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Image denoising is a complex mathematical operation performed routinely in billions

of cameras. Every digital image and every video is systematically processed
numerically.

Simple integral formulas have been invented in the past ten years and account for the
steady improvement of image quality.

Science and technology require verification: Most algorithms that I’ll show can be
tested on any image in the electronic journal
Image Processing on Line (IPOL)
http://www.ipol.im/
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A « camera oscura » (this goes back at least to the 16th century) and a modern camera are in
fact quite similar. The photons emitted by objects pass through the virtual pinhole (the lens
focus) or through a real one, and hit a photosensitive surface. In modern cameras, this
photosensitive surface is an electronic sensor matrix, so the image is directly sampled on a
rectangular grid. It follows that digital image is nothing but a matrix of observed numbers.



Each pixel (for picture element) x receives a number of photons u(x). This

number 1s a random variable due to quantum effects of light emission and other
random perturbation. Its expectation is the “ideal image” Eu(x), and the
difference u(x) — Eu(x) between observed and ideal is the noise. Our goal is to
remove the noise, namely to guess Eu(x).

u(X) Eu(x) ideal image u(x) — Eu(x) “image noise”

e Discrete image domain €2 = [[0, m]] x [[0, n]]



For a color image, u(x) is actually a three component vector (red, green, blue),
u(x) = (r(x),g(x),b(x)) € R?. Each component r(x), g(x), b(x) is itself a
Poisson random variable and denoising therefore means estimating the three
true values (expectations) of these components at each pixel x.

Without loss of generality, we assume that the noise is white : Gaussian,
independent at each pixel and for each color channel, with uniform variance o.



Each image pixel is a random vector, and we dispose of a single sample of each. Yet, we
want to estimate the expectation of this random vector, from this single sample! This
problem seems completely ill-posed but will be solved by grouping pixels into patches.

A raw image, obtained directly from the camera without denoising




Experiment by DxO-Labs, a company specialized on image processing. One can
compare the resulting image with-and-without denoising. By night the problem is
more difficult because there are less photons and therefore more noise.

What the camera yields after denoising




Denoising in five formulas from local to global

1-Transform thresholding: the example of DCT denoising
2-Neighborhood filters: an old and fantastic trick

3-A slight extension: nonlocal means

4-The Bayesian denoising paradigm from « non-local » to « global »
5-Machine learning algorithms

6-Back to our starting point: dual denoising and transform thresholding

Where to test all algorithms: Image Processing on Line (IPOL)
http://www.ipol.im/
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Linear frequency transform thresholding:
the example of discrete cosine transform (DCT) denoising

Transform thresholding can be based on the Fourier transform ( Shannon, Wiener),
on wavelets (Meyer, Daubechies, Mallat, Coifman, Donoho & Johnstone, Starck,..),
or on the discrete cosine transform (Yaroslavski).

Transform thresholding assumes that the image is sparse on one of these bases
(Candés, Romberg, Tao). The noise frequency coefficients have instead all the same
variance, and are therefore uniformly small.

Thus, by cancelling the small frequency coefficients of the noisy image (the

threshold is typically lower than 3c), the noise is reduced and the signal is mostly
preserved.

In DCT denoising this operation is performed on each image 8x8 pixels « patch ».

Wiener, Norbert (1949). Extrapolation, Interpolation, and Smoothing of
Stationary Time Series. New York: Wiley. 9



Linear frequency transform thresholding:
the example of discrete cosine transform (DCT) denoising

“patch” P,: restriction of the image u to a small block around a pixel x

g: standard deviation of the noise

Each image patch is decomposed on the DCT basis and all of its small frequency coefficients
are canceled. The DCT basis is a local variant of the Fourier transform on 8x8 patches.

. I - I f [ I | ﬁ Input: noisy image, noise standard deviation o:

=N CE=]l For each 8x8 image patch P_x:

|'|'| |:l: E E — ||| |'|||| I:I:I -Calculate 2D-DCT transform of the patch;

E E E = "" IIIIIII I:.:I: E -Cancel all DCT coefficients with absolute value
o =2 = 00 B =R below 3c.

ESEENREEE

=M EE=SNE

o =S BN B BB - Obtain the denoised color u(x) as the average of

all those obtained for all 64 patches containing x.

-Calculate inverse 2D-DCT transform of the patch.

DCT basis for 8x8 patches:

DCT denoising algorithm
cos(nx)cos(my), m,n =0,...,7

10



Crop of denoised images by
sliding DCT thresholding filter
and incrementally adding:

-use of a YoUoVo colour
system,

-uniform aggregation,

-variance based aggregation
and

-iteration with the “oracle”
given by the first step.

The corresponding PSNR are
26,85; 27,33; 30,65;30,73;
31,25.




c=15
noisy

DCT
denoising is
quite
successful
with
moderate
noise. This
amounts tg

cancel the @

smaller
DCT
coefficients
of each
patch, as
they mainl
contain
noise.



http://www.ipol.im/

o=15
denoised

DCT
denoising is
quite
successful
with
moderate
noise. This
amounts tg
cancel the
smaller
DCT

of each
patch, as
they mainl
contain
noise.

'1 o '

) . ! |
Di [I'tra(\\szr_Mreghold enoising: c=15: / -G.'Sapifo* ty m
. (‘ ‘g{r !F-' D—-&.K?:*:E:}"ﬁ;

4, e e D N ey L ——



http://www.ipol.im/

c=15
original

DCT

denoising is
quite
successful
with
moderate
noise. This
amounts tg
cancel the Jl
smaller '
DCT
coefficient g
of each

patch, as

they mainl
contain

noise.



http://www.ipol.im/

DCT
denoising
and in
general
(wavelet)
transform
thresholding
with a too
large
threshold
creates Gibbs
effects for
large noise.
This Gibbs
effect or
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everywhere

2-DCT transform threshold denoising: 6=40: G. Yu, G. Sapiro  http://www.ipol.im/ .
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Multi-Scale DCT Denoising

1 scale 2 scales 3 scales
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Ficurg 6.1: DCT transform amplitude of results of the multiscale DCT denoising
algorithm applied to an image of pure white noise. The columns correspond to different
numbers of scales. Notice the remaining low frequency noise in the upper left corner
of the single scale results (first column). As expected, in the multi-scale results the
residual noise is much lower. The results in the first row are computed with DCT
denoising using 4 x 4 patches and using a recomposition factor f... = 0.9, while for
the second row 8 x 8 patches are used with f,._. = 0.5.



Denoising in five formulas from local to global

1-Transform thresholding: the example of DCT denoising
2-Neighborhood filters: an old and fantastic trick

3-A slight extension: nonlocal means

4-The Bayesian denoising paradigm from « non-local » to « global »
5-Machine learning algorithms

6-Back to our starting point: dual denoising and transform thresholding

Where to test all algorithms: Image Processing on Line (IPOL)
http://www.ipol.im/
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The trivial idea behind neighborhood filters: find the right samples
in the image and average them. This is still a local smoothing but it
is local in higher dimension (image + values)

A meaningful simple formula
Assume that u(xy), u(xs), ..., u(x,) are observed noisy samples of the same
underlying color u(x). Then the mean %E?:l u(x;) is a much better estimate

of u(x) than each u(x;). Indeed,

( Zu(xz)) ——Var( (x1)).

Thus, it is enough to find, say, 16 samples for u(x) to divide the noise by 4.
Neighborhood filters propose a new way to select these samples.

Yaroslavsky, Leonid P. "Digital picture processing: an introduction." Applied Optics 25
(1986)

Tomasi, Carlo, and Roberto Manduchi. "Bilateral filtering for gray and color images."

Computer Vision, 1998. Sixth International Conference on. IEEE, (1998) .



Gaussian convolution as a denoiser

A first simple way to select the samples that will permit to estimate u(x) is to
assume that all pixels in a spatial (Gaussian weighted) neighborhood have the
same underlying colour. This amounts to convolve the image with a Gaussian, in
other terms to replace u(x) by a weighted average of the values u(y) in a
neighborhood of x.

ﬁ] 2 (x — y)u(y)dy <— weighted average

G? x u(x) = ¥
fﬂ r}f <€—— normalization term

But a still much better way was invented with neighborhood filters: u(y) will
contribute to the estimate of u(x) if and only x is close to y but also u(y) is
close to u(x). The next slide gives the formula.

Reminder: & (X) =

2-Neighborhood filters: an old and fantastic trick .



Figure 1: A. Buades, B. Coll, and J.M M "Neighborhood filters and PDE’s”, Numerische
Mathematik, 105 (1), 2006.

3-Neighborhood filters: an old and fantastic trick .



Neighborhood filter, Sigma filter, SUSAN, Bilateral filter

[Yaroslavski 80, Lee 83, Smith-Brady 97, Tomasi-Manduchi 98]
Now the Gaussian weights guarantee a proximity in space and color:

X, y : pixels; u(x) : image color at x Gf(x) =

Spatial Range
Filterf Filter g

Jo G5 (x — y)G3 (u(x) — u(y))u(y)dy <— weighted average

fﬂ Gczrs X = )Gi( UX) —u(y))dy <e— normalization term

NFu(x) =

mput spatial kemel f infiuence g in the infensity weight fx g
domain for the central pixel ~ for the central pixel

2-Neighborhood filters: an old and fantastic trick
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4-The Bayesian denoising paradigm from « non-local » to « global »
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Regularity in the patch space?

Nonlocal-means denoising (2004)

B Ja G?;(Px — By)Pydy

NL(P.)=
) fﬂ GS';(PX_ Py )dy
Gf(x) = : R &5 N : patch dimension (typically 8 x 8)
(27o)2

Here, the idea is to
retain as valid
samples for u(x)
only samples u(y)
whose surrounding

Image and its groups
of « self-similar »
patches. Nonlocal
means computes an
average of these
groups to denoise
them jointly.

patch Py is similar

to the patch Px

surrounding x.
Shannon’s ideas

extended by Efros
and Leung (1999) to
expand any texture

from a small sample.
26

This idea goes back
to Shannon (1948)
who used it to
simulate text.

3-Nonlocal Means



e Flat region. The large coeflicients are spread out like a convolution.

s

e Curved edge. The weights favor pixels belonging to the same contour.

e Flat neighborhood. The average is made i the grey level neighborhood as the neighborhood

filter. _
-

e Periodic case. The large coefhicients are distributed across the texture (non local).

-

e Repetitive structures. The weights favor similar configurations even they are far away (non

Visualization of the patch
« heat kernel »
back-projected onto the image

local).

3-Neighborhood fillers:ané ntastic trick



All these denoising algorithms boil down to three Gaussian convolutions with
growing specificity: the first one is the classic Wiener spatial smoothing, the
second is space+value nonlinear convolution, the third is a convolution with a
Gaussian in the « patch space »

(Gaussian convolution

_ JaG3 Ju(y)dy
fq GQ (X —y)dy

Neighborhood filter (Yaroslavski, Lee 1980)

G2 (x —y)G2 (u(x) — Nd
NFu(x) = Jo QX ~ Jrf;‘(X} i(}'))ug}})f}f
fﬂ 5 (X—¥)G; (u(x) —uly))dy

Nonlocal-means denoising (Buades & Coll & M. 2004)

IQ Py ) Pydy
f}C P P )dy

NL(E;:) =

28
3-Nonlocal Means



Visual Comparison

Comparison of Gaussian convolution, neighborhood filter, nonlocal means on a real scanned
image (Lena). The difference between the image and its filtered version should look like noise

Original Gaussian

Difference between the image and its filtered version. It should contain no visible structure.
Hence NL-means is better than NF, which is better than the Gaussian convolution.

29
3-Nonlocal Means



Denoising in five formulas from local to global

1-Transform thresholding: the example of DCT denoising
2-Neighborhood filters: an old and fantastic trick

3-A slight extension: nonlocal means

4-The Bayesian denoising paradigm from « non-local » to « global »
5-Machine learning algorithms

6-Back to our starting point: dual denoising and transform thresholding

Where to test all algorithms: Image Processing on Line (IPOL)
http://www.ipol.im/
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Global Bayesian Denoising (Nadler & Levin 2011)

P 1s the set of all patches in the world
The probability of observing the noisy patch P given a perfect patch () 1s

PP | Q)=

1 Q)2 r
e P =GN (P-Q)
(@m0

Thus, given a noisy patch P its optimal estimator for the mean square error 1s
by Bayes’ formula

PIQJ

GBD(P)=E[Q | P| = f P(Q | P)QdQ = / P 1 9)p@)qdQ

Hence the Global Bayes Denoiser

Jp G5 (P — Q)QdQ

Jp G5 (P — Q)dQ

Gives the best estimate of the noisy patch P knowing all the patches
() € P in the world! Tested on 2! patches.

GBD(P) =




Global Bayesian Denoising (Nadler & Levin 2011)

P is the set of all patches in the world

The probability of observing the noisy patch P given a perfect patch @ 1s
1 _liF —r:z|2 "
P(P|Q)=——x¢ = =G (P-Q)

(2m0?)?

Thus, given a noisy patch P its optimal estimator/ for the mean square error 1s
by Bayes’ formula

PQJ

GED(P)=EQ| P| - [ B(@Q| PIeig~ [ =54 0P (@)0u0

Hence the Global Bayes Denoiser
Jp G5 (P — Q)QdQ
fp Gr? (P o QJdQ

Gives the best estimate of the noisy patch P knowing all the patches
Q € P in the world! Tested on 2! patches.

GBD(P) =

N.B: the last integral is obtained by a change of variables. The preceding integral is w.r.
to the Lebesgue measure. The last integral is made on the « space of patches ».



The Levin and Nadler optimal « global denoising algorithm » uses « all patches of the world »

o Input: Noisy image @, its patches P

o Input: Very large set of M = 20 patches P; extracted from a large
set of noiseless natural images (20000)

@ Output: Denoised image il.

o for all patches P extracted from i: Compute the MMSE
denoised estimate of P

~ o \X) = ——F¢€
SV PP | P)P; (270) %
> B(F ) Py

Ba:

where P(P | P;) is known from the Gaussian noise distribution.

o (Aggregation) : for each pixel j of u, compute the denoised version
{; as the average of all values P(j) for all patches

A. Levin, B. Nadler. CVPR 2011. Natural image denoising: Optimality and inherent bounds
Zoran, D., & Weiss, Y. ICCV 2011. From learning models of natural image patches to whole
image restoration.

33
4-The Bayesian denoising paradigm from « non-local » to « global »




NL-Bayes : the only diference w.r. to global denoising is that a

Gaussian model is locally estimated in the image patch space
e patch noise model P(P|P) =c-e” Tt
, 5\ P(P|P)P(P)
e Bayes' rule P(P|P) = )

_ (@—F)'c, ' (o—P)
@ assume we got a patch Gaussian model P(Q) = c.e™ 2

@ hence the variational problem

max P(P|IP) < max P(P|P)P(P)

|P— P2 (P—PF)ic, H(P—P)
< maxe 2202 ¢ 2
P
[P —PJ? 5 =
min M (P ="PYCs (P = P).
T

@ An empirical covariance matrix Cs can be obtained for the patches

é similar to P. P and the ngise n being independent,

Cﬁ,:Cernzi; EQ=P
A. Buades, M. Lebrun, J.M.M. : A Non-local Bayesian image denoising algorithm, SIIMS 2013

4-The Bayesian denoising paradigm from « non-local » to « global » .



Bayesian denoising : NL-Bayes

maxp B(P|P) & minp L2225 4 (P — By(Cp — 021)"'(P - P)
(

one step estimation 151 = - [Cﬁa - n'zl] CB — E] where empirically:

1 = B\(A B = 1 ~
cf’ﬁ#mﬁ)—%;ﬁgmp)(mp)' " ), 2,

T]- — e
lteration ( “oracle estimation™): b=P + Cp, [Cﬁl —|—G'2|] (P—-P )

where

1 g =4 ~ =1\ = 1 -
E v - Q—P)(Q—P). P~ Q.
M PP -1, Zﬁ : 1 PR =

QPP

A. Buades, M. Lebrun, J.M.M.: A Non-local Bayesian image denoising algorithm, SIIMS 2013

4-The Bayesian denoising paradigm from « non-local » to « global » .



Gaussian convolution All denoising integral formulas in one slide

Ju(y)dy

G2 % u(x )fﬂfR \dy

Neighborhood filter (Yaroslavski, Lee 1980)

_ Jo G (x — ¥)G, (u(x) — u(y))uly)dy
Jo G2 (x — ¥)GE, (u(x) — u(y))dy
Nonlocal-means denoising (Buades & Coll & M. 2004)

fn N Py ) Pydy
fﬂ GQP(P — Fy)dy

N Fu(x)

NL(Py) =

Global Bayesian Denoising (Nadler & Levin 2011)

J"P 1IN P — Q)QdQ
fp 4, f; P —Q)dQ
P is the set of all patches in the world

Szlam, A. D., Maggioni, M., & Coifman, R. R. JMLR 2008. Regularization on graphs with
function-adapted diffusion processes.

GBD(P) =

36
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Denoising in five formulas from local to global

1-Transform thresholding: the example of DCT denoising
2-Neighborhood filters: an old and fantastic trick

3-A slight extension: nonlocal means

4-The Bayesian denoising paradigm from « non-local » to « global »
5-Machine learning algorithms: EPLL

6-Back to our starting point: dual denoising and transform thresholding

Where to test all algorithms: Image Processing on Line (IPOL)
http://www.ipol.im/
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The patch space as a Gaussian mixture

We used the database of images [70] composed of TIF images of size 768 x 576.
In order to consider them noiseless, we zoomed out these images by a factor of 2. To
do so, the images were filtered by a Gaussian kernel of standard deviation 0.8v/3 and
one pixel out of 4 was selected. Among the 419 images of size 384 x 288 | we selected
uniformly around 70% images to perform learning, the remaining 30% becoming a
test dataset. We transformed them to grayscale images by extracting the Y channel
from the color images converted into the Y UV color space.

Y =030R+ 059G+ 0.11B

where R.G,B are the channels of the color image. The learning step was realized
independently from the denoising step. The GMM was learned once, and then used

for the different denoising tasks.
A patch 7 is represented by a vector € R?. From this database, we extracted

around 30 x 10° patches and removed their DC component, then we randomly selected

2 x 10° patches to perform EM.

Zoran, Daniel, and Yair Weiss. "From learning models of natural image patches to whole
image restoration." Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE,
2011.
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Figure 7.2: Component 1 of the Gaussian Mixture Model. The very low eigenvalues
indicates that it represents flat patches.
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Ficurg 7.4: Component 13 of the Gaussian Mixture Model. The decay of the eigen-
values is slower and gives importance to many eigenvectors in the simulated patches :
it therefore simulates a texture patch.



0.08 |

0.07 |

0.06

0.05

0.04 |

0.03

0.02

001

0

10

20 34 a0 50 &0

{a) eighenvalues sorted decreasingly (b) corresponding eigenvectors

(c) 8 simulated patches

~”
.

Ficure 7.5: Component 14 of the Gaussian Mixture Model. The sharp decay of the
eigenvalues gives importance only to the top eigenvectors in the simulated patches :
it simulates patches with energy present mainly on the patch bottom.
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Ficurg 7.6: Component 2 of the Gaussian Mixture Model. The very low eigenvalues
indicates that it represents flat patches with blue as a dominant color.

(c) 10 simulated patches
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The patch space as a (Gaussian
mixture and the EPLL
algorithm

The patch prior we shall use is a finite Gaussian mixture model (GMM) learned
as described in section 7.4. The probability of a patch P, represented by a vector of
B9, is assumed to satisty

K
P(P) =)  mN (P, Z).
k—1

Here, N'( P|py, X1) is a d-dimensional Gaussian density (a patch in the image is v/d x
vd) of mean fti: (dx 1) and covariance matrix X (d x d). The coefficients 7, represent
the mixing weights (or probabilities) for each mixture component and therefore satisfy

EA.TTL == ]..

Learning of the Gaussian mixture was performed using the Expectation Maximiza-
tion (EM) algorithm computed over NV natural patches P, with their DC component !

removed. Removing the DC component makes learning easier as it removes the do-
minant dimension from the patch space.

l. The DC component corresponds to the mean intensity value of the patch



9.1.2 Denoising of grayscale images
The energy to minimize

Solving a maximum a posteriori (MAP) problem to build a clean patch P given a
noisy patch P and a local prior P would lead to the following energy to minimize :
-, IP—P|]?
B(P|P) = - — lox(¥(P)).
A patch position in £ can be identified
with the projection operator P extracting the corresponding pixels from any image U

defined on 2. We call P the set of such patch projectors. The patches of U therefore
are the family (PU)pep. We then define the expected log likelihood of the image

EPLLp(U) = Z log B{ PU). (9.1)
PeP
Given the noisy image [7, the energy we propose
to minimize in order to find the denocised image using the patch prior P is

. PU — PU|?
E(UIL) = Z I 53 I — EPLLp(U) (9.2)
PeP =
. s "-. a
= YU =UE pprr,m) (9.3)
20
ief]
2=
= ¥ M “E’ E il — ) log P(PU). (9.4)
izl PeP

where Nj represents the number of overlapping patches in which the pixel 1 appears.



g K=200 K=100 K=50
5 40.443  40.379  40.298
10 36575  36.523 36.447
20 32915 32803 32.840
30 30814  30.765 30.743
40 20385 20185 29.178
o0 28307  27.854 27.861

TABLE 9.1 — Influence of K on the PSNR of the result




Size of the dataset of patches N

In continuation, we fixed K = 200 and modified N to obtain table 9.2.

#@ N=5%10 N=110 N=210F

o 40277 40.281 40.286
10 36.303 36.307 36. 306
20 32.480 32.482 32.476
a0 30.237 30.238 30.321
40 25.570 28.567 28.843
a0 27.073 27.066 27.692

TABLE 9.2 — Influence on the PSNR of N, the number of patches used for learning the

CGMM (with K fixed to 200). It follows that N = 2.10° yields the best performance
in presence of high noise.



9.4 Denoising of low frequencies

In the denoising process, a large part of the images have a majority of homo-
geneous patches, the "flat" Gaussians will therefore be often chosen to realize the
MAP estimation : it will have the highest conditional mixing weight 7). for numerous
parches. In figure 9.1, the histograms represent, for the various steps of the denoising
of the image Lena with o = 20, the rate of patches assigned to each Gaussian.
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o EPLL MS EPLL
5 43.389 43.325
10 39.513 39.476
20 35.592 35.652
30 33.308 33.471
40  31.662 31.909

TABLE 9.7 — Influence of multi-scale denoising.



(¢) EPLL PSNR=33.256 (d) MS EPLL PSNR=33.451

FIGURE 9.2 — Visual comparison between single and multi-scale denoising on an image
from the test set.




9.6 Taking the clean image as oracle

To have an idea of the optimal performance that the algorithm might reach, we
run it using the clean image as oracle. At each iteration (each value of 3), we use the
conditional mixing weight obtained from the clean image instead of taking it from the
current image estimate. Therefore, each patch has always the same Gaussian assigned
to calculate the MAP estimate. Table 9.8 gives the results on the image Lena.

o Normal Oracle

b 37.96 38.41
10 33.96 34.63
20 30.58 31.44
30  28.59 29.41
40 27.13 27.80

TABLE 9.8 — Denoising taking the clean image as oracle

This experiments show that :
— The learned GMM has a very good denoising potential.

— One of the main difficulties is to determine the right Gaussian to calculate the
MAP estimate.



Denoising channel by channel

030 059 0.11
Aypv = [ —0.15 —0.29 0.44
061 —051 —0.10

% s 3
1
e = i _D; 5
4 2 4

o RGB YLV OPP GMM color

5  41.300 41.954 42.239 42.508

10 37.367 38.066 38.457 38.716

20 33544 34.316 34.745 34.944

30 31.321 32150  32.609 32.690

40 29757 29909 31.106 31.069

50 28560 29.509 29.910 29.766

60 28560 29509 29.910 29.766

TABLE 9.9 — Comparison between the different color denoising methods



(a) Original image (b) noisy image o = 40

(c) EPLL PSNR=31,124 (d) MS EPLL PSNR=31.255

F1GURE 9.3 — Single and multi-scale color denoising
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(¢) BM3D PSNR=29.89 (d) NL-Bayes PSNR=29.719



(e) DCT PSNR=29.175 (g) EPLL PSNR=29.886



(a) Original image (b) noisy image o = 30 (c) K-SVD PSNR=32.847

i

(d) BM3D PSNR=33.950  (e) NLBayes PSNR=32.833 (f) DCT PSNR=32.941
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(g) GMM-color PSNR=29.516 (h) OPP PSNR=29.610



(d) BM3D PSNR=26.44 (e) NLBayes PSNR—=26.83




(g) GMM-color PSNR=25.78 (h) OPP PSNR= 26.14




Denoising in five formulas from local to global

1-Transform thresholding: the paradigmatic example of DCT denoising
2-Neighborhood filters: an old and fantastic trick

3-A slight extension: nonlocal means

4-The Bayesian denoising paradigm from « non-local » to « global »
5-Machine learning algorithms: Multilayer perceptron

6-Back to our starting point: dual denoising and transform thresholding

Where to test all algorithms: Image Processing on Line (IPOL)
http://www.ipol.im/
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Image denoising can be described as the problem of mapping from a noisy image to a noise-
free image.

The best currently available denoising methods approximate this mapping with cleverly
engineered algorithms.

This mapping can be learnt directly with a plain multi layer perceptron (MLP) applied to image
patches!

Multilayer perceptron with four hidden layers of size 2047 and a patch size of 17 x 17 on 362
million training samples, requiring approximately one month of computation time on a GPU.

The training uses clean and noisy patches and is done separately for each noise level.



clean (name: barbara) noisy (o = 25)PSNR:20.19dB BM3D: PSNR:30.67dB ours: PSNR:29.21dB
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image GSM [18] | KSVD [1] | BM3D [3] us

Barbara 27.83dB 29.49dB 30.67dB | 29.21dB
Boat 29.29dB 29.24dB 29.86dB | 29.89dB
C.man 28.64dB 28.64dB 29.40dB | 29.32d4B
Couple 28.94dB 28.87dB 29.68dB | 29.70dB
E print 27.13dB 27.24dB 27.72dB | 27.50dB
Hill 29.26dB 29.20dB 29.81dB | 29.82dB
House 31.60dB 32.08dB 32.92dB | 32.504B
Lena 31.25dB 31.30dB 32.04dB | 32.12dB
Man 29.16dB 29.08dB 29.584B | 29.81dB
Montage 30.73dB 30.91dB 32.24dB | 31.85dB
Peppers 29.49dB 29.69dB 30.18dB | 30.25dB

Table 1. PSNRs (in dB) on standard test images, o = 25.

A dramatic turn of events in 2012-2013: learning denoising directly

This table shows that the four layer (with 2047 neurones) MLP trained on 362 millions
17x17 patches reaches the « state of the art »

Harold C. Burger, Christian J. Schuler, and Stefan Harmeling, CVPR 2012
Image denoising: Can plain Neural Networks compete with BM3D?
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The oldest heliographic engraving known in the world a reproduction of a 17th century
Flemish engraving. Nicéphore Niépce in 1825, ( Bibliothéque nationale de France). 72



http://en.wikipedia.org/wiki/Nic%C3%A9phore_Ni%C3%A9pce
http://en.wikipedia.org/wiki/Biblioth%C3%A8que_nationale_de_France

Denoising in five formulas from local to global

1-Transform thresholding: the paradigmatic example of DCT denoising
2-Neighborhood filters: an old and fantastic trick

3-A slight extension: nonlocal means

4-The Bayesian denoising paradigm from « non-local » to « global »
5-Machine learning algorithms

6-Back to our starting point: dual denoising and transform thresholding

Where to test all algorithms: Image Processing on Line (IPOL)
http://www.ipol.im/
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function x = DDID(y, sigma2)

x = step(y, y, sigma2, 15, 7, 100, 4.0);

X = step(x, y, sigma2, 15, 7, 8.7, 0.4);

x = step(x, vy, sigma2, 15, 7, 0.7, 0.8);
end

function xt = step(x, y, sigma2, r, sigma_s, gamma_r, gamma_f)

[dx dy] meshgrid(-r:r);
h = exp(- (dx.”2 + dy.”2) / (2 * sigma_s"2));

Xxp = padarray(x, [r r], ‘symmetric’);
yp = padarray(y, [r r], 'symmetric’);
xt = zeros(size(x));

parfor p = l:numel(x), [1 j] = ind2sub(size(x), p);

% Spatial Domain: Bilateral Filter

g = xp(il:i+2*r, j:j+2%r);

y = yp(i:i+2*r, j:j+2%r);

d =g - g(l+r, 1+r);

k = exp(- d.”2 ./ (gamma_r * sigma2)) .* h; % Eq. 4
gt = sum(sum(g .* k)) / sum(k(:)); % Eq. 2
st = sum(sum(y .* k)) / sum(k(:)); % Eq. 3
% Fourier Domain: Wavelet Shrinkage

V = sigma2 .* sum(k(:).”2); % Eg. 5
G = fft2(ifftshift((g - gt) .* k)); % Eq. 6
S = fft2(ifftshift((y - st) .* k)); % Eq. 7
K = exp(- gamma_f x V ./ (G .x conj(G))); % Eq. 9
St = sum(sum(S .x K)) / numel(K):; % Eq. 8
xt(p) = st + real(St); % Eq. 1

end
end

Algorithm 1: MATLAB code of Dual-Domain Image Denoising.
This code reproduces all grayscale images in this paper:

Dual domain denoising Claude Knaus, Matthias Zwicker, ICIP 2013
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(a) Smooth signal

(b) DCT of smooth signal

/ N\

I II II II II -Il N L -IJI1-.l.I.ll.I_Il.

(c) Signal with discontinuity (edge)

(d) DCT of signal with discontinuity

Figure 2.6 — Behaviour of DCT coefficients. Signals containing discontinuities have their energy less
concentrated in the DCT domain. This makes the DCT basis less effective for denoising purposes

in presence of edges.
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Fig. 2. Illustration of DDID’s preprocessing of a patch. The
kernel % is computed using the guide ¢. In the modified patch
ym all object discontinuities have been removed, leaving only
the texture information corresponding to the object selected
by the kernel £. The removed pixels are replaced by s: the
average of the meaningful portion of the patch.

This explanation of Dual denoising comes from:
Non-local dual image denoising
N. Pierazzo, M. Lebrun, M. Rais, and G. Facciolo, ICIP 2014
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Steps DA3D
(Data adaptive dual domain
denoising)

This figure shows what happens to a
noisy patch taken in a natural image,
containing an edge. The arrows
indicate the elements needed to
compute every step of the algorithm.
Notice that, thanks to the weight
function, the useful part of the patch
is kept, while the discontinuities are
completely removed.

Taken from
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Fig. 3. Artifacts in DDID. From left to right: the noisy image
(with o = 30), the result of the first, second, and last iteration
of the algorithm.
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(a) Original (b) Noisy (¢c) DDID (d) NLDD

Fig. 1. A detail of the artifacts produced by DDID and the
corresponding result of NLDD. In this example o = 30.

Pierazzo, N., Lebrun, M., Rais, M. E. & Facciolo, G. (2014,
October). Non-local dual image denoising. ICIP 2014
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Joseph-Nicéphore Niépce (1765-1833): first indoor photograph,

Denoised by the Noise Clinic, IPOL (Image Processing on Line www.ipol.im)


http://www.ipol.im/

Joseph-Nicéphore Niépce (1765-1833): first indoor photograph,

Denoised by the Noise Clinic, IPOL (Image Processing on Line www.ipol.im)


http://www.ipol.im/
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It has been long admitted that the structure of 2D functions is described by local characteristics,
for example a local Fourier or wavelet expansion, or more trivially a Taylor expansion of some
order. The regularity of the function would be encoded in the decay of a local expansion or in
the boundedness of some norm measuring regularity (Sobolev, Besov, BV,...).

Image processing has strayed away from this model inherited from harmonic analysis and
geometric measure theory. It looks directly at the “patch space”.

Patches are 8 * 8 or 10 * 10 square images cropped from any image. Image characteristics
seem to be better described in the patch space (of dimension 64, 100,...). This is a dimension
reduction (from the space of images that would have a dimension of several millions), or on the
contrary a dimension lifting from two dimensions (the image) to many more.

Can we explore the patch space and find some evidence about its regularity? This is an
experimental question, because we can now analyze patches by billions. Still, this is a far too
small number to sample a space in such a high dimension, unless it shows some regularity.

Even the sparse information that we have gathered on the patch space changes our view of
image perception.

I’ll illustrate it on two classic image processing problems: image denoising and anomaly
detection.



L35 B nomber of patches assigned 1o each Giesian - B nomber of patches assgned o eech Giessian
20 i
04 LAEE
138 [ 8-]
A0S
LR
[
0
UEER
s 02
|
e ulall..... PR T P B [ PR o ] Tl . L
[ a5 53 5 154 1335 150 175 00 & L1 5 5 194 135 1545 175 200
- 1%
wisd BN nomber of palches assgned to each Geussian EE nomber of patches assigned to esch Geessian
.54 4
0E4
LB
niz
BB
LR L-E
LAE
028 4
e [ =]
o Liah
[{E-¥] LR
|
(e - (T
[ a5 53 5 154 135 153 175 00 & 5 53 5 144 135 1548 175 200

B nomber of patches assgned o esch Geressian
0i44

IR

0.4 4

LE=C

024

nag A

00 =
o 5 - ke e 135 ] 175 200

FIGURE 9.1 — At each iteration g = (1,4, 8,16, 32), number of Gaussians applied to
each component of the GMM



Results and
PSNR of DCT
denoising
without
oracle
(1step),

with oracle
(2step),

and with
multiscale
using
patches of
sizes
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Minimum log NFA =-10.7

log NFA = -45.3,



A-contrario Detectablllty of Spots in Textured Backgrounds (2009) B. GrOSJean and L. M0|san

(¢’) R=50 (NF A3=0.2)

log NFA = -63. log NFA = -18. no detection



A-contrario Detectability of Spots in Textured Backgrounds (2009) B. Grosjean and L. Moisan

Minimum logNFA =-27.4337 Minimum logNFA =-27.05 Minimum logNFA =-39.2857
Bayesian
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NL-Bayes : the only diference w.r. to global denoising is that a

Gaussian model is locally estimated in the image patch space
e patch noise model P(P|P) =c-e” Tt
, 5\ P(P|P)P(P)
e Bayes' rule P(P|P) = )

_ (@—F)'c, ' (o—P)
@ assume we got a patch Gaussian model P(Q) = c.e™ 2

@ hence the variational problem

max P(P|IP) < max P(P|P)P(P)

|P— P2 (P—PF)ic, H(P—P)
< maxe 2202 ¢ 2
P
[P —PJ? 5 =
min M (P ="PYCs (P = P).
T

@ An empirical covariance matrix Cs can be obtained for the patches

é similar to P. P and the ngise n being independent,

Cﬁ,:Cernzi; EQ=P
A. Buades, M. Lebrun, J.M.M. : A Non-local Bayesian image denoising algorithm, SIIMS 2013

. . o . 106
4-The Bayesian denoising paradigm from « non-local » to « global »



Bayesian denoising : NL-Bayes

maxp B(P|P) & minp L2225 4 (P — By(Cp — 021)"'(P - P)
(

one step estimation 151 = - [Cﬁa - n'zl] CB — E] where empirically:

1 = B\(A B = 1 ~
cf’ﬁ#mﬁ)—%;ﬁgmp)(mp)' " ), 2,

T]- — e
lteration ( “oracle estimation™): b=P + Cp, [Cﬁl —|—G'2|] (P—-P )

where

1 g =4 ~ =1\ = 1 -
E v - Q—P)(Q—P). P~ Q.
M PP -1, Zﬁ : 1 PR =

QPP

A. Buades, M. Lebrun, J.M.M.: A Non-local Bayesian image denoising algorithm, SIIMS 2013

. . o . 107
4-The Bayesian denoising paradigm from « non-local » to « global »



function x = DDID(y, sigma2)

x = step(y, y, sigma2, 15, 7, 100, 4.0);

X = step(x, y, sigma2, 15, 7, 8.7, 0.4);

x = step(x, vy, sigma2, 15, 7, 0.7, 0.8);
end

function xt = step(x, y, sigma2, r, sigma_s, gamma_r, gamma_f)

[dx dy] meshgrid(-r:r);
h = exp(- (dx.”2 + dy.”2) / (2 * sigma_s"2));

Xxp = padarray(x, [r r], ‘symmetric’);
yp = padarray(y, [r r], 'symmetric’);
xt = zeros(size(x));

parfor p = l:numel(x), [1 j] = ind2sub(size(x), p);

% Spatial Domain: Bilateral Filter

g = xp(il:i+2*r, j:j+2%r);

y = yp(i:i+2*r, j:j+2%r);

d =g - g(l+r, 1+r);

k = exp(- d.”2 ./ (gamma_r * sigma2)) .* h; % Eq. 4
gt = sum(sum(g .* k)) / sum(k(:)); % Eq. 2
st = sum(sum(y .* k)) / sum(k(:)); % Eq. 3
% Fourier Domain: Wavelet Shrinkage

V = sigma2 .* sum(k(:).”2); % Eg. 5
G = fft2(ifftshift((g - gt) .* k)); % Eq. 6
S = fft2(ifftshift((y - st) .* k)); % Eq. 7
K = exp(- gamma_f x V ./ (G .x conj(G))); % Eq. 9
St = sum(sum(S .x K)) / numel(K):; % Eq. 8
xt(p) = st + real(St); % Eq. 1

end
end

Algorithm 1: MATLAB code of Dual-Domain Image Denoising.
This code reproduces all grayscale images in this paper:

Dual domain denoising Claude Knaus, Matthias Zwicker, ICIP 2013 108



(a) Smooth signal

(b) DCT of smooth signal

/ N\

I II II II II -Il N L -IJI1-.l.I.ll.I_Il.

(c) Signal with discontinuity (edge)

(d) DCT of signal with discontinuity

Figure 2.6 — Behaviour of DCT coefficients. Signals containing discontinuities have their energy less
concentrated in the DCT domain. This makes the DCT basis less effective for denoising purposes

in presence of edges.
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Fig. 2. Illustration of DDID’s preprocessing of a patch. The
kernel % is computed using the guide ¢. In the modified patch
ym all object discontinuities have been removed, leaving only
the texture information corresponding to the object selected
by the kernel £. The removed pixels are replaced by s: the
average of the meaningful portion of the patch.

This explanation of Dual denoising comes from:
Non-local dual image denoising
N. Pierazzo, M. Lebrun, M. Rais, and G. Facciolo, ICIP 2014
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Steps DA3D
(Data adaptive dual domain
denoising)

This figure shows what happens to a
noisy patch taken in a natural image,
containing an edge. The arrows
indicate the elements needed to
compute every step of the algorithm.
Notice that, thanks to the weight
function, the useful part of the patch
is kept, while the discontinuities are
completely removed.

Taken from
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Fig. 3. Artifacts in DDID. From left to right: the noisy image
(with o = 30), the result of the first, second, and last iteration
of the algorithm.
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(a) Original (b) Noisy (¢c) DDID (d) NLDD

Fig. 1. A detail of the artifacts produced by DDID and the
corresponding result of NLDD. In this example o = 30.

Pierazzo, N., Lebrun, M., Rais, M. E. & Facciolo, G. (2014,
October). Non-local dual image denoising. ICIP 2014
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6-The noise clinic

The noise clinic at IPOL: estimating and denoising « any » image. This
requires to estimate the noise before denoising. For image that have
been manipulated, noise can be :

-signal dependent

-frequency dependent

-scale dependent

Thus « noise curves » are established for each color level, each dyadic
scale and each DCT frequency

Based on this a Bayesian algorithm can be applied (NL-Bayes)

Where to test all algorithms: Image Processing on Line (IPOL) http://www.ipol.im/

Lebrun, Marc, Miguel Colom, and JMM. "The Noise Clinic: a blind image
denoising algorithm." Image Processing On Line 5 (2015): 1-54.

114


http://www.ipol.im/

Yy ad

V|ew from the Wlndow at Le Gras (1826) Joseph Nlcephore Nlepce



« Denoising attempt

Denoised by the Noise Clinic, IPOL (Image Processing on Line www.ipol.im)



http://www.ipol.im/
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View from the Window at Le Gras (1826), Joseph Nicéphore Niépce 117




The oldest heliographic engraving known in the world a reproduction of a 17th century
Flemish engraving. Nicéphore Niépce in 1825, ( Bibliothéque nationale de France). 118



http://en.wikipedia.org/wiki/Nic%C3%A9phore_Ni%C3%A9pce
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Joseph-Nicéphore Niépce (1765-1833): first indoor photograph,

Denoised by the Noise Clinic, IPOL (Image Processing on Line www.ipol.im)


http://www.ipol.im/

Joseph-Nicéphore Niépce (1765-1833): first indoor photograph,

Denoised by the Noise Clinic, IPOL (Image Processing on Line www.ipol.im)


http://www.ipol.im/

Joseph-Nicéphore
Niépce (1765-1833)

Photograph by
Dujardin of a
portrait of N. Niépce
by L.F. Berger. Repr.
by Giinter Josef Radig,
Wikipedia

We can as well denoise
the scanned version of
a 19th century
photograph of this
portrait...
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Joseph-Nicéphore Niépce
(1765-1833)

Denoised by the Noise
Clinic,

IPOL (Image Processing
on Line www.ipol.im)
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Joseph-Nicéphore Niépce
(1765-1833)

Difference between
portrait and its denoised
version by the Noise
Clinic, IPOL (Image
Processing on Line
WwWw.ipol.im)

Making the difference

between original and
denoised permits to
check if some detail has
been removed at the
same time as the noise.
It is the case here.



http://www.ipol.im/

Joseph-Nicéphore Niépce (1765-1833)
He made in 1826 the first outdoor
successful photograph — an image of
his courtyard, seen from his house —
by putting a pewter plate coated with
bitumen (a light-sensitive material)
in the back of a camera obscura, a
black box with a pinhole.

He also made the first known indoor
heliographic engraving in 1825.
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THE NoOISE CLINIC




THE NOISE CLINIC




THE NoISE CLINIC
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$*:

Denoised by noise clinic

Than you: guestions?

Where to test all algorithms: Image Processing on Line (IPOL) http://www.ipol.im/ ¢
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A-contrario Detectability of Spots in Textured Backgrounds (2009)
B. Grosjean and L. Moisan
Tumor detection in mammography (data: General Electric)

Problem:
background
too complex
(and samples
too sparse) for
a simple
stochastic
model!

(a) Original image b= 1
“Figure 9: A-contrario detection of spots in a mammography image, for two values of the threshold “ applied to the
detection metric NFA.. The large opacity is well detected (its NFA.is equal to 0.15). Some clinically wrong detections also

occur (small spots), mainly because the curvilinear breast structures are not taken into account by the texture model (these are
false alarms clinically speaking, but are not with respect to the naive model used for the breast texture).”



A-contrario Detectability of Spots in Textured Backgrounds (2009) B. Grosjean and L. Moisan

R =10 R=130 R =280

Figure 2: Examples of simulated spots with various sizes (R = 10, 30 and 80) but similar contrast, in a white noise texture (top row) and in a
colored noise texture (bottom row). In the white noise texture, the saliency of the spot increases with its size. On the contrary, in the colored
noise background, the unexpected reverse phenomenon occurs: the larger the spot, the less visible it is.



Type 2 Anomaly detection

e Take the difference image N = u — u where u is the estimated image model. N
should be white noise.

e Compute the standard deviation o of NV
e Detect all exceptional pixels r, such that P(N(z) > so), (s=4)

e For each square window W with size n (e.g. n = 16%); count the number k of
exceptional pixels in W

e Compute the Number of false alarms of the exceptional square window,

NFA(k,s) =n' ( g ) P(N(z) > so)k. (n’ is the number of tested regions)

T

Desolneux, Agnes, Lionel Moisan, and JMM. From gestalt theory to image analysis: a probabilistic
approach. Vol. 34. Springer Science & Business Media, 2007.
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A-contrario
Detectability of Spots
in Textured
Backgrounds (2009)
B. Grosjean and L.
Moisan

(a) Original image

NFA = 0.15 for the tumor, many false detections

log NFA = -39.2857
By the very same method applied
to the noise




