### SAMPLING-BASED REPRESENTATION OF UNCERTAINTY time is of essence

# MÁTÉ LENGYEL

Computational and Biological Learning Lab Department of Engineering University of Cambridge



### A SIMPLE TAXONOMY OF PROBABILISTIC REPRESENTATIONS



## NEURAL REPRESENTATIONS OF UNCERTAINTY

|                                          | sampling                 | mean-field                                           | prob. pop. code  |             |
|------------------------------------------|--------------------------|------------------------------------------------------|------------------|-------------|
| neurons represent                        | variables                | variables                                            | parameters       |             |
| neurons / variable                       | 1                        | 1                                                    | many (~100—1000) | too many?   |
| distributions are represented            | by iterative<br>sampling | by iterative<br><u>dynamics</u> /<br>instantaneously | instantaneously  | too slow!?  |
| correlations<br>(limiting factor)        | (time)                   | ×                                                    | (neurons)        |             |
| cue combination                          | $\checkmark$             | $\checkmark$                                         | $\checkmark$     |             |
| marginalisation                          | $\checkmark$             | $\checkmark$                                         | √?               |             |
| dynamics                                 | stochastic               | deterministic                                        | deterministic    |             |
| neural variability for computation       | useful                   | harmful                                              | <u>harmful</u>   | robustness? |
| learning                                 | $\checkmark$             | √?                                                   | ?                |             |
| stimulus-dependent<br>noise correlations | $\checkmark$             | ×                                                    | ×                | _           |

### A PROTO-MODEL: GAUSSIAN SCALE MIXTURE

Wainwright & Simoncelli 2000, Schwartz & Simoncelli 2001, Coen-Cagli et al 2012



### PLAN OF THE TALK

#### \* neural circuit models

analog variables speed E-I networks

#### \* empirical evidence (almost model-free)

neural: evoked-spontaneous activity  $\rightarrow$  József Fiser's talk yesterday behavioural: role of time

#### **NEURAL NETWORK DYNAMICS: A SIMPLE CASE STUDY** Hennequin et al, NIPS 2014

generative model: factor analysis





 $^{-1}$ 

 $d\mathbf{u} = \frac{dt}{\tau_{\rm m}} \left( -\mathbf{u} + \mathbf{W} \,\mathbf{u} + \mathbf{F} \,\mathbf{x} \right) +$  $+ \sigma_{\xi} \sqrt{\frac{2}{\tau_{\rm m}}} \,\mathrm{d}\boldsymbol{\xi}$  $\mathrm{d}\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0},\mathbf{I})$ 

posterior

$$\mathbf{u}|\mathbf{x} = \mathcal{N}(oldsymbol{\mu}(\mathbf{x})\,,oldsymbol{\Sigma})$$

$$\boldsymbol{\Sigma} = \left( \mathbf{C}^{-1} + \frac{1}{\sigma_{\mathbf{x}}^2} \mathbf{A} \mathbf{A}^{\mathsf{T}} \right)$$
$$(\mathbf{x}) = \frac{1}{\sigma_{\mathbf{x}}^2} \boldsymbol{\Sigma} \mathbf{A}^{\mathsf{T}} \mathbf{x}$$

stationary distribution

$$\mathbf{u}|\mathbf{x}=\mathcal{N}\!\left( ilde{oldsymbol{\mu}}\!\left(\mathbf{x}
ight), ilde{oldsymbol{\Sigma}}
ight)$$

$$(\mathbf{W} - \mathbf{I}) \ \tilde{\mathbf{\Sigma}} + \tilde{\mathbf{\Sigma}} \ (\mathbf{W} - \mathbf{I}) = -2\sigma_{\xi}^2 \mathbf{I}$$

$$\tilde{\boldsymbol{\mu}}(\mathbf{x}) = (\mathbf{I} - \mathbf{W})^{-1} \mathbf{F} \mathbf{x}$$



### THE PROBLEM WITH LANGEVIN

Hennequin et al, NIPS 2014







#### Murphy & Miller, 2009; Hennequin et al, 2014 NON-NORMAL AMPLIFICATION TO THE RESCUE





Máté Lengyel | A sampling-based representation of uncertainty

weight matrices

dist. of increments









### **E/I NETWORKS FOR SAMPLING**

Aitchison & Lengyel, arXiv 2014, in prep



### E/I NETWORKS FOR SAMPLING (HAMILTONIAN)

Aitchison & Lengyel, arXiv 2014, in prep

#### **OSCILLATION FREQUENCY DEPENDS ON CONTRAST**





Máté Lengyel | A sampling-based representation of uncertainty

11 Sept 2015, Probabilistic inference and the brain, Paris

### E/I NETWORKS FOR SAMPLING (HAMILTONIAN)

Aitchison & Lengyel, arXiv 2014, in prep

#### **OSCILLATION FREQUENCY DEPENDS ON CONTRAST**





Máté Lengyel | A sampling-based representation of uncertainty

### E/I NETWORKS FOR SAMPLING (HAMILTONIAN)

Aitchison & Lengyel, arXiv 2014, in prep



Máté Lengyel | A sampling-based representation of uncertainty

### **SLOW OSCILLATIONS**

'tempered transitions' Neal 1996

$$\mathbf{r} \sim \mathbf{P}(\mathbf{y} = \mathbf{r} | \mathbf{x}) \simeq \left[ \prod_{i} \mathbf{P}(y_{i} = r_{i} | \mathbf{x}) \right] \begin{bmatrix} \mathbf{P}(\mathbf{y} = \mathbf{r} | \mathbf{x}) \\ \prod_{i} \mathbf{P}(y_{i} = r_{i} | \mathbf{x}) \end{bmatrix}^{\alpha}$$
marginals (no correlations)
$$y_{2}$$

$$0$$

$$0$$

$$\alpha$$

$$1$$

$$y_{1}$$

$$y_{2}$$

$$y_{2}$$

$$y_{1}$$

$$y_{2}$$

$$y_{1}$$

$$y_{2}$$

$$y_{1}$$

$$y_{2}$$

$$y_{2}$$

$$y_{2}$$

$$y_{1}$$

$$y_{2}$$

$$y_{2}$$

$$y_{2}$$

$$y_{1}$$

$$y_{2}$$

$$y_{1}$$

$$y_{2}$$

$$y$$

### HIPPOCAMPAL FLICKERING



MODEL



### A PSYCHOPHYSICAL HALLMARK OF SAMPLING



A GRADUAL REFINEMENT OF THE REPRESENTATION OF UNCERTAINTY



# EFFECTS OF TIME





#### error-uncertainty correlation



### SUMMARY

sampling

- \* is a simple and powerful way of representing uncertainty
- \* can be efficiently implemented by E/I neural circuit dynamics
- provides a natural account of
  - neural variability
  - the match between evoked and spontaneous activity
  - ♦ hippocampal flickering? → Savin et al, PLoS Comput Biol 2014

a new paradigm to obtain trial-by-trial measure of uncertainty: humans' representation of uncertainty

- \* is well calibrated, multidimensional & uses a unitary scale
- reflects hallmarks of sampling (2-3 ms / sample)

## ACKNOWLEDGEMENTS

