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         Analyse de Données 

Texte

d ⇠ 106

mole de matière

d ⇠ 1024

Reseau social

d ⇠ 109

Image 2D/3D

d ⇠ 106
Données diverses mais avec un grand nombre d de variables

- compression, restauration, synthèse
• Modeliser: capturer la nature et la variabilité des données

analyse de textes ou traductions, prédire la physique...

• Prédire: estimer la réponse d’une question à partir de données

Apprentissage statistique Intelligence artificielle

- Reconnaissance d’images ou de sons, diagnostics médicaux,

d ⇠ 106/mn

Audio



Réseaux Convolutionnels Profonds

x couche 2

filtres

couche 1

parole, diagnostiques, traduction, en physique...
Prédictions exceptionnelles et génériques: pour l’image,

Centaines de millions de paramètres

Y. LeCun

Le �(x) a aplati les frontières. Comment ?

ỹ...

�(x)

filtres

• Les paramètres sont invariants par translations: filtres

filtres

Importance de l’architecture

• Apprentissage supervisé: {xi, yi}in



• Imagenet supervised training: 1.2 106 examples, 103 classes
15.3% testing error

  Alex Deep Convolution Network
A. Krizhevsky, Sutsever, Hinton

in 2012

Up to 150 layers!

New networks with 3% errors.

Pourquoi cela marche ?



  Reconnaissance de la parole
• Depuis les années 60.  
• Jusqu’en 2010, basé sur le calcul de spectrogrammes et modèles de 

chaines de Markov.
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    Reconnaissance Audio
•Reconnaissance de la parole, de la musique: 

•Séparation de sources:

Luo & Mesgarani, 2018, arXiv



 Traitement du Langage Naturel
• Traduction, analyse de textes, conversation d’agents, réponse à des 

questions, commentaires descriptifs… : linguistique 
•  Structuralisme: système de signes (signifiant, signifié) 
• 1960: grammaires formelles de Chomsky, récursivité. 
• Sémantique formelle: représentations propositionnelles, logique

⇠ machine de Turing



   Du Rationalisme à l’Empirisme

•  Échec partiel: difficulté de représenter la « connaissance » d’un 
monde complexe: « John aime Marie » et ses « règles ».

•Un aller-retour entre rationalisme et empirisme:

      Platon, Leibnitz, Descartes, Kant, Wittgentstein, Hume, Locke

•  Renouveau de l’IA par l’empirisme: apprentissage statistique. 
•Pour les mathématiques: de la logique à la géométrie.
• Intégration avec les autres « sciences des données » : physique,…

Rationalisme Empirisme



       Traduction Automatique

• In computer science, artificial 
intelligence (AI), sometimes 
called machine intelligence, is 
intelligence demonstrated by 
machines, in contrast to the 
natural intelligence displayed 
by humans and other animals. 
Computer science defines AI 
research as the study of 
"intelligent agents ».

• En informatique, l'intelligence 
artificielle (IA), parfois 
appelée intelligence machine, 
est une intelligence démontrée 
par des machines, par 
opposition à l'intelligence 
naturelle affichée par l'homme 
et d'autres animaux. 
L'informatique définit la 
recherche en intelligence 
artificielle comme l'étude des 
"agents intelligents". 

• 1990: Approches statistiques: chaines de Markov 
• 2010: Réseaux de neurones profonds



         Raconter une vidéo

NeuralTalk and Walk, recognition, text description of the image while walking

Interactions multimodales



 Physique: Interactions de n corps
Astrophysique Chimie QuantiqueDynamique des fluides

• Lois de la physique connues: équations de Newton, Boltzmann, 
Maxwell, Navier-Stokes, Schrodinger… mais calcul difficile des 
solutions résultant d’interactions d’un grand nombre de « corps 
élémentaires ». 

• Simulations numériques: à partir des équations fondamentales. 
• Peut on prédire une solution par régression à partir d’une base de 

données de solutions et quelques informations à priori ?    
    De mieux en mieux avec des réseaux de neurones profonds…



   Applications Industrielles
Nouveaux matériaux, molécules pharmaceutiques:

Simulations numériques rapide ?



  Liens avec la Neurophysiologie

Neurone Cortex

• Quelle similarité entre réseaux de neurones artificiels et biologie ?  
traitements, niveaux fonctionnels, modèles… 

• Retour de l’Intelligence Artificielle



  Apprentissage par Renforcement

• L’agent apprend à choisir ses actions pour optimiser une récompense 
au cours du temps. Apprentissage par « essais et erreurs » 

• Pour le contrôle en robotique, la planification, les jeux (AlphaGo) 

• Créativité et structures: nouvelles stratégies aux échecs



 Apprentissage Robotique



   Apprentissage Non Supervisé

M. Bethdge et. al.

d0 = 2105
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number of
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Modèles à partir de corrélations de coe�cients du réseau:



 Generative Adversarial Networks

Z G(Z)

I. Goodfellow et. al.

W1 W2 Wj

convolutions bX =

• Generative network for non-stationary processes:

D(X)L1

⇢
Lj

⇢
X

• Discriminative network:

The generator G and discriminator D are optimized by:

min
G

max
D

E[logD(X)] + E[log(1�D(G(Z)))]

Gaussian
White



Network trained on bedroom images:

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised
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learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
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6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
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2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

Z G(Z)

          Generative Networks

Z1

G(Z1)

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

Z2

G(Z2)

Radford ,Metz ,Chintala

Linear interpolations are mapped to deformations



Z G(Z)

Network trained on bedroom images:

Z = ↵Z1 + (1� ↵)Z2

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised
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Z1

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised
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Z2

Network trained on faces of celebrities:
G(Z)

Radford ,Metz ,Chintala

          Generative Networks

What kind of memory ?

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised
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Bedrooms are mapped in a linear space



  High Resolution Generation
Published as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

Our contributions allow us to deal with high output resolutions in a robust and efficient fashion.
Figure 5 shows selected 1024 ⇥ 1024 images produced by our network. While megapixel GAN
results have been shown before in another dataset (Marchesi, 2017), our results are vastly more
varied and of higher perceptual quality. Please refer to Appendix F for a larger set of result images
as well as the nearest neighbors found from the training data. The accompanying video shows latent
space interpolations and visualizes the progressive training. The interpolation works so that we first
randomize a latent code for each frame (512 components sampled individually from N (0, 1)), then
blur the latents across time with a Gaussian (� = 45 frames @ 60Hz), and finally normalize each
vector to lie on a hypersphere.

We trained the network on 8 Tesla V100 GPUs for 4 days, after which we no longer observed
qualitative differences between the results of consecutive training iterations. Our implementation
used an adaptive minibatch size depending on the current output resolution so that the available
memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1 shows six
examples of 10242 images produced using our method using LSGAN. Further details of this setup
are given in Appendix B.

8

T. Karras, T. Aila, S. Laine, J. Lehtinen
Hollywood celebrities data basisGenerated from



    Modifications de Styles

• Liens avec le monde de l’art

• Questions de créativité
B The Shipwreck of the Minotaur by J.M.W. Turner, 1805. C The Starry Night by
Vincent van Gogh, 1889. D Der Schrei by Edvard Munch, 1893. E Femme nue
assise by Pablo Picasso, 1910. F Composition VII by Wassily Kandinsky, 1913.

mind=blown. How can computers do this?! Well, in the last
post (Cats and dogs and convolutional neural networks), we
showed how the convolution layers in a CNN have filters
which abstract out aspects of an image. It turns out that we
can use certain layers to extract the "content" of an image and
others to extract the "style."

Gatys, Ecker, Bethdge, 2015



  Limites et Opportunités

• Domaine algorithmique et essentiellement empirique 
• Besoin de beaucoup de données labélisées (xi, yi) pour apprendre 
• On ne comprend pas les performances de ces algorithmes, leurs 

capacité de généralisation et leurs limites 
• Quelles « structures » sont apprises, quelles régularités ? 
• Pas de contrôle « a priori » sur les erreurs: tests statistiques 

souvent biaisés. 
• Architectures optimisées empiriquement: long et couteux 
                                    MAIS 
• Approche générique de problèmes très différents 
• Perspectives scientifiques et d’applications considérables 
• Beaucoup d’opportunités de recherche: cela va très vite


