### Pourquoi certains groupes d'espèces diversifient-ils plus ou moins rapidement que d'autres?





Hélène Morlon

Ecole Normale Supérieure



#### Some species groups are much more species rich than others





### Some species groups are much more species rich than others



## Some regions of the planet are much more species rich than others



Davies et al. PNAS 2008

### Current levels of species richness result from the balance of speciation and extinction events





Present-day species richness

Speciation rate average number of speciation events per Myr per lineage

#### **Extinction** rate

average number of extinction events per Myr per lineage

Net diversification rate speciation rate – extinction rate



### Have species poor groups always been poor or are they the remnants of a diverse past?





### Historically, processes of speciation and extinction have been studied through the fossil record



### Studying deep time variations in biodiversity using the phylogenies of present-day species



6 000 mammal species Upham et al. PloSB 2019



> 7 000 amphibian species
Jetz & Pyron Nat Ecol Evol 2018



2.2 Million species on a single tree



10 000 bird species

Jetz et al. Nature 2012





Phylogenies represent the order and timing of divergences between ancestral species that led to present-day species

> Phylogenies are constructed from the genetic (and sometimes phenotypic) similarity between present-day species



#### The datation is performed with fossil calibrations and the molecular clock



By fitting birth-death models of cladogenesis to phylogenies, we can estimate speciation and extinction rates and how they vary through time and species groups



Under the homogeneous constant rate birth-death process with speciation rate  $\lambda$  and extinction rate  $\mu$ , extinction leaves a distinctive signal in reconstructed phylogenies even though extinct taxa are not observed



Figure from Ricklefs TREE 2007

Nee et al. PTB 1994

Given an empirical phylogeny, we can compare the statistical support of different diversification models, and estimate parameters of these models, i.e.  $\lambda$  and  $\mu$ , using likelihood-based statistical inference



#### From the 90's to today:

a battery of new models to quantify how diversification rates vary...

... across lineages



Stadler *et al.* PNAS 2011, Morlon *et al.* PNAS 2011, May *et al.* MEE 2016, etc...



Alfaro *et al.* PNAS 2009, Rabosky *et al.* PloS One 2014, Maliet *et al.* NEE 2019, Barido-Sottani *et al.* Syst Bio 2020, etc...

#### Speciation rates vary widely across lineages



Maliet et al. Nature Ecol Evol 2019

## Extinction rates are harder to estimate, but evidence suggests they can vary widely across lineages



Morlon et al. PNAS 2011

### Levels of species richness result from the balance of speciation and extinction events: reconstructing paleodiversity curves



speciation rate extinction rate
$$N(t) = N_0 e^{\int_0^{t} (-\lambda(s) + \bar{\mu}(s)) ds}$$

number of species today



## Current levels of species richness result from the balance of speciation and extinction events





## Current levels of species richness result from the balance of speciation and extinction events





Morlon et al. PNAS 2011

### Levels of species richness result from the balance of speciation and extinction events: reconstructing paleodiversity curves while accounting for uncertainties





**Olivier Billaud** 



Dan Moen



Todd Parsons

Billaud et al. Syst Bio 2019

#### Old and poor frog families are the remnant of a diverse past



Billaud et al. Syst Bio 2019

## Other examples of old and poor groups that are the remnant of a diverse past

2500 20 --- Confidence interval at 95% Number of species (subclades) 2000 Number of Species 1000 1000 10 5 500 0 - 0 P Q Eoc. Oligocene Miocene -25 -20 -15 Time (Myrs) -5 -10 0 -35 -30 500 400 Number of specie 300 200 100 Mazet *et al.* in prep. 11111111 -250 -230 -210 -190 Time (Myrs)

100

60

40

20

Pierre-Henri Fabre

Nathan Mazet



Fabien Condamine



### Current levels of species richness result from the balance of speciation and extinction events





Present-day species richness

Speciation rate average number of speciation events per Myr per lineage

#### **Extinction** rate

average number of extinction events per Myr per lineage

Net diversification rate speciation rate – extinction rate



#### What are the factors that modulate speciation & extinction rates?



**The Court Jester** 

**EXTRINSIC** 



The Red Queen

Abiotic factors climatic variation geological context

**Biotic factors** competition mutualistic and antagonistic interactions

**Species-specific traits** reproduction mode life-history traits dispersal capacity

#### INTRINSIC

### From the 90's to today: a battery of new models to quantify why diversification rates vary through time and across lineages



Condamine *et al.* Eco Lett 2013, Cantalapiedra *et al.* PRSB 2012, etc...





Maddison *et al.* Syst Bio 2004, Fitzjohn *et al.* Syst Bio 2010, Goldberg *et al.* Syst Bio 2011, etc...

#### **Species-specific traits can influence speciation and extinction rates**

Transitions to clonality happen frequently, but clonal species have higher extinction rates



de Vienne et al. 2013 PLoS One Gouyon & Giraud 2009 Aux origines de la sexualité. Fayard



MedievalRich

#### **Species-specific traits can influence speciation and extinction rates**

Transitions to asexuality happen frequently, but sexual species have higher net diversification rates



Goldberg et al. Science 2010

#### Species-specific traits can influence speciation and extinction rates



#### rspb.royalsocietypublishing.org

# Settling down of seasonal migrants promotes bird diversification

Jonathan Rolland<sup>1,2,3</sup>, Frédéric Jiguet<sup>2</sup>, Knud Andreas Jønsson<sup>4,5</sup>, Fabien L. Condamine<sup>1</sup> and Hélène Morlon<sup>1,3</sup>

. . . . . . . . . . . . . . . . . .



1



**The Court Jester** 

# Abiotic factors, such as climatic changes, can influence speciation and extinction rates



Condamine et al. Eco Lett 2013

Temperature affects major aspects of biology through its effect on metabolic rates, body-size, and productivity



Based on the metabolic, body-size and productivity hypotheses, temperature should (positively) affect speciation rates



Based on the metabolic, body-size and productivity hypotheses, temperature should (negatively) affect extinction rates



Models of diversification with rates that depend on measured (a)biotic variables



 $\widetilde{\lambda}(t) = \lambda(t, E_1(t), E_2(t), \dots, E_k(t))$  $\widetilde{\mu}(t) = \mu(t, E_1(t), E_2(t), \dots, E_k(t))$ 





Condamine et al. Eco Lett 2013 Lewitus et al. Syst Bio 2017

### A meta-analysis of the effect of environmental changes on diversification



Comparison of 21 models including constant rate diversification models, models with time-varying rates, diversity-dependent models, and temperature-dependent models

Temperature-dependent models:

exponential dependence:
$$\tilde{\lambda}(t) = \lambda_0 \times e^{\alpha T(t)}$$
linear dependence: $\tilde{\lambda}(t) = \lambda_0 + \alpha T_{(t)}$ metabolic predictions : $\tilde{\lambda}(t) = \lambda_0 \times e^{\frac{\alpha}{T(t)}}$ 









Condamine et al. Eco Lett 2019
#### Climate cooling during the Cenozoic results in a slowdown in diversification



P

66

56

0

23.03

33.9

M

5.33 0

Late K

1.0 0.5 0.0

# What are the environmental factors that shaped the diversification of diatoms?

« Thoroughly » sampled phylogeny of diatoms (~20,000 OTUs) obtained by grafting metabarcoding data from the *Tara* oceans expedition onto a robust phylogeny of reference sequences





Lewitus et al. Nature Ecol Evol 2018

Raphid pennate

## How did past environmental conditions shape the diversification of diatoms?



5 abiotic and 4 biotic variables

Lewitus et al. Nature Ecol Evol 2018



Lewitus et al. Nature Ecol Evol 2018

#### Post-LE, distinct diatom clades are influenced by different environmental factors, and not necessarily in the same way





The Red Queen

#### Biotic factors, such as competition and mutualistic or antagonistic interactions, can influence speciation and extinction rates











In verbal evolutionary theories, such as the theory of adaptive radiations, interspecific competition is thought to induce fast speciation followed by a diversification slowdown as species fill ecological niche space

> Simpson 1953 Harmon et al. Science 2003





#### The effect of competition has been tested by testing the support for models with declining speciation rates ("early burst" models)



Rabosky & Lovette Evolution 2008



# The effect of competition has also been tested by testing the support for models with diversity-dependent diversification

| PROCEEDIN | IGS |
|-----------|-----|
| THE ROYAL | B   |

Proc. R. Soc. B (2012) 279, 1300–1309 doi:10.1098/rspb.2011.1439 Published online 12 October 2011

#### Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record

Rampal S. Etienne<sup>1,\*</sup>, Bart Haegeman<sup>2</sup>, Tanja Stadler<sup>3</sup>, Tracy Aze<sup>4</sup>, Paul N. Pearson<sup>4</sup>, Andy Purvis<sup>5</sup> and Albert B. Phillimore<sup>5</sup>

<sup>1</sup>Community and Conservation Ecology, Centre for Ecological and Evolutionary Studies,



Etienne et al. PRSB 2012

Beyond verbal expectations: a simulation model to assess under which conditions we can actually expect competition to generate a slowdown in diversification rates





Aristide & Morlon Eco Lett 2019

#### The matching competition birth-death model (MCBD)

1. Competition drives character displacement

$$x_{i}(t + dt) = x_{i}(t) + m\alpha \left[ \sum_{j \neq i}^{n} sign\left(x_{i}(t) - x_{j}(t)\right) \times e^{-\alpha \left(x_{i}(t) - x_{j}(t)\right)^{2}} \right] dt + \delta$$

$$\uparrow$$
value lineage i
stochastic displacement

α

trait value lineage i



Aristide & Morlon Eco Lett 2019

## The matching competition birth-death model (MCBD)

2. Character displacement speeds up speciation

Protracted speciation model Etienne & Rosindell Syst Bio 2012

Speciation initiation: rate  $\lambda_1$ Speciation completion: rate  $\lambda_2$ 

$$\lambda_{2i}(t) = \tau_0 e^{\beta \left(x_j(t) - x_k(t)\right)^2}$$

Aristide & Morlon Eco Lett 2019

## The matching competition birth-death model (MCBD)

3. Phenotypically similar species experience competitive exclusion

$$\mu_{i} = \alpha \mu_{0} e^{-\alpha (\sum_{j \neq i} (x_{i}(t) - x_{j}(t))^{2})} + \mu_{bg}$$



Aristide & Morlon Eco Lett 2019

## Competition produces declines in diversification rates, even if trait space is unbounded



Aristide & Morlon Eco Lett 2019

Declines in diversification rates do not leave a clear signal in reconstructed phylogenetic trees, at least not as detected by currently available models



Aristide & Morlon Eco Lett 2019

Opinion

**Cell**Press

### Why does diversification slow down?

**Daniel Moen and Hélène Morlon** 





**Trends Ecol Evol 2014** 



Verbal evolutionary theories on the effect of mutualistic and antagonistic interactions on diversification rates remain poorly tested



Robustly testing such theories would require modeling the ecoevolutionary emergence of interaction networks and building associated inference tools to fit them to empirical data

#### REVIEW

wind Biology

#### Detecting the macroevolutionary signal of species interactions

Luke J. Harmon<sup>1,2</sup> | Cecilia S. Andreazzi<sup>3</sup> | Florence Débarre<sup>4</sup> | Jonathan Drury<sup>5</sup> | Emma E. Goldberg<sup>6</sup> | Ayana B. Martins<sup>1,7</sup> | Carlos J. Melián<sup>1</sup> | Anita Narwani<sup>8</sup> | Scott L. Nuismer<sup>2</sup> | Matthew W. Pennell<sup>9</sup> | Seth M. Rudman<sup>10</sup> | Ole Seehausen<sup>1,11</sup> | Daniele Silvestro<sup>12</sup> | Marjorie Weber<sup>13</sup> | Blake Matthews<sup>1,14</sup>

**JEB 2018** 

#### Annual Review of Ecology, Evolution, and Systematics

Ecological Interactions and Macroevolution: A New Field with Old Roots

David H. Hembry<sup>1,2</sup> and Marjorie G. Weber<sup>3</sup>

#### **Review**

#### **TREE 2017**

Evolution in a Community Context: On Integrating Ecological Interactions and Macroevolution

Marjorie G. Weber,<sup>1,\*</sup> Catherine E. Wagner,<sup>2</sup> Rebecca J. Best,<sup>3,4</sup> Luke J. Harmon,<sup>3,5</sup> and Blake Matthews<sup>3</sup>







#### BipartiteEvol: An individual based model for the ecoevolutionary emergence of bipartite interaction networks

Individuals from 2 guilds A and B and characterized by a 3-dimensional trait evolve on a fixed grid







Maliet et al. Ecology Letters 2020

### An individual based model for the eco-evolutionary emergence of bipartite interaction networks



the replacing individual is the child from a parent drawn in A according to its fitness, which depends on its trait value and that of the interacting individual from B (trait matching)



the child can experience a mutation that generates a gaussian trait

**REPEAT WITH GUILD B, AND REPEAT FOR MANY GENERATIONS** 

### An individual based model for the eco-evolutionary emergence of bipartite interaction networks

We define species as "the smallest monophyletic group of individuals such that two individuals from different species are separated by at least s mutations"



Genealogy of individuals

Species phylogeny

Manceau et al. Eco Lett 2015 Rosindell et al. Eco Lett 2015

#### An individual based model for the eco-evolutionary emergence of bipartite interaction networks

Two individuals interact if they are on the same grid cell Two species interact if at least one individual from each species interact



Maliet et al. Ecology Letters 2020

# Mutualist and antagonist interactions lead to very different eco-evolutionary dynamics



Maliet et al. Ecology Letters 2020

# Antagonism fosters, while mutualism impedes, trait and species diversity



### Co-evolution occurs in antagonistic, but not mutualistic networks



#### Mutualistic networks are nested, while antagonistic networks are modular, as observed in empirical communities



### What are the factors that modulate speciation & extinction rates?



**The Court Jester** 

**EXTRINSIC** 



The Red Queen

Abiotic factors climatic variation geological context

**Biotic factors** competition mutualistic and antagonistic interactions

**Species-specific traits** reproduction mode life-history traits dispersal capacity

#### INTRINSIC

# By which processes do various factors modulate speciation and extinction rates?

Abiotic and biotic factors, in combination with speciesspecific traits, influence extinction rates by their effects on demography

# By which processes do various factors modulate speciation and extinction rates?

Abiotic and biotic factors, in combination with species-specific traits, must influence speciation rates by somehow influencing the speciation process



# Mixed support for an association between reproductive isolation and speciation rates

Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in *Drosophila* and birds

Daniel L. Rabosky<sup>a,1</sup> and Daniel R. Matute<sup>b</sup>



Michael G. Harvey<sup>a,b,c,d,1</sup>, Glenn F. Seeholzer<sup>a,b</sup>, Brian Tilston Smith<sup>a,b,e</sup>, Daniel L. Rabosky<sup>c,d</sup>, Andrés M. Cuervo<sup>a,b,f</sup>, and Robb T. Brumfield<sup>a,b</sup>

# No link between population isolation and speciation rate in squamate reptiles

Sonal Singhal<sup>a,1</sup>, Guarino R. Colli<sup>b</sup>, Maggie R. Grundler<sup>c,d</sup>, Gabriel C. Costa<sup>e</sup>, Ivan Prates<sup>f,g</sup>, and Daniel L. Rabosky<sup>f,g,1</sup>

## Are genetic diversity and speciation rates coupled in mammals? Genetic diversity > 0.017 0.011 - 0.017 0.008 - 0.011 0.006 - 0.008 0.005 - 0.006 0.003 - 0.005 0.002 - 0.003 < 0.002 53.58 Mbp

#### Are genetic diversity and diversification rates coupled?



Under geographic and ecological models of speciation, we expect a positive association between genetic diversity and speciation rate

Testing the impact of effective population size on speciation rates – a negative correlation or lack thereof in lichenized fungi

Jen-Pan Huang<sup>1</sup>, Steven D. Leavitt<sup>2</sup> & H. Thorsten Lumbsch<sup>1</sup>

#### **Estimating intraspecific genetic diversity**

GenBank "Mammalia"[Organism] AND CYTB NOT "Homo sapiens"[Organism] 124,289 sequences of mammals Cytochrome b

Split into 138 families for better alignments



#### **Estimating branch-specific speciation rates**

• ClaDS estimates on Upham's PLoS Biology 2019 mammals phylogeny



#### Negative correlation between genetic diversity and speciation rates



# The negative correlation between genetic diversity and speciation rates is not linked to an indirect effect of life history traits

|                           | $\theta_{\pi}$ ~ Traits |       |          |                     | $\lambda$ ~ Traits |       |          |                    | $\theta_{\pi} \sim \lambda + \text{Traits}$ |       |          |                     |
|---------------------------|-------------------------|-------|----------|---------------------|--------------------|-------|----------|--------------------|---------------------------------------------|-------|----------|---------------------|
| ···                       | PGLS                    |       | BLML     |                     | PGLS               |       | BLML     |                    | PGLS                                        |       | BLML     |                     |
| Term                      | Estimate                | SE    | Estimate | 95% CI              | Estimate           | SE    | Estimate | 95% CI             | Estimate                                    | SE    | Estimate | 95% Cl              |
| λ                         |                         |       |          |                     |                    |       |          |                    | -0.264                                      | 0.077 | -0.266   | [-0.408;<br>-0.107] |
| Body Mass                 | -0.145                  | 0.026 | -0.147   | [-0.202;<br>-0.095] | 0.007              | 0.010 | 0.007    | [-0.012;<br>0.025] | -0.139                                      | 0.025 | -0.143   | [-0.198;<br>-0.09]  |
| Range area                | 0.137                   | 0.014 | 0.137    | [0.109;<br>0.166]   | -0.005             | 0.003 | -0.005   | [-0.011;<br>0]     | 0.131                                       | 0.015 | 0.131    | [0.103;<br>0.159]   |
| Range mean<br>temperature | 0.330                   | 0.087 | 0.329    | [0.167;<br>0.501]   | -0.021             | 0.018 | -0.021   | [-0.057;<br>0.014] | 0.307                                       | 0.087 | 0.307    | [0.125;<br>0.475]   |
| Litter size               | -0.420                  | 0.091 | -0.420   | [-0.609;<br>-0.231] | 0.051              | 0.028 | 0.050    | [-0.004;<br>0.105] | -0.400                                      | 0.089 | -0.406   | [-0.581;<br>-0.234] |
| Generation<br>length      | -0.074                  | 0.105 | -0.072   | [-0.266;<br>0.139]  | -0.008             | 0.030 | -0.010   | [-0.067;<br>0.049] | -0.084                                      | 0.102 | -0.082   | [-0.283;<br>0.129]  |
### What might explain the negative association between genetic diversity speciation rate?



Hypothesis 1: Speciation exerts a limit on species genetic diversity rather than the other way round

Rapid speciation limits the accumulation of genetic diversity

### What might explain the negative association between genetic diversity and speciation rate?



Hypothesis 2: Species that are highly geographically structured and with reproductively isolated populations indeed experience more frequent speciation events, but genetic diversity is inversely rather than positively correlated to geographic structure (Withlock 2004)

### What might explain the negative association between genetic diversity and speciation rate?



Hypothesis 3: Under the demographic model of speciation, species with small rather than large effective population sizes accumulate reproductive incompatibilities faster because of a reduced efficiency of purifying selection (Maya-Lastra & Eaton 2021)





What might explain the negative association between genetic diversity and speciation rate?

Hypothesis 1: Speciation exerts a limit on species genetic diversity rather than the other way round

Hypothesis 2: Genetic diversity is inversely rather than positively correlated to population isolation

Hypothesis 3: Species with small rather than large effective population sizes accumulate reproductive incompatibilities faster

At which stage of the speciation cycle are we measuring genetic diversity (or genetic differentiation, or population isolation)?



At which stage of the speciation cycle are we measuring genetic diversity (or genetic differentiation, or population isolation)?



At which stage of the speciation cycle are we measuring genetic diversity (or genetic differentiation, or population isolation)?



Low genetic diversity in newly formed species

The reciprocal effect of speciation on microevolutionary (intraspecific) measures of differentiation complicates the interpretation of correlations



What are we actually measuring when we measure speciation rate using comparative methods?

**Stochastic birth-death process** 

speciation rate  $\lambda$ extinction rate  $\mu$ 



Speciation is considered to be an instantaneous event by which two populations of the same ancestral species give rise to two distinct descendant species

What are we actually measuring when we measure speciation rate using comparative methods?





Cetartiodest

#### The protracted speciation model as a way to bridge micro and macroevolutionary speciation research?



Could we estimate the speciation initiation and extinction rates with intraspecific genetic data?

Could we estimate species-specific rates?

Etienne & Rosindell Syst Bio 2012

Etienne et al. Evolution 2014

### The protracted speciation model as a way to bridge micro and macroevolutionary speciation research?



Etienne & Rosindell Syst Bio 2012

The protracted speciation model remains phenomenological, with no account of the interplay between speciation and demography / intraspecific genetic differentiation

## Towards macroevolutionary models accounting for the interplay between speciation and demography / intraspecific

#### genetic differentiation



 $\sigma^2$  stochastic variation

Demographic process





each species follows density-dependent population dynamics

Overcast et al. in prep.

growth rate evolves as a Brownian

random split of individuals at speciation

Extinction naturally proceeds from the death of all individuals in a given species

#### + Population genetics

demography controls Ne



The model predicts either a positive or negative association between speciation rate and genetic diversity depending of the relative pace of speciation and accumulation of genetic diversity



The model can be fitted to data using machine learning techniques

Overcast et al. in prep.

# Towards macroevolutionary models accounting for the interplay between speciation and demography / intraspecific genetic differentiation



#### Conclusions

Speciation and extinction rates vary widely across lineages, explaining why some species groups are much more species rich than others

Differences in speciation and extinction rates can be linked to species specific traits as well as abiotic and biotic factors

We have well developed models to assess the effect of species-specific traits and abiotic factors on speciation and extinction rates; testing the effect of interspecific interactions remains challenging

Understanding which microevolutionary processes act a rate-limiting step in speciation (and therefore drive present day species richness patterns) also remains a major research frontier





Isaac Overcast



Odile Maliet



**Olivier Billaud** 



Dan Moen





Leandro Aristide



Nathan Mazet

Fabien Condamine













### What is the role of key innovations in the diversification of life?



Ronquist et al. Comm Biol 2021

#### Both mutation rates and Ne are negatively correlated to speciation rates



Silva et al. in prep.