Mécanique de la Morphogenèse

Cours 1: Organisation et plasticité tissulaires

Thomas Lecuit chaire: Dynamiques du vivant

How to account for the emergence of complex shapes?

Growth Shape
Control

How to account for the extraordinary diversity of shapes?

DE FRANCE

Thomas LECUIT 2017-2018

How to account for the extraordinary diversity of shapes?

Diversity of forms:
 Are there general principles?

>>mathematical regularities and physical principles underlying forms and transformations

A mathematical understanding of forms

Buffon

GL Leclerc, comte de Buffon (1707-1788)
« On donne plus d'esprit aux mouches dont les ouvrages sont le plus réguliers; les abeilles sont, dit-on, plus ingénieuses que les guêpes, que les frelons etc., qui savent aussi l'architecture, mais dont les constructions sont plus grossières et plus irrégulières que celles des abeilles:
on ne veut pas voir, ou l'on ne se doute pas, que cette régularité, plus ou moins grande, dépend uniquement du nombre et de la figure, et nullement de l'intelligence de ces petites bêtes; plus elles sont nombreuses, plus il y a des forces qui agissent également et s'opposent de même, plus il y a par conséquent de contrainte mécanique, de régularité forcée, et de perfection apparente dans leurs productions ».

A mathematical understanding of forms

d'Arcy W.Thompson

1917
« A certain mathematical aspect of morphology to which as yet the morphologist gives little heed, is interwoven with his problems, complementary to his descriptive task, and helpful, nay essential to his proper study and comprehension of Growth and Form.»
«For the harmony of the world is made manifest in Form and Number, and the heart and soul of all the poetry of Natural Philosophy are embodied in the concept of mathematical beauty.».

d'Arcy Wentworth Thompson (1860-1948)

A mathematical understanding of forms

- Form of cells On Growth and Form. V

-Thermodynamic description: near equilibrium
-Minimisation of surface energy
-Minimisation of surface

Surfaces of revolution of Plateau:
sphere, cylinder, catenoid

d'Arcy W Thompson, On Growth and Form, 1917

A mathematical understanding of forms

- Form of Cell aggregates On Growth and Form. VII

Stable equilibrium

Plateau rules:
Experiments with soap films

- Soap films form flat surfaces
- A maximum of 3 surfaces meet at I edge: $>$ angles between surfaces is 120°
- 4 edges meet at I point: angles between edges is 109.47°

A mathematical understanding of forms

- Form of Cell aggregates On Growth and Form. VII

Minimisation of surface energy
Cells adopt configuration where angles approach 120° (all interfacial tensions are equal) following Plateau rules

Cell aggregates in plants and animals

Hayashi T \& Carthew R, Nature, 431:647 (2004)

d'Arcy W Thompson, On Growth and Form, 1917

A mathematical understanding of forms

- Form of Cell aggregates On Growth and Form. VII

Non-uniform surface tensions can explain a variety of cellular/multicellular arrangements

A mathematical understanding of forms

- Theory of transformations

On Growth and Form. XVII

- System of coordinates
- Closely related forms may be transformed into one another via deformation of the coordinate system.
- A system of forces is responsible for such deformation (defines the magnitude and orientation of forces)
« dispense with many more complicated hypotheses of biological causation »

A mathematical understanding of forms

- Theory of transformations On Growth and Form. XVII

How to account for the extraordinary diversity of shapes?

Can one identify general principles?

- physical : constraints.
> Mechanics, Geometry and Dynamics
- biological: evolving chemistry. >Modes of Regulation

Hard problem: understand how evolving chemistry guides the formation and transformation of shapes within physical constraints

I) Organisation / Static

2) Plasticity / Dynamics

Organisation

Cell parameters X

2D
3D
Number
Size
Shape

Position

Tissue Organisation: Epithelia

>2D Morphogenesis: sheets of cells

$$
\begin{aligned}
\text { Epithelia: } & \text { - Chemical barrier } \\
& \text { - Mechanical fence } \\
& \text { - Polarised/vectorial organisation: } \\
& \text { apico-basal and planar. }
\end{aligned}
$$ -

Tissue Organisation: Epithelia

>2D Morphogenesis: sheets of cells
Epithelia: - Chemical barrier

- Mechanical fence
- Polarised/vectorial organisation: apico-basal and planar.

Tissue Organisation: Epithelia

- Apico-basal polarity
- Intercellular adhesion
- F-actin scaffold
- Conserved properties across animals

Gibson M. \& Perrimon N. Science. 307:1785. 2005

Tissue Organisation: Epithelia

- sheets of cells

Epithelia: Variation on the theme of cell shape

Tissue Organisation: Epithelia

2D sheets of cells

Epithelia: Variation on the theme of tissue shape
 - flat: skin, epidermis/ectoderm
 - curved: gut, embryos

Human colon
Human gallbladder

Chick neural tube

Tissue Organisation: Epithelia

Robust geometric tiling

Basaltic tiling (Ireland)

Tissue Organisation: Fibroblasts and mesenchymal cells

Fibroblasts

- Adhesion to substratum (extracellular matrix)
- Motile cells: protrusive activity (Actin filaments)

Actin filaments
Microtubules

Tissue organisation: plant epidermal cells

- Cells are immobile
- Cells grow and divide
- Cells are surrounded by a rigid wall
- Cell-Cell adhesion

Plant epidermis
 Epidermal cells

Palisade cells

Lower
Epidermal cells

Leaf Helleborus niger

COLLEGE
DE FRANCE

Tissue organisation: plant epidermal cells

- Cells are surrounded by a rigid wall
- Cell-Cell adhesion: middle lamella (pectin cross linking)

http://web.mnstate.edu/marryand/research_interests.htm
Thomas LECUIT 2017-2018

I) Organisation / Static

2) Plasticity / Dynamics

Cellular Dynamics in Plant and Animal Morphogenesis

von Wangenheim et al. and Maizel A. Current Biol 26.1-11 2016
Arabidopsis thaliana

COLLÈGE
DE FRANCE
Thomas LECUIT 2017-2018

Dynamics

Cell parameters X Time Space
 Outcome

〔 Number
Size
Rates
Orientation
Shape
$d(X) / d t \quad d(X) / d x d y d z$
Position

Growth
Remodelling
Movement

Origin of Dynamics

At cellular level

- Active Forces:
- Contractility/tension:
- Protrusive forces:
- Turgor pressure:

Machines

Motors
F-actin polymerisation
Function
Shape changes
Motility

- « osmotic engine»
- mass increase

Growth
Ion and water transporters
Protein translation

- Resistive forces:
- adhesion: cell-cell and to substratum (animals)
- wall synthesis (plants)

Motility/
Shape changes
Growth/
Shape changes

Connectedness between cells

- Three Modalities
(along gradients of cell adhesion and stiffness)
« Free »

Gaz

- Mesenchymal cells in 3D

Adhesive $\quad \longleftrightarrow \quad$ Fluid (viscoelastic)

- Epithelial cells in 2D

Strongly Coupled \longleftrightarrow Solid (elastic/plastic)

- Plant cells in 3D

Mesenchymal Morphogenesis in 3D

« free »

Gaz

- Chick Gastrulation and axis elongation

\square ectodem \square mesoderm \square prospective endoderm \square endoblast
Developmental Biology. S. Gilbert

Mesenchymal Morphogenesis in 3D

- Chick Gastrulation and axis elongation

Mesenchymal Morphogenesis in 3D

«free » $\longleftrightarrow \quad G a z$

- Chick Gastrulation and axis elongation

B. Bénazéraf (Pourquié lab)

Mesenchymal Morphogenesis in 3D

«free » $\quad \longleftrightarrow \quad G a z$

- Chick Gastrulation and axis elongation

- Cells exhibit directional flow within embryo referential
- Cells have random « diffusive » behaviour with respect to extra cellular matrice
- Gradient of cell « diffusion »/motility from the node

Mesenchymal Morphogenesis in 3D

«free » $\quad \longleftrightarrow \quad G a z$

- Chick Gastrulation and axis elongation

$T(i \pm 1 \mid i)=\frac{\Delta t}{(\Delta x)^{2}}\left(\frac{D(u, s)_{i}+D(u, s)_{i \pm 1}}{2}\right)$
$T(i \pm 1 \mid i)=$ Transition probability for the cell in position ito move in position $\mathrm{i}+1$ or $\mathrm{i}-1$
$D(u, s)$: cell diffusivity depends on local signaling molecule, s concentration (FGF) and local cell density, u

Box 1 Figure | Simulation results at $\boldsymbol{t}=\mathbf{0 , 5 0 , 1 0 0 , 2 5 0}$. Without a gradient of cell motility (left panel), and with a gradient of cell motility (right panel).

Cai et al. Bull Math Biol. 68:25. 2006

Connectedness between cells

«free »
 adhesive

 Fluid (viscoelastic)
 strongly coupled

 Solid (elastic/plastic)

3D Morphogenesis in plants

Dictated by growth and cell division patterns

from Chun Ming-Liu (C.A.S. Beijing), via http://biology.kenyon.edu/
Embryogenesis in Arabidopsis thaliana

3D Morphogenesis in plants

Dictated by specific growth and cell division patterns

Arabidopsis embryogenesis
Galetti R., Verger S., Hamant O.\& Ingram GC. Development. 143:3249. 2016

3D Morphogenesis in plants

Growth dynamics underlying petal shape and asymmetry

see Conformal transformations (e.g. d'Arcy Thompson)

3D Morphogenesis in plants

Mechanics of walled cells growth: Elasticity

- Turgor Pressure: 0.4-0.8 MPa

(in animal cells, hydrostatic pressure $50-150 \mathrm{~Pa}$)
Beauzamy L. et al. and Hamant O, Boudaoud A. Front. Plant Sc. 6:1038. 2015 Stewart MP et al. and Müller D, Hyman A. Nature. 469:226. 2011
- Wall stiffness opposes and balances turgor pressure.
(in animal cells, actomyosin cortex has a similar, albeit intracellular function: see blebs)
- Regulation of wall stiffness E.
- Polarisation: $E_{x x}, E_{y y}$ MT/Cellulose anisotropy
- Magnitude: cellulose, pectin density, crosslinking

Connectedness between cells

«free»

adhesive

Solid (elastic/plastic)

Epithelial tissues are visco-elastic

- Time-dependency of responses to stress

Elastic properties of epithelia

- Elasticity on short time scales (<10-20s)

Creep response experiments:

Epithelial tissues are viscous fluids

- Tissue fluid flow on long time scales (24h)

Epiblast of quail embryo J. Gros Institut Pasteur
membrane-GFP

Epithelial tissues are viscous fluids

- Tissue fluid flow on long time scale(45 min)

E-cadherin::GFP Drosophila embryo

Epithelia are viscoelastic

Epithelia are viscoelastic

Junctions are sites of adhesion and cortical tension

Epithelial visco-elasticity - Impact of Topological transitions

4 types of cell contact remodelling underly epithelial fluid behaviour

- Junction formation: cell division

- Junction formation: cell apical emergence
- Junction removal: cell extrusion

- Junction exchange: cell intercalation

Epithelial visco-elasticity - Impact of Topological transitions

Formation of new junctions during cell division

E-cadherin::GFP
Myosin-II::Cherry

Epithelial visco-elasticity - Impact of Topological transitions

Formation of a new junction is an active multicellular process

Herszterg \& Bellaïche Trends in Cell Biol. 24:285. 2014

Epithelial visco-elasticity - Impact of Topological transitions

- Cell emergence

- Radial cell intercalation associated with apical emergence
- This is associated with compressive stresses exerted by emerging cell on neighbours
- Requires F-actin network assembly

Radial intercalation: (1) Progenitor cell specification
(2-3) Apical movement and docking (3-4) Apical emergence

Epithelial visco-elasticity - Impact of Topological transitions

- Active removal of junctions during cell extrusion and delimitation

Epithelial visco-elasticity - Impact of Topological transitions

- Cell delamination balances cell division
- Increased cell division/growth induces delamination
- Removal of cell junctions and reduction of apical cell surface

pnr-GAL4 $>$ Tsc1, $\mathrm{Tsc} \mathrm{S}^{<\mathrm{s}^{\circ}}$

$$
\begin{array}{ll}
\square \text { Cells that delaminate before division } & \square \text { Cells that delaminate after dividing } \\
\square \text { Cells that divide and only one daughter cell delaminates } & \square \text { Daughter cell that delaminates }
\end{array}
$$

Epithelial visco-elasticity - Impact of Topological transitions

- Cell extrusion
- Cells extrude in region of high cellular crowding

Epithelial visco-elasticity - Impact of Topological transitions

Homeostatic cell extrusion

- Induced crowding with tissue stretcher promotes extrusion
- Extrusion requires contractility and and stretch activated signals

Time post-overcrowding (h)

Inhibitors agains

Homeostatic cell death

Epithelial visco-elasticity - Impact of Topological transitions

Cell intercalation and tissue elongation

Germ band elongation in Drosophila embryo

Epithelial visco-elasticity - Impact of Topological transitions

Cell intercalation and tissue elongation

Germ band elongation in Drosophila embryo

Epithelial visco-elasticity - Impact of Topological transitions

- Cell intercalation and tissue elongation

Planar movement of Epiblast Cells

Firmino J. et al, and Gros J.
Dev. Cell. 36:249. 2016

Rozbicki E. et al, and Weijer CI. Nature Cell Biol. 17:397. 2015

Epithelial visco-elasticity - Impact of Topological transitions

Distribution of strain rates

Epithelial visco-elasticity - Impact of Topological transitions

Cellular origin of anisotropic deformations Cell intercalation

Polarized cell intercalation is driven by contraction of junction by actomyosin networks (see 28 November 2017)

Planar Myosin-II distribution

Epithelial visco-elasticity - Impact of Topological transitions

Contribution of cell divisions to cell movements

Myosin-II

Convergence/Extension driven by Myosin-II dependent cell intercalation

Epithelial visco-elasticity - Impact of Topological transitions

Contribution of cell divisions to cell movements

Associated with cell intercalation

Firmino J. et al, and Gros J. Dev. Cell. 36:249. 2016

Epithelial visco-elasticity - Impact of Topological transitions

Contribution of intercalary cell divisions to cell movements

Epithelial visco-elasticity - Impact of Topological transitions

Contribution of intercalary cell divisions to cell movements
 - Energy dissipation via fluidisation of tissue?

Cell intercalation causes cell movement within an epithelial layer

- Randomly oriented intercalation: « cell diffusion »
- Polarised intercalation: convergent/extension of tissue
- Origin of junction dynamics? Cell adhesion and cortical tension > Notion of active fluid

Epithelial visco-elasticity - Fluidisation by cell division

Contribution of oriented cell divisions to energy dissipation of a tissue under stress

$>$ Tissue fluidisation.

- Cell divisions lower shear viscosity

Theory and computer simulations
η : Shear viscosity (dynamic viscosity)
Fluidity $=1 / \eta$

$\tau=\frac{$| applied |
| :---: |
| force |
| shear |
| stress |}{τ}$\underset{\text { area }}{F}=\eta \frac{\partial u}{\partial y}$

Epithelial visco-elasticity - Fluidisation by cell division

Contribution of oriented cell divisions to energy dissipation of a tissue under stress

Zebrafish epiboly

- Polarized cell division correlate with anisotropic tension in vivo
- Ectopic tension reorients cell division axis

Anisotropic tension (T) probed using laser ablation $V=T / \eta$

Division orientation along stretch axis

Epithelial visco-elasticity - Fluidisation by cell division

Contribution of oriented cell divisions to energy dissipation of a tissue under stress

- Experiments: Cell division lowers tissue tension

- Theoretical model:

Cell division lowers shear (ie. dynamic) viscosity.

$$
\begin{aligned}
& \eta: \text { shear viscosity } \\
& \zeta: \text { bulk viscosity }
\end{aligned}
$$

Blocking cell division increases shear viscosity, increases tension anisotropy, and reduces tissue flow

Epithelial visco-elasticity - Fluidisation by cell division

Contribution of oriented cell divisions to energy dissipation of a tissue under stress

- Tissue stretching induces cell strain.
- Stress relaxes in 2 phases (rapid: cytoskeleton; slow: cell division?)

- Cells divide along stretch axis.

- The axis of division is determined by geometry, not stretch per se.

Epithelial visco-elasticity - Fluidisation by cell division

Contribution of oriented cell divisions to energy dissipation of a tissue under stress

- Cell division redistributes cellular mass with respect to the axis of division

Conclusions

- Organisation:
- Cells adopt morphologies and configurations that tend to approach minimal surface energy
- Reflects balance between:
-hydrostatic/turgor pressure
-cortex contractility -cell walls/cortex and adhesion system
- Dynamics:
- Cell connectedness varies so tissues can be modelled as gaz, viscoelastic fluids or elastic solids.
- Reflects differences in adhesion and stiffness
- Cell shape changes and cell movements are driven by active contractile systems in animals and regulated wall remodelling in plants
- Cell-cell adhesion resists active remodelling and maintains tissue cohesion under stress.

Next

I) Adhesion

2) Cortical tension

Conclusions

Prochain cours: 3| October 2017 Plasticité: suite et fin

Adhesion I: du concept d'affinité aux modèles thermodynamiques

