●

●
●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

−0.5

0.0

0.5

−0.5 0.0 0.5
Avg. excitation (a.u.) 

A
vg

. i
nh

ib
iti

on
 (

a.
u.

)

A

−0.5
0.0
0.5
1.0
1.5

0 100 200
t (ms)

In
pu

t (
a.

u.
) Excitatory

Inhibitory

B

−1

0

1

−100 0 100
t (ms)C

ro
ss

 c
or

re
la

tio
n 

(a
.u

.)C

Figure 4. Excitation and inhibition are balanced in the Hamiltonian network. A Trial-
average excitatory input vs. trial-average inhibitory input across trials (dots) for a ran-
domly selected individual cell in the network. B Total inhibitory input to a single cell
(blue) is lagging behind total excitatory input (red) over the course of a trial. C The
cross-correlation between the average excitatory and average inhibitory membrane po-
tentials shows strong oscillations that peak away from 0 time.

in turn implied that excitation and inhibition needed to track each other across differ-
ent stimuli (Figure 4A). However, as Langevin is equivalent to having these terms set
to zero, for HMC to realize its advantage over Langevin, the variance of the recurrent
term needed to be sufficiently large, which implied that the magnitudes of net excitation
and net inhibition each needed to be large and momentarily imbalanced (Figure 4B).
These features, large excitatory and inhibitory currents that are tracking each other with
momentary perturbations, are thought to be fundamental properties of the dynamical
regime in which the cortex operates [38], and thus arise naturally from HMC dynam-
ics in our EI network. Furthermore, as expected in a network with an EI architecture,
excitation led inhibition in our network (Figure 4C).

Stimulus-dependent oscillations

Oscillations are a ubiquitous property of cortical dynamics [51], and we have shown
above that efficient sampling in HMC necessarily leads to oscillatory dynamics in gen-
eral (Figs. 3-4). However, when applied specifically to perform inference based on
visual images (Fig. 1), our model also reproduced some more specific and robust prop-
erties of gamma-band oscillations in V1, namely that the precise frequency of these
oscillations increases with stimulus contrast [30, 39] (Fig. 5).

In order to extract an LFP from our model, inline with previous approaches (e.g. [52]),
we computed the sum of membrane potentials of all cells. (Using the sum of input
currents instead would have yielded qualitatively similar results.) The fact that LFP
oscillations in our model were in the gamma band, i.e. around 40 Hz, was simply due to
our choice of a realistic single neuron time constant, ⌧ = 10ms. Within this band, the
modulation of the oscillation frequency by the contrast of the input image was a more
fundamental characteristic of the dynamics of our network. As contrast increased, the
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Figure 3. The Hamiltonian sampler is more effective than a Langevin sampler. A, B.
Example membrane potential traces for a randomly selected neuron in the Hamiltonian
network (A) and the Langevin network (B). C. Normalised mean square error (MSE)
between the true mean and the mean estimate from samples taken over a time t for
the Langevin (blue) and Hamiltonian dynamics (red), with 100 repetitions (mean±2
s.e.m.). A normalised MSE of one corresponds to the error attainable by using a single
statistically fair sample from the posterior distribution. D, E. Joint membrane potential
traces from two randomly selected neurons in the Hamiltonian network (D) and the
Langevin network (E), color indicates time (from red to green, spanning 25 ms), gray
scale image shows underlying posterior (its marginal over the two dimensions shown).
Note that the oscillatory component of Hamiltonian dynamics traverses equiprobability
contours in the full joint (u,v) space but it may still cross probability contours when
projected to a low dimensional marginal as shown here [37].
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Figure 5. Oscillation frequency depends on stimulus contrast. A. The membrane po-
tential response of one neuron to stimulus onset across 4 trials (coloured curves) shows
that the variability decreases and the frequency increases as stimulus contrast increases.
The true contrast of the underlying image increases left to right (z

gen

= 0.5, 1, and 2).
B. Power spectrum of the LFP (average membrane potentials) at different contrasts
(colored lines), showing that dominant oscillation frequency increases with contrast.
C. Time-dependent spectrum (Gaussian window, width 100 ms) of the LFP (contrast
levels as in A). D. The simplified dynamics (x-axis, Eq. 5, using A = C

�1

= 1,
�

2

x

= 0.1 to reflect the order of magnitudes of these quantities) accurately predicted
the dependence of oscillation frequencies on contrast (color code as in B) in the full
network (y-axis).
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Figure 5. Oscillation frequency depends on stimulus contrast. A. The membrane po-
tential response of one neuron to stimulus onset across 4 trials (coloured curves) shows
that the variability decreases and the frequency increases as stimulus contrast increases.
The true contrast of the underlying image increases left to right (z

gen

= 0.5, 1, and 2).
B. Power spectrum of the LFP (average membrane potentials) at different contrasts
(colored lines), showing that dominant oscillation frequency increases with contrast.
C. Time-dependent spectrum (Gaussian window, width 100 ms) of the LFP (contrast
levels as in A). D. The simplified dynamics (x-axis, Eq. 5, using A = C

�1

= 1,
�

2

x

= 0.1 to reflect the order of magnitudes of these quantities) accurately predicted
the dependence of oscillation frequencies on contrast (color code as in B) in the full
network (y-axis).

11

E/I NETWORKS FOR SAMPLING (HAMILTONIAN)

15

OSCILLATION FREQUENCY DEPENDS ON CONTRAST 

Figure 1A shows the average multiunit firing rate (upper plot)
and evoked local field potential (LFP) response (lower plot) of
a typical recording site from monkey 1. Figure 1B shows the
change in LFP power relative to a baseline period (defined as
0–300 ms before stimulus onset) for the three contrast levels.
These time-frequency energy difference spectra show a large
broad-band increase in power in the first 100 ms after stimulus
onset, coinciding with the transient increase in firing rate and
the depolarization in the evoked LFP (Figure 1A). Although this
transient increase in power occurred in a broad frequency range
(from !15 Hz to 200 Hz and beyond), including the gamma
range, this should not be confused with a ‘‘rhythm.’’ The pres-
ence of a rhythm implies an increase in power over a narrow
frequency range over an extended period, which is represented

by a horizontal band in a time-frequency energy difference
spectrum. Such narrow-band rhythms in the gamma range
appeared after !100 ms and continued until the stimulus was
turned off at 400 ms (Figure 1B). Further, the center frequency
of the gamma rhythm increased with contrast. Figure 1C shows
the LFP power averaged over 200–400 ms poststimulus (thick
black line in Figure 1B) for the three contrasts, together with
the baseline (black trace). The inset in Figure 1C shows the
gamma center frequency (which was defined as the frequency
between 20 and 60 Hz that showed the maximum change in
power from baseline between 200 and 400 ms), as a function
of stimulus contrast. Gamma frequency appeared to increase
linearly with the log of contrast, and the linear fit between the
center frequency and log2(contrast) had a slope of 6.8 Hz

Figure 1. Gamma Rhythm Frequency Is Highly Contrast Dependent
(A) Average multiunit (upper panel) and evoked LFP response (lower panel) recorded from a single site in monkey 1 during the presentation of a static Gabor

stimulus (0–400 ms), at three different contrasts: 25% (blue trace), 50% (green), and 100% (red).

(B) Time-frequency energy difference plots (in dB) showing the difference in energy from baseline energy ("300 to 0 ms, 0 denotes the stimulus onset, difference

computed separately for each frequency) for the 25% (left panel), 50% (middle), and 100% (right) contrast. During the first 100 ms, there is a broadband increase

in power that is associated with the sharp increase in firing rate as shown in (A). The gamma rhythm (horizontal red band) is visible only after !100 ms, and the

center frequency increases with contrast.

(C) The LFP energy between 200–400 ms (denoted by a thick black line on the x axis in B) as a function of frequency for the three contrasts. The black line shows

the LFP energy in the baseline period. The inset shows the gamma frequency (the frequency between 20 and 60 Hz that has the maximum power difference from

baseline) as a function of stimulus contrast. The black line in the inset shows the linear regression fit.

(D–F and G–I) Show corresponding population responses of 63 and 90 sites frommonkey 1 and 2, respectively. For (D) and (G), the responses are normalized by

dividing by the maximum firing rate or evoked response for each site. The SEM for the insets in (F) and (I) are smaller than the size of the symbols.
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(from !15 Hz to 200 Hz and beyond), including the gamma
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ence of a rhythm implies an increase in power over a narrow
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black line in Figure 1B) for the three contrasts, together with
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stimulus (0–400 ms), at three different contrasts: 25% (blue trace), 50% (green), and 100% (red).

(B) Time-frequency energy difference plots (in dB) showing the difference in energy from baseline energy ("300 to 0 ms, 0 denotes the stimulus onset, difference

computed separately for each frequency) for the 25% (left panel), 50% (middle), and 100% (right) contrast. During the first 100 ms, there is a broadband increase

in power that is associated with the sharp increase in firing rate as shown in (A). The gamma rhythm (horizontal red band) is visible only after !100 ms, and the

center frequency increases with contrast.

(C) The LFP energy between 200–400 ms (denoted by a thick black line on the x axis in B) as a function of frequency for the three contrasts. The black line shows

the LFP energy in the baseline period. The inset shows the gamma frequency (the frequency between 20 and 60 Hz that has the maximum power difference from

baseline) as a function of stimulus contrast. The black line in the inset shows the linear regression fit.

(D–F and G–I) Show corresponding population responses of 63 and 90 sites frommonkey 1 and 2, respectively. For (D) and (G), the responses are normalized by
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EXPERIMENTS

Ray & Maunsell,  
Neuron 2010
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Figure 5. Oscillation frequency depends on stimulus contrast. A. The membrane po-
tential response of one neuron to stimulus onset across 4 trials (coloured curves) shows
that the variability decreases and the frequency increases as stimulus contrast increases.
The true contrast of the underlying image increases left to right (z

gen

= 0.5, 1, and 2).
B. Power spectrum of the LFP (average membrane potentials) at different contrasts
(colored lines), showing that dominant oscillation frequency increases with contrast.
C. Time-dependent spectrum (Gaussian window, width 100 ms) of the LFP (contrast
levels as in A). D. The simplified dynamics (x-axis, Eq. 5, using A = C

�1

= 1,
�

2

x

= 0.1 to reflect the order of magnitudes of these quantities) accurately predicted
the dependence of oscillation frequencies on contrast (color code as in B) in the full
network (y-axis).
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Figure 5. Oscillation frequency depends on stimulus contrast. A. The membrane po-
tential response of one neuron to stimulus onset across 4 trials (coloured curves) shows
that the variability decreases and the frequency increases as stimulus contrast increases.
The true contrast of the underlying image increases left to right (z

gen

= 0.5, 1, and 2).
B. Power spectrum of the LFP (average membrane potentials) at different contrasts
(colored lines), showing that dominant oscillation frequency increases with contrast.
C. Time-dependent spectrum (Gaussian window, width 100 ms) of the LFP (contrast
levels as in A). D. The simplified dynamics (x-axis, Eq. 5, using A = C

�1

= 1,
�

2

x

= 0.1 to reflect the order of magnitudes of these quantities) accurately predicted
the dependence of oscillation frequencies on contrast (color code as in B) in the full
network (y-axis).
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Figure 5. Oscillation frequency depends on stimulus contrast. A. The membrane po-
tential response of one neuron to stimulus onset across 4 trials (coloured curves) shows
that the variability decreases and the frequency increases as stimulus contrast increases.
The true contrast of the underlying image increases left to right (z

gen

= 0.5, 1, and 2).
B. Power spectrum of the LFP (average membrane potentials) at different contrasts
(colored lines), showing that dominant oscillation frequency increases with contrast.
C. Time-dependent spectrum (Gaussian window, width 100 ms) of the LFP (contrast
levels as in A). D. The simplified dynamics (x-axis, Eq. 5, using A = C
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= 1,
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2
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= 0.1 to reflect the order of magnitudes of these quantities) accurately predicted
the dependence of oscillation frequencies on contrast (color code as in B) in the full
network (y-axis).
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EXPERIMENTS

Roberts et al,  
Neuron 2013

sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,

A

B

C

Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma

Neuron

Robust V1-V2 Coherence and Varying Gamma Frequency

Neuron 78, 523–536, May 8, 2013 ª2013 Elsevier Inc. 525
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which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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C

Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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B

C

Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,
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Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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sites in V1 with relatively deeper sites in V2. To test this predic-
tion, an alignment of the recording sites from the different depth
probe placements over sessions was necessary. This was
accomplished by making use of the characteristic reversal in
layer 4 from positive visually evoked potentials (VEPs) in superfi-
cial layers to negative VEPs in deeper layers (Supplemental
Experimental Procedures [Depth alignment procedure and vali-
dation]; Figure S3). In the V1 data aligned to the VEP reversal
point, we also found a source-sink reversal in the CSD map,

A

B

C

Figure 1. Contrast-Dependent Shift in
Gamma Frequency Band
(A) Time-frequency representation of stimulus-

induced LFP power in areas V1 (left column) and

V2 (middle) and V1-to-V2 coherence (right). Black

lines contain the gamma band, which is at a

different frequency for different rows (top, 50.3%

contrast; bottom, 16.3%).

(B) Stimulus-induced LFP power spectra in V1 (top

row) and V2 (middle) and of V1-V2 coherence

(bottom) during the sustained period (from 350 ms

after stimulus onset) of the response. Line color

indicates contrast condition (legend); line thick-

ness indicates SE. Data from two monkeys are

shown separately (columns).

(C) Gamma frequency at peak power (derived from

data in B; see Figure S2 for details) increases as a

function of grating contrast for LFP power in V1

(red line) and V2 (green line) and for V1-V2 coher-

ence (blue line) in monkeys S and K. Error bars

show SD.

which, in V1, has been documented to
indicate the top of input layer 4C (Maier
et al., 2011; Schroeder et al., 1991). The
pattern of VEPs across depth in V2 was
highly similar to that observed in V1
(note that we were recording on the upper
surface of the prelunate gyrus), and we
therefore used the same criteria for align-
ing the V2 data. The point of VEP reversal
in V2 was also found to match the point of
the early sink-source reversal in the CSD
map in that area, which we therefore
assume to correspond to the top of layer
4 in V2. In Figure 3, we have set the top of
layer 4C as depth zero in V1, and the top
of layer 4 in V2 as depth zero in V2. The
CSD maps, which were obtained after
alignment, and the layer-specific distribu-
tion of gamma and of spiking response
latencies supported the validity of
our alignment procedure (Supplemental
Experimental Procedures [Depth align-
ment procedure and validation]).
After alignment, our minimal hypothe-

sis of a shallower-to-deeper pattern
of coherence connections could be
reformulated as an expectation of prefer-
ential functional connectivity between

above-zero V1 depths and below-zero V2 depths. As an initial
test, we divided all CSD coherence pairs into four groups,
with pairs in group 1 linking all V1-V2 sites above zero depth,
pairs in group 2 linking all V1-V2 sites below zero depth,
pairs in group 3 linking above-zero V1 and below-zero V2
sites, and pairs in group 4 linking below-zero V1 and above-
zero V2 sites. A two-way ANOVA, with the factors ‘‘group’’
(four data groupings) and ‘‘contrast’’ (eight contrasts) con-
ducted for each monkey separately, confirmed that gamma
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Figure 5. Oscillation frequency depends on stimulus contrast. A. The membrane po-
tential response of one neuron to stimulus onset across 4 trials (coloured curves) shows
that the variability decreases and the frequency increases as stimulus contrast increases.
The true contrast of the underlying image increases left to right (z

gen

= 0.5, 1, and 2).
B. Power spectrum of the LFP (average membrane potentials) at different contrasts
(colored lines), showing that dominant oscillation frequency increases with contrast.
C. Time-dependent spectrum (Gaussian window, width 100 ms) of the LFP (contrast
levels as in A). D. The simplified dynamics (x-axis, Eq. 5, using A = C

�1

= 1,
�

2

x

= 0.1 to reflect the order of magnitudes of these quantities) accurately predicted
the dependence of oscillation frequencies on contrast (color code as in B) in the full
network (y-axis).
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Figure 6. Large, contrast-dependent firing rate transients in the model. A-C. Transients
(or lack thereof) at different contrast levels (color) under the full dynamics (A), using
Langevin dynamics, (B), and under the full dynamics when the value of z is fixed,
z = zgen (C). D. Dependence of the inferred value of contrast, z, on the currently
inferred magnitude of basis function intensities, u, in the simplified dynamics (blue).
For reference, red shows the value of z when set to be fixed at z = z

gen

. E. There is
asymmetry in ü as a function of u, around the value of u = µ = 1, in the simplified
model when z is inferred (blue) but not when it is fixed (red). F. Transients predicted
by the simplified dynamics (Eq. 6, with parameters as in Fig. 5D, and initial conditions
u(0) = 0.1 and u̇(0) = 0) are similar to transients under the full dynamics.
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FIRING RATE TRANSIENTS

EXPERIMENTS
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Neuron 2010

Figure 1A shows the average multiunit firing rate (upper plot)
and evoked local field potential (LFP) response (lower plot) of
a typical recording site from monkey 1. Figure 1B shows the
change in LFP power relative to a baseline period (defined as
0–300 ms before stimulus onset) for the three contrast levels.
These time-frequency energy difference spectra show a large
broad-band increase in power in the first 100 ms after stimulus
onset, coinciding with the transient increase in firing rate and
the depolarization in the evoked LFP (Figure 1A). Although this
transient increase in power occurred in a broad frequency range
(from !15 Hz to 200 Hz and beyond), including the gamma
range, this should not be confused with a ‘‘rhythm.’’ The pres-
ence of a rhythm implies an increase in power over a narrow
frequency range over an extended period, which is represented

by a horizontal band in a time-frequency energy difference
spectrum. Such narrow-band rhythms in the gamma range
appeared after !100 ms and continued until the stimulus was
turned off at 400 ms (Figure 1B). Further, the center frequency
of the gamma rhythm increased with contrast. Figure 1C shows
the LFP power averaged over 200–400 ms poststimulus (thick
black line in Figure 1B) for the three contrasts, together with
the baseline (black trace). The inset in Figure 1C shows the
gamma center frequency (which was defined as the frequency
between 20 and 60 Hz that showed the maximum change in
power from baseline between 200 and 400 ms), as a function
of stimulus contrast. Gamma frequency appeared to increase
linearly with the log of contrast, and the linear fit between the
center frequency and log2(contrast) had a slope of 6.8 Hz

Figure 1. Gamma Rhythm Frequency Is Highly Contrast Dependent
(A) Average multiunit (upper panel) and evoked LFP response (lower panel) recorded from a single site in monkey 1 during the presentation of a static Gabor

stimulus (0–400 ms), at three different contrasts: 25% (blue trace), 50% (green), and 100% (red).

(B) Time-frequency energy difference plots (in dB) showing the difference in energy from baseline energy ("300 to 0 ms, 0 denotes the stimulus onset, difference

computed separately for each frequency) for the 25% (left panel), 50% (middle), and 100% (right) contrast. During the first 100 ms, there is a broadband increase

in power that is associated with the sharp increase in firing rate as shown in (A). The gamma rhythm (horizontal red band) is visible only after !100 ms, and the

center frequency increases with contrast.

(C) The LFP energy between 200–400 ms (denoted by a thick black line on the x axis in B) as a function of frequency for the three contrasts. The black line shows

the LFP energy in the baseline period. The inset shows the gamma frequency (the frequency between 20 and 60 Hz that has the maximum power difference from

baseline) as a function of stimulus contrast. The black line in the inset shows the linear regression fit.

(D–F and G–I) Show corresponding population responses of 63 and 90 sites frommonkey 1 and 2, respectively. For (D) and (G), the responses are normalized by

dividing by the maximum firing rate or evoked response for each site. The SEM for the insets in (F) and (I) are smaller than the size of the symbols.
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Figure 6. Large, contrast-dependent firing rate transients in the model. A-C. Transients
(or lack thereof) at different contrast levels (color) under the full dynamics (A), using
Langevin dynamics, (B), and under the full dynamics when the value of z is fixed,
z = zgen (C). D. Dependence of the inferred value of contrast, z, on the currently
inferred magnitude of basis function intensities, u, in the simplified dynamics (blue).
For reference, red shows the value of z when set to be fixed at z = z

gen

. E. There is
asymmetry in ü as a function of u, around the value of u = µ = 1, in the simplified
model when z is inferred (blue) but not when it is fixed (red). F. Transients predicted
by the simplified dynamics (Eq. 6, with parameters as in Fig. 5D, and initial conditions
u(0) = 0.1 and u̇(0) = 0) are similar to transients under the full dynamics.
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the same time (rNrA.C, rNrB.C, referred to as ‘mixed theta cycles’)
was lower than expected if each single unit expressed either one or the
other representation independently of the other units. A total of 1.25%
of the theta cycles in the recorded data were mixed. This number was
lower than in 970 out of 1,000 randomly recombined (shuffled) popu-
lation vectors (that is, P, 0.03; Fig. 2d). The separation between the
A- andB-correlated representationswas strongest when the cycleswere
chunked at the point of the lowest average firing rate in the population
(Fig. 1b, c, e and Supplementary Fig. 3). Thus, mixed representations
existed but were rare. Transitions between orthogonal maps tend to
occur in an all-or-none manner, with the entire network flickering
coherently at time scales of approximately a tenth of a second.
We subsequently examined the evolution of network activity within

the theta cycle. Each cycle was divided into two halves, and mixed
states were defined as those half-cycles for which rNrA.C/2,
rNrB.C/2. Mixed population vectors were less abundant than

expected from shuffled data during both half-cycles; however, in the
shuffled data, the frequency of recombinationswithmoremixed popu-
lation vectors than in the observed data increased from 958/1,000
during the first half (P, 0.05) to 1,000/1,000 during the second
(P, 0.001) (Fig. 2d). The low incidence of mixed population vectors
at the end of the theta cycle suggests that representations evolve from
partially segregated to fully segregated within each activity period.
We then asked howA-correlated and B-correlated theta cycles were

organized in time. Because dot products can vary from0 to indefinitely
large, we switched to Pearson product–moment correlations, which
by normalizing the correlations to within a fixed [21,11] range
allow successive theta cycles to be compared more directly (Fig. 3a–c
and Supplementary Figs 4–6). Individual theta cycles were now only
considered if at least two cells were active (for higher thresholds, see
Supplementary Fig. 7). As observed with the dot products, the
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Figure 1 | Procedures for analysing hippocampal transition dynamics.
a, Stack of firing-ratemaps inboxA (white floor lights; left) and boxB (greenwall
lights; right) for an example set of 32 simultaneously recorded hippocampal CA3
units. Each map shows a colour-coded distribution of firing rates across the
square test box (blue, silent; red, maximum). Red line, one of 303 30 population
vectors (PV) constructed from the activity of the entire cell ensemble in a given
23 2 cm position bin. Note strong difference in population vectors for A and B.
b, Theta phase modulation for all pyramidal cells on a representative trial. Spike
number is shown as a function of theta phase (bin size 10deg).Dashedgreen line,
phase with lowest firing rate, used to define boundary between cycles.
c, Representative spike distribution across theta cycles in the stable state. Rasters
of reddots showspike times of individual cells in relation to 6–11Hz filtered local
electroencephalogram (EEG; blue). Green lines indicate theta-cycle boundaries
(b). The ensemble distribution of activity during one cycle represents the
momentary population vector. d, Dot-product correlation between momentary
population vector and reference vectors at the corresponding position in A (red)
and B (blue) during a baseline trial in A. e, Cumulative product between
correlationswith eachof the reference environments as a functionof thephase for
segmentation of theta cycles (0, phase of minimum activity).
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Figure 2 | Theta cycles correlate with either of the reference environments
but rarely with both simultaneously. a, Top, local hippocampal EEG during
spatial cue switching from A to B (filtered at 6–11Hz). Bottom, dot-product
correlationbetweenmomentarypopulationvectors and referencevectors fromA
(red) and B (blue) for successive theta cycles before and after cue switching. Dot
products are un-normalized (just divided by the numberC of recorded cells). All
correlations are positive but, for clarity, A and B correlations are plotted in
opposite directions. Green line indicates light switch. EEG and ensemble activity
were sampled simultaneously.Note that ensemble activity flickered back to theA
representation several times after cue switching.Note also the variation in the dot
product. b, Another example of network flickering induced by switching of
spatial cues. c, Matrices reporting the number of cycles falling in each 0.23 0.2
bin of the dot-product correlations rNrA,B/C between momentary population
vectors and reference vectors for the present environment (x-axis) or the
alternative environment (y-axis). Left, before cue switching. Right, after cue
switching (starting from the first cycle correlated with new environment). Note
that mixed cycles, defined as cycles with both rNrA and rNrB exceeding C (x. 1,
y. 1; indicated by red lines), were rare. d, Histograms showing that the number
ofmixed states after cue switching (red line) is lower than expected fromshuffled
versions of the same data (n5 1,000; grey histogram). Note that mixed states
became less frequent during the second half of the theta cycle.
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the same time (rNrA.C, rNrB.C, referred to as ‘mixed theta cycles’)
was lower than expected if each single unit expressed either one or the
other representation independently of the other units. A total of 1.25%
of the theta cycles in the recorded data were mixed. This number was
lower than in 970 out of 1,000 randomly recombined (shuffled) popu-
lation vectors (that is, P, 0.03; Fig. 2d). The separation between the
A- andB-correlated representationswas strongest when the cycleswere
chunked at the point of the lowest average firing rate in the population
(Fig. 1b, c, e and Supplementary Fig. 3). Thus, mixed representations
existed but were rare. Transitions between orthogonal maps tend to
occur in an all-or-none manner, with the entire network flickering
coherently at time scales of approximately a tenth of a second.
We subsequently examined the evolution of network activity within

the theta cycle. Each cycle was divided into two halves, and mixed
states were defined as those half-cycles for which rNrA.C/2,
rNrB.C/2. Mixed population vectors were less abundant than

expected from shuffled data during both half-cycles; however, in the
shuffled data, the frequency of recombinationswithmoremixed popu-
lation vectors than in the observed data increased from 958/1,000
during the first half (P, 0.05) to 1,000/1,000 during the second
(P, 0.001) (Fig. 2d). The low incidence of mixed population vectors
at the end of the theta cycle suggests that representations evolve from
partially segregated to fully segregated within each activity period.
We then asked howA-correlated and B-correlated theta cycles were

organized in time. Because dot products can vary from0 to indefinitely
large, we switched to Pearson product–moment correlations, which
by normalizing the correlations to within a fixed [21,11] range
allow successive theta cycles to be compared more directly (Fig. 3a–c
and Supplementary Figs 4–6). Individual theta cycles were now only
considered if at least two cells were active (for higher thresholds, see
Supplementary Fig. 7). As observed with the dot products, the
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Figure 1 | Procedures for analysing hippocampal transition dynamics.
a, Stack of firing-ratemaps inboxA (white floor lights; left) and boxB (greenwall
lights; right) for an example set of 32 simultaneously recorded hippocampal CA3
units. Each map shows a colour-coded distribution of firing rates across the
square test box (blue, silent; red, maximum). Red line, one of 303 30 population
vectors (PV) constructed from the activity of the entire cell ensemble in a given
23 2 cm position bin. Note strong difference in population vectors for A and B.
b, Theta phase modulation for all pyramidal cells on a representative trial. Spike
number is shown as a function of theta phase (bin size 10deg).Dashedgreen line,
phase with lowest firing rate, used to define boundary between cycles.
c, Representative spike distribution across theta cycles in the stable state. Rasters
of reddots showspike times of individual cells in relation to 6–11Hz filtered local
electroencephalogram (EEG; blue). Green lines indicate theta-cycle boundaries
(b). The ensemble distribution of activity during one cycle represents the
momentary population vector. d, Dot-product correlation between momentary
population vector and reference vectors at the corresponding position in A (red)
and B (blue) during a baseline trial in A. e, Cumulative product between
correlationswith eachof the reference environments as a functionof thephase for
segmentation of theta cycles (0, phase of minimum activity).
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Figure 2 | Theta cycles correlate with either of the reference environments
but rarely with both simultaneously. a, Top, local hippocampal EEG during
spatial cue switching from A to B (filtered at 6–11Hz). Bottom, dot-product
correlationbetweenmomentarypopulationvectors and referencevectors fromA
(red) and B (blue) for successive theta cycles before and after cue switching. Dot
products are un-normalized (just divided by the numberC of recorded cells). All
correlations are positive but, for clarity, A and B correlations are plotted in
opposite directions. Green line indicates light switch. EEG and ensemble activity
were sampled simultaneously.Note that ensemble activity flickered back to theA
representation several times after cue switching.Note also the variation in the dot
product. b, Another example of network flickering induced by switching of
spatial cues. c, Matrices reporting the number of cycles falling in each 0.23 0.2
bin of the dot-product correlations rNrA,B/C between momentary population
vectors and reference vectors for the present environment (x-axis) or the
alternative environment (y-axis). Left, before cue switching. Right, after cue
switching (starting from the first cycle correlated with new environment). Note
that mixed cycles, defined as cycles with both rNrA and rNrB exceeding C (x. 1,
y. 1; indicated by red lines), were rare. d, Histograms showing that the number
ofmixed states after cue switching (red line) is lower than expected fromshuffled
versions of the same data (n5 1,000; grey histogram). Note that mixed states
became less frequent during the second half of the theta cycle.
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the same time (rNrA.C, rNrB.C, referred to as ‘mixed theta cycles’)
was lower than expected if each single unit expressed either one or the
other representation independently of the other units. A total of 1.25%
of the theta cycles in the recorded data were mixed. This number was
lower than in 970 out of 1,000 randomly recombined (shuffled) popu-
lation vectors (that is, P, 0.03; Fig. 2d). The separation between the
A- andB-correlated representationswas strongest when the cycleswere
chunked at the point of the lowest average firing rate in the population
(Fig. 1b, c, e and Supplementary Fig. 3). Thus, mixed representations
existed but were rare. Transitions between orthogonal maps tend to
occur in an all-or-none manner, with the entire network flickering
coherently at time scales of approximately a tenth of a second.
We subsequently examined the evolution of network activity within

the theta cycle. Each cycle was divided into two halves, and mixed
states were defined as those half-cycles for which rNrA.C/2,
rNrB.C/2. Mixed population vectors were less abundant than

expected from shuffled data during both half-cycles; however, in the
shuffled data, the frequency of recombinationswithmoremixed popu-
lation vectors than in the observed data increased from 958/1,000
during the first half (P, 0.05) to 1,000/1,000 during the second
(P, 0.001) (Fig. 2d). The low incidence of mixed population vectors
at the end of the theta cycle suggests that representations evolve from
partially segregated to fully segregated within each activity period.
We then asked howA-correlated and B-correlated theta cycles were

organized in time. Because dot products can vary from0 to indefinitely
large, we switched to Pearson product–moment correlations, which
by normalizing the correlations to within a fixed [21,11] range
allow successive theta cycles to be compared more directly (Fig. 3a–c
and Supplementary Figs 4–6). Individual theta cycles were now only
considered if at least two cells were active (for higher thresholds, see
Supplementary Fig. 7). As observed with the dot products, the

a b

c

d

C
el

l n
um

be
r

N
um

be
r o

f s
pi

ke
s

e
C

um
ul

at
iv

e
cr

os
s-

co
rr

el
at

io
n

Phase shift from minimum activity (deg)

Time (s)

Phase (deg)

0 180–180 360–360

10

20

30

1

0 180 360 540 720
0

200

400

600

0.2 0.4 0.6 0.8 10

0

10

20

30

0

2

4

6

0.2 0.4 0.6 0.8 10
D

ot
 p

ro
du

ct

C
el

l n
o.

5

10

15

20

25

30

32

1

BA

0.1

PV PV

0

Figure 1 | Procedures for analysing hippocampal transition dynamics.
a, Stack of firing-ratemaps inboxA (white floor lights; left) and boxB (greenwall
lights; right) for an example set of 32 simultaneously recorded hippocampal CA3
units. Each map shows a colour-coded distribution of firing rates across the
square test box (blue, silent; red, maximum). Red line, one of 303 30 population
vectors (PV) constructed from the activity of the entire cell ensemble in a given
23 2 cm position bin. Note strong difference in population vectors for A and B.
b, Theta phase modulation for all pyramidal cells on a representative trial. Spike
number is shown as a function of theta phase (bin size 10deg).Dashedgreen line,
phase with lowest firing rate, used to define boundary between cycles.
c, Representative spike distribution across theta cycles in the stable state. Rasters
of reddots showspike times of individual cells in relation to 6–11Hz filtered local
electroencephalogram (EEG; blue). Green lines indicate theta-cycle boundaries
(b). The ensemble distribution of activity during one cycle represents the
momentary population vector. d, Dot-product correlation between momentary
population vector and reference vectors at the corresponding position in A (red)
and B (blue) during a baseline trial in A. e, Cumulative product between
correlationswith eachof the reference environments as a functionof thephase for
segmentation of theta cycles (0, phase of minimum activity).
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Figure 2 | Theta cycles correlate with either of the reference environments
but rarely with both simultaneously. a, Top, local hippocampal EEG during
spatial cue switching from A to B (filtered at 6–11Hz). Bottom, dot-product
correlationbetweenmomentarypopulationvectors and referencevectors fromA
(red) and B (blue) for successive theta cycles before and after cue switching. Dot
products are un-normalized (just divided by the numberC of recorded cells). All
correlations are positive but, for clarity, A and B correlations are plotted in
opposite directions. Green line indicates light switch. EEG and ensemble activity
were sampled simultaneously.Note that ensemble activity flickered back to theA
representation several times after cue switching.Note also the variation in the dot
product. b, Another example of network flickering induced by switching of
spatial cues. c, Matrices reporting the number of cycles falling in each 0.23 0.2
bin of the dot-product correlations rNrA,B/C between momentary population
vectors and reference vectors for the present environment (x-axis) or the
alternative environment (y-axis). Left, before cue switching. Right, after cue
switching (starting from the first cycle correlated with new environment). Note
that mixed cycles, defined as cycles with both rNrA and rNrB exceeding C (x. 1,
y. 1; indicated by red lines), were rare. d, Histograms showing that the number
ofmixed states after cue switching (red line) is lower than expected fromshuffled
versions of the same data (n5 1,000; grey histogram). Note that mixed states
became less frequent during the second half of the theta cycle.
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the same time (rNrA.C, rNrB.C, referred to as ‘mixed theta cycles’)
was lower than expected if each single unit expressed either one or the
other representation independently of the other units. A total of 1.25%
of the theta cycles in the recorded data were mixed. This number was
lower than in 970 out of 1,000 randomly recombined (shuffled) popu-
lation vectors (that is, P, 0.03; Fig. 2d). The separation between the
A- andB-correlated representationswas strongest when the cycleswere
chunked at the point of the lowest average firing rate in the population
(Fig. 1b, c, e and Supplementary Fig. 3). Thus, mixed representations
existed but were rare. Transitions between orthogonal maps tend to
occur in an all-or-none manner, with the entire network flickering
coherently at time scales of approximately a tenth of a second.
We subsequently examined the evolution of network activity within

the theta cycle. Each cycle was divided into two halves, and mixed
states were defined as those half-cycles for which rNrA.C/2,
rNrB.C/2. Mixed population vectors were less abundant than

expected from shuffled data during both half-cycles; however, in the
shuffled data, the frequency of recombinationswithmoremixed popu-
lation vectors than in the observed data increased from 958/1,000
during the first half (P, 0.05) to 1,000/1,000 during the second
(P, 0.001) (Fig. 2d). The low incidence of mixed population vectors
at the end of the theta cycle suggests that representations evolve from
partially segregated to fully segregated within each activity period.
We then asked howA-correlated and B-correlated theta cycles were

organized in time. Because dot products can vary from0 to indefinitely
large, we switched to Pearson product–moment correlations, which
by normalizing the correlations to within a fixed [21,11] range
allow successive theta cycles to be compared more directly (Fig. 3a–c
and Supplementary Figs 4–6). Individual theta cycles were now only
considered if at least two cells were active (for higher thresholds, see
Supplementary Fig. 7). As observed with the dot products, the
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Figure 1 | Procedures for analysing hippocampal transition dynamics.
a, Stack of firing-ratemaps inboxA (white floor lights; left) and boxB (greenwall
lights; right) for an example set of 32 simultaneously recorded hippocampal CA3
units. Each map shows a colour-coded distribution of firing rates across the
square test box (blue, silent; red, maximum). Red line, one of 303 30 population
vectors (PV) constructed from the activity of the entire cell ensemble in a given
23 2 cm position bin. Note strong difference in population vectors for A and B.
b, Theta phase modulation for all pyramidal cells on a representative trial. Spike
number is shown as a function of theta phase (bin size 10deg).Dashedgreen line,
phase with lowest firing rate, used to define boundary between cycles.
c, Representative spike distribution across theta cycles in the stable state. Rasters
of reddots showspike times of individual cells in relation to 6–11Hz filtered local
electroencephalogram (EEG; blue). Green lines indicate theta-cycle boundaries
(b). The ensemble distribution of activity during one cycle represents the
momentary population vector. d, Dot-product correlation between momentary
population vector and reference vectors at the corresponding position in A (red)
and B (blue) during a baseline trial in A. e, Cumulative product between
correlationswith eachof the reference environments as a functionof thephase for
segmentation of theta cycles (0, phase of minimum activity).
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Figure 2 | Theta cycles correlate with either of the reference environments
but rarely with both simultaneously. a, Top, local hippocampal EEG during
spatial cue switching from A to B (filtered at 6–11Hz). Bottom, dot-product
correlationbetweenmomentarypopulationvectors and referencevectors fromA
(red) and B (blue) for successive theta cycles before and after cue switching. Dot
products are un-normalized (just divided by the numberC of recorded cells). All
correlations are positive but, for clarity, A and B correlations are plotted in
opposite directions. Green line indicates light switch. EEG and ensemble activity
were sampled simultaneously.Note that ensemble activity flickered back to theA
representation several times after cue switching.Note also the variation in the dot
product. b, Another example of network flickering induced by switching of
spatial cues. c, Matrices reporting the number of cycles falling in each 0.23 0.2
bin of the dot-product correlations rNrA,B/C between momentary population
vectors and reference vectors for the present environment (x-axis) or the
alternative environment (y-axis). Left, before cue switching. Right, after cue
switching (starting from the first cycle correlated with new environment). Note
that mixed cycles, defined as cycles with both rNrA and rNrB exceeding C (x. 1,
y. 1; indicated by red lines), were rare. d, Histograms showing that the number
ofmixed states after cue switching (red line) is lower than expected fromshuffled
versions of the same data (n5 1,000; grey histogram). Note that mixed states
became less frequent during the second half of the theta cycle.
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A PSYCHOPHYSICAL TEST
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Figure 2: Experimental design. A. In each trial, the subject made an orientation estimation judge-
ment and provided information about the orientation and their subjective uncertainty by drawing a
single stroke on a tablet. See text for details. B. Estimation error ("

x

) between the true and reported
orientations, and level of uncertainty (�2

x

) were the dependent variables in the experiment.

the subjective assessment of uncertainty in their estimate by drawing a line on a tablet with a sty-
lus. The orientation of the line indicated the estimated orientation of the line segment, while the
length of the line corresponded to subjective uncertainty. A longer line indicated less certainty to
avoid the possible confound in measuring error-uncertainty correlations as shorter segments provide
inherently less precision for orientation. After the subject responded, the mask and cue disappeared
and a small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding to the
reported uncertainty. (The true orientation of the segment was not displayed.) This feedback display
appeared for 500 msec, after which the new trial began.

To enhance the quality of subjective uncertainty estimation, a scoring function was used to assess
subjects’ performance at each trial. Subjects were told that their goal was to maximize their score
which was calculated by combining the accuracy and certainty of their response. To calculate the
scores, we used the log probability of the true stimulus orientation under a circular Gaussian (von
Mises) distribution defined by the subject’s response. This scoring function can be maximised if the
subject’s uncertainty report reflects their true subjective uncertainty which in turn is predictive of the
errors they are making [18]. To prevent subjects from developing simple feedback-based strategies
while keeping them alert, subjects received only grouped feedback after every 10 trials in the form of
an average score. Subjects completed 3-4 sessions of 900 trials across multiple days. To familiarize
themselves with the procedure and to facilitate the precision of mapping from uncertainty to line
length, prior to each test session subjects had a practice session with 50 trials during which they
received feedback after every trial including the true orientation of the cued segment. Data from
these trials was not included in the analyses.

4 Results

We collected data from a total of N=5 subjects, four of whom were naive while the last one was
informed about the goal of the experiment. We found no difference in performance between the
naive and informed subjects confirming that the paradigm measured direct reactions of the subjects
without much cognitive influence.

4.1 Basic measures and controls

First, we checked whether in our paradigm we measured the relevant aspects of human performance.
In order to measure the typical pattern of trial-by-trial error and uncertainty, the stimuli must cover
the entire space of orientation, the subject’s perception needs to follow the true stimuli, and response
movements need to be ballistic. Figure 3 confirms that these requirements were fulfilled. The stim-
ulus distribution was nearly uniform in the space of orientations, and the subjects’ response was
similar without any evidence for bias in the cardinal directions (Fig 2A). Subjects’ judgement faith-
fully followed the true orientation of the target line segment (Pearson’s r=0.97, p<10�3) (Fig 2B),
and their stroke was a straight line with average deviation from the straight line between the starting
and endpoints below 3.3±0.2% of the length of the stroke (Fig 2C). In addition, we calculated the
time profile of the strokes and found that subjects’ mean duration of drawing was 450±110 msec
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SUMMARY
sampling 

❖ is a simple and powerful way of representing uncertainty
❖ can be efficiently implemented by E/I neural circuit dynamics
❖ provides a natural account of 

❖ neural variability
❖ the match between evoked and spontaneous activity
❖ hippocampal flickering? → Savin et al, PLoS Comput Biol 2014

a new paradigm to obtain trial-by-trial measure of uncertainty:  
humans’ representation of uncertainty

❖ is well calibrated, multidimensional & uses a unitary scale
❖ reflects hallmarks of sampling (2-3 ms / sample)
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