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• Summary
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1. Cells and organisms explore sizes over many orders of magnitude:
— suggests high plasticity

2. Embryonic and post-embryonic growth both contribute to animal size
3. Yet, organism size is extremely constrained
4. Constraint #1: embryo size is constrained when body pattern is established
5. Constraint #2: differentiated cells cannot divide which implies:
      —Cell growth or delayed differentiation

6. Constraint #3: cell growth is limited by transcription and ribosome assembly . 
Polyploidy is a universal solution

7. Relaxation of constraints in placental and endo-parasitic development
      —Slow development is permitted in the protected environment of mother/host.
        —Stem cell based development and growth of lineage.
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Figure 6: An order of magnitude census of the major components 
of the three model cells we employ often in the lab and in this 
book. A bacterial cell (E. coli), a unicellular eukaryote (the budding 
yeast S. cerevisiae, and a mammalian cell line (such as an 
adherent HeLa cell).  
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 — Isometry: geometric similarity

J. theor. Biol. (1983) 103, 167-172 

LETTER TO THE EDITOR 

Elastic and/or Geometric Similarity in Mammalian 
Design? 

The elastic model of mammalian design requires limb or trunk diameter 
to increase faster than length, as its l-5-power, lest large animals collapse 
under their own weight (Galilei, 1636). However, despite the strong theo- 
retical foundations and compatibility of this model with earlier observations 
(Rashevsky, 1960; McMahon, 1973, 1975; Alexander, 1977), it is not 
supported by more recent data from which it appears that limb or trunk 
diameter vary as a power of length less than 1.5, usually close but not 
equal to l*O-the value obtained for perfect geometric similarity. 

Thus, across the entire size-scale, land mammals deviate from geometric 
similarity, though considerably less than predicted by elastic similarity 
theory from consideration of elastic deformation in the gravitational field. 
In the absence of gravity, as with sea mammals, geometric similarity must 
be obeyed (Economos, 1979), a prediction supported by the data of Fig. 
1. The value of the exponent in the length-mass relationship is close to 
the theoretical value 0.333 for perfect geometric similarity. However, in 
a similar plot for land mammals (Fig. 2), the exponent is closer to this 
value than to 0.250, the theoretical value for perfect elastic similarity. 
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FIG. 1 Correlation of head-and-body-length, L, with body mass, M, in 24 sea mammals 
(29 values). The equation of the regression line is L = 0.44 Mo’339 (correlation coefficient 
r = 0.997,95% confidence limits for the exponent: 0.330-0.348.) (Data from Walker, 1975.) 
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In the absence of gravity, geometric similarity is expected

A. Economos The Journal of Theoretical Biology 103:167-172 (1983) 
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FIG. 2. Correlation of head-and-body length, L (maximum, minimum, or average values) with body mass, M, in land mammals (240 values) 

from five orders of placental land mammals: rodents, lagomorphs, carnivores, ungulates, and primates. The equation of the least square regression 
line for the entire sample is L = 0.341 A4o’314 
mammals (M s 20 kg): L = 0.329M0.336 

(correlation coefficient r = 0.914,95% confidence limits for the exponent: 0.296-0.332); for small 
(I = 0.941, 95% confidence limits for the exponent: 0.315-0.357) and for large mammals (A4 > 20 kg): 

L = 0.441 Mo.266 (r = 0.912, 95% confidence limits for the exponent: 0.244-0.288). (The figure is from Economos (1982) and was based on 
data from Walker (1975). Note that linear regression lines were used in this allometric analysis, instead of the method of principal components 
(major axis), to facilitate comparison with the cited studies in all of which linear regression was used.) x = Primates, 0 = carnivores, rodents, 
ungulates and lagomorphs. 
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Geometric similarity for small terrestrial mammals

A. Economos The Journal of Theoretical Biology 103:167-172 (1983) 
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—Allometry: 
deviation from geometric similarity
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FIG. 1. Louis Lapicque (1907, p. 251). Bold lines correspond to Dubois’ calculations from 1897. Dashed lines
of slope 1 correspond to the hypothetical case where the body/brain ratio would be directly proportional. In the
bottom part of the diagram, dashed lines representing frogs, birds, and other non-mammals are drawn hypo-
thetically using the hypothesis that the ‘‘exponent of relation’’ is the same as for mammals (0.56).

graphical tool that exactly corresponded to
what was later called allometry (inter- and
intraspecific allometry, or Gould’s ‘‘static
allometry’’). This tool was then commonly
applied to interspecific and intraspecific
comparisons of adults. Lapicque tried to ap-
ply this tool to a small number of other ner-
vous or sensory organs (medulla, or eye
size; see e.g., Dhéré and Lapicque, 1898;
Lapicque, 1910). Neither Dubois nor Lap-
icque was interested in individual growth.
It should be observed that they were con-
vinced that the slope of the logarithmic
curves was always the same: 0.25 for intra-
specific comparisons, and 0.5–0.6 for inter-
specific comparisons. They thought that this
was an empirical law, with no clear theo-
retical basis.

Relative growth in individual organisms
Dubois and Lapicque’s line of research

was biometrical. The following approach

was experimental. From the early 1900s on-
wards, a number of biologists observed that
in many animals, secondary sexual char-
acters grew relatively larger over an indi-
vidual’s lifetime. Albert Pézard (1875–
1927) made the first experimental and
quantitative study of the subject. In a doc-
toral dissertation that was completed before
the beginning of WWI (1914) but published
only in 1918, Pézard studied the develop-
ment of sexual characters in cockerels. Plot-
ting the lengths of spurs and comb against
overall body size, he showed that there was
an obvious ‘‘discordance’’ between the
curves of body size and comb size, whereas
the growth of the spurs approximately fol-
lowed the bird’s general development. Pé-
zard provided many diagrams illustrating
this phenomenon. Figure 2 reproduces the
first of them. He also proposed a new ter-
minology: ‘‘Growth that follows the general
development of the organism can be termed

• Allometry: the law of relative growth 
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• Eugène Dubois (1897): dutch naturalist, studies the 
relation between the weights of the brain and body. 

   Distinction between size and cephalisation

e= c. s r

encephalon soma

• Louis Lapique (1907): french physiologist used 
Dubois’s formula (isoneural lines)

• Albert Pézard and Christian Champy : relative growth studies. 

751HISTORY OF ALLOMETRY

FIG. 2. Pézard (1918, p. 25). This graph represents
the evolution of size (cubic root of weight ‘‘P’’), length
of the comb and length of spurs in three individual
cockerels.

FIG. 3. Champy (1924). Series of male Dynastes
showing the relative increase of horns as a function of
size.

isogonic growth, and growth that is special
or conditioned can be called heterogonic
growth’’ (Pézard, 1918, p. 23). ‘‘Hetero-
gonic growth’’ remained the commonest
expression for individual relative growth
until the introduction of ‘‘allometry’’ in
1935, especially in the English literature.
Pézard’s monograph was a remarkable ex-
perimental study, which influenced many
people working in a wide range of areas:
the physiology of sex of course, but also
embryology, endocrinology, biometry. It
showed clearly that the relevant variable
was not time, but body size. Furthermore,
his use of graphs made the significance of
the data particularly clear. There was, how-
ever, an important absence in Pézard’s
work. He did not propose any hypothesis
about the algebraic form of the law of het-
erogonic growth of the comb.

In 1924, in a book entitled Sexuality and
Hormones, Christian Champy, another
French physiologist, proposed such a for-
mula. In this book, he coined the expression
‘‘Dysharmonic growth’’ for ‘‘an extremely
general phenomenon,’’ which he claimed to
have discovered: the continuous increase of

the relative size of secondary sexual char-
acters as a function of body size (Champy,
1924). The book provided impressive illus-
trations of this phenomenon, especially in
insects (Fig. 3). Champy explained this
phenomenon by a sexual hormone causing
an increase of the rate of mitotic cell divi-
sions in certain parts of the body. For this
reason, he argued that the relative growth
process was adequately described by a par-
abolic curve (Champy, 1924, p. 148–151).
‘‘Disharmonic growth’’ followed thus a law
of the form:

2V 5 at

where V is a measure of the secondary sex-
ual character, t is body size, and q a con-
stant (Champy, 1929). In this formula, the
relative growth of an organ is obviously a
function of body size. This equation is not

C. Champy (1924) Sexualité et hormones. Doin, Paris. 

— isogonic and heterogonic growth  (Pézard)
— harmonic and dysharmonic growth (Champy)

— Power law:

L. Lapique (1907)
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Hypothetical isometry: coefficient 1
Dubois’ calculation for mammals: coefficient 0.56
Hypothesis for birds, frogs and other non-mammals

Jean Gayon. American Zoologist, (2000) 40(5):748-758 

Bull. Soc. Anthropol. Paris, 5e série, vol. 9:248–269
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• Julian Huxley: study of fiddler crabs in MBL, Woods Hole

https://petponder.com/fiddler-crab-
care

https://www.earth.com/news/fiddler-crabs-separate-light/

Huxley, J. S. 1924. Nature 114:895–896. 

Fiddler crabs

© 1924 Nature Publishing Group

© 1924 Nature Publishing Group

© 1924 Nature Publishing Group © 1924 Nature Publishing Group

Julian S. Huxley  1887-1975
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Georges Teissier 1900-1972Julian S. Huxley  1887-1975

• Julian Huxley and Georges Teissier: Coin « isometry » and « allometry » in 1936                     
together with power law description of relative growth

Huxley, J. S. and G. Teissier. 1936a. Terminology of relative growth. Nature 137:780–781. 
Huxley, J. S. and G. Teissier. 1936b. Terminologie et notation dans la description de la croissance relative. Comptes rendus séances soc. biol. fil. 121: 934 –937. 

© 1936 Nature Publishing Group
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which were deprived of their cotyledons at a suitable 
stage, when they contained about ninety per cent 
of the total vitamin C present in the seedling. Such 
seedlings generally die or remain completely dwarfed, 
whereas they will develop distinctly better, and even 
produce normal blossoms, when small amounts of 
pure ascorbic acid are added to the medium. Even 
the treated plants naturally suffer from the removal 
of cotyledons, which evidently contain also other 
necessary compounds besides vitamin C. The accom· 
parrying table will illustrate the effect of ascorbic 
acid on the development of cotyledon-less seedlings. 

dynamics, attracted attention by ultimately blessing 
them : which led to an invasion into Great Britain 
that I tried in my own way to counter by a critical 
commentary in my "Mathematical and Physical 
Papers" (vol. 2, pp. 603-7 ; 1928). 

The fragmentary treatments by Kelvin and 
Rankine, even by Maxwell and Willard Gibbs, may 
be deficient as regards formal logic, but after all they 
are the efforts of constructive genius in this universal 
subject, after Carnot. Even the reviewer admits 
that it is hard to find English equivalents for the 
German technical terms. Indeed, the logical flavour 

'Torstai' peas (cotyledons removed) in sterile Hiltner's solution with (Ca(NO,), ; 
initial pH 5 ·5. Time of growth 29 days. 

comes largely from treating thermo· 
dynamics as a branch of the statistical 
mechanics as developed after Maxwell 
and Boltzmann : while on the other 
hand no biologist ought to admit 
that the vital activities to which he 
applies thermodynamic principles can 
be adequately described by the mere 
statistical play of atoms in the main 
unknown. It is here that the merit of 
Clausius' introduction of his concept 
of an abstract universal entropy, as 
the necessary correlative of unavoid· 
able universal temperature, shines, 
however unfinished be its present 
state of development. 

I 

Average length of I Dry weight of 

I 

Vitamin C in two 
two plants, in em. two plants, in grams plants, total (mi. of 

ind. solution) 

Treated I Controls I Treated Controls i Treated Controls I 

I 
83 35 0·431 0·070 22·8 2·7 
66 30 0·305 0·063 12·5 2·0 
75 30 0·461 0·075 22·5 2·8 
82 22 0·405 0·044 

Normal plants 
(cotyledons not - 85 

I 

- 1·850 I removed; as-

I 
corbic acid not 
added) - 92 - 1·706 

I 

It is therefore reasonable to regard vitamin C as 
a phytohormone, which is indispensable to plants. 
The formation of vitamin C during germination is 
necessary for the early development of the plant. 
During later stages of growth, large quantities of 
vitamin C are produced in connexion with photo-
synthesis. So far, vitamin C is the only vitamin 
the indispensability of which to higher plants has been 
proved through direct experiments. Corresponding 
work on vitamin B 2 (lactoftavine) is at present in 
progress in this laboratory. 

W. H. Schopfer5 has recently shown that vitamin 
B 1 promotes greatly the growth of lower fungi 
(Phycomyces, etc.). According to his results, the 
effect is very delicate and specific, so that it can be 
used for the quantitative determination of B 1 • 

The fact that certain compounds, which act as 
vitamins in the animal organism, have important 
functions in plants, is additional evidence of the 
similarity of the metabolism of plant and animal cells. 

Biochemical Institute, 
Helsingfors. 

March 30. 

ARTTURI I. VIRTANEN. 

1 Virtanen, v. Hausen and Saastamoinen, Ann. Acad. Scient. Fenn., 
A, 37, No. 7 (1933). 

2 Scheunert, Sachse and Specht, Biochem. Z., 274, 373 (1934). 
' v. Hausen, Suomen KemU!tilehti, B, Nos. 5-6 (1935); No. 12 

(1935); NATURE, 136, 516 (1935). 
'Havas, NATURE, 136, 435 (1935). 
' Schopfer, ref. Karrer, Schweiz. Mediz. Wochenschr., 65, No. 37 

(1935). 

Formal and Practical Thermodynamics 
MAY I put in a word for the British way of looking 

at thermodynamics, now largely confined to engineers, 
as suggested by the critical remarks on the second 
edition of the treatise of Prof. Saha and Dr. Srivas-
tava, contained in the brilliant and appreciative 
review in NATURE of April 4. Especially would I 
firmly support the Indian authors in passing over 
the preliminary abstractions of Prof. Caratheodory 
of Munich and his school. I remember when Prof. 
Planck, in a new edition of his book on thermo-

17·5 1·5 

-
-

48·0 

44·0 

Incidentally one may note that the statistical 
equipartition of energy between the 'momentoids' 
of the molecules, even when they do not represent 
momenta, was settled long ago in general discussion 
between Rayleigh, Bryan and Boltzmann. 

Holywood, Co. Down. JOSEPH LARMOR. 

April 5. 

Terminology of Relative Growth 
THE quantitative study of relative growth and the 

proportion of parts has in recent years made con-
siderable progress, and is now beginning to find wide-
spread application in such diverse fields as systematics, 
embryology, genetics and palreontology, as well as 
in growth-studies proper. Unfortunately, serious 
diversities of terminology and notation have sprung 
up1• a,a,•,s,•. We therefore wish to propose the following 
agreed terminology to avoid confusion. 

( 1) The terms dysharmony1 and heterogony8 should 
be dropped. Dysharmony was first used to denote 
the exaggerated proportions of certain organs, and 
a suggestion of abnormality remains attached to it. 
Heterogony has been widely used to denote a certain 
type of reproductive cycle9•10•11 , so that its employ-
ment in a new sense is not desirable. Accordingly, 
to denote growth of a part at a different rate from 
that of body as a whole or of a standard, we 
propose the term allometry, with isometry for the 
special case where the growth-rate of the part is 
identical with that of the standard or whole. Allo-
metry has the advantage of recalling the allometrons 
of Osborn12, those gradual changes in proportion 
observed in evolution, which according to the work 
of Hersch13 and Robb14 do proceed according to our 
fundamental law of allometric growth. The-term 
has the further advantage that it can be applied 
equally legitimately to phenomena of growth 
( dysharmonie de croissance) or to those of propor-
tionate size ( dysharmonie de taille) as in holometa-
bolous insects. Positive and negative allometry denote 
respectively growth-rates of the part above or below 
that of the standard. 

© 1936 Nature Publishing Group
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(2) In all cases of allometry the part shows an 
absolute increase of size with time or with increase 
of size of the standard. For cases where, instead of 
this, a decrease of absolute size occurs, for example, 
in the abdominal limbs of crabs at and shortly after 
metamorphosis, we propose the new term enantiometry 
(equivalent to negative growth). 

(3) The elementary law of relative growth or law of sim-
ple allometry can be expressed by a formula of the type 

y = bxa (for notation see later), 
where y is the part, x the standard or whole, and b 
and a are constants. When a > 1, we have positive 
allometry ; when a < 1, negative allometry ; when 
ot = 1, isometry. 

(4) The biologically important term in this formula 
is the exponent oc. For this we propose the term 

constant (in place of growth-coefficient, 
partitiOn-coefficient, constante de dysharmonie, etc.). 
This general term covers both growth and final pro-
portions. To distinguish the two where necessary, 
118, for example, in regard to deer antlers, we may 
use growth-constant (or actual equilibrium constant) 
liS opposed to limiting equilibrium constant. Growth-
ratio may also be properly used as equivalent of 
growth-constant in certain circumstances. 

(5) The constant b merely represents the value of y 
when x = 1. However, since its value affects the initial 
size of an organ, we may call it the initial growth-index. 

(6) The terms growth-gradient and growth-centret 
remain. 

(7)_ Notation. In the formula of simple allometry, 
TelSSJer• has employed the notation y = kxa, Huxleyl 
y = bxlc, Nomura• a = ki:Jx, and Weymouth and 
Mackay• p = awk. It will be seen that different 
symbols are confusingly applied to the same term. 
We therefore propose that the recognised notation 
should be y = bxa. As is customary, x and y are 
used for the variables, y being the dependent variable. 

the essential equilibrium constant, a is used, 
smce Greek letters stand out against Latin. k is 
dropped since it has been widely used in two entirely 
distinct senses. For the initial index, the non-
committal b is chosen. 

We hope that other workers in this field will see 
fit to adopt these suggestions. 

Zoological Society, London. 

Station Biologique de Roscoff. 

J. s. HUXLEY. 

G. TEISSIER. 

· J . S. Huxley, "Problems of Relative Growth". Methuen, London 
(1932). 

1 G. Teissier , 1934. "Dysharmonles et discontinnltes dans Ia Crois· 
sance". Act. 8_ci. et Industr., No. 95. (Exposes de Biometrie, 1) (1934). 
Hermann, Pans. 

1 E. Nomura. "An Application of a=kbZ in expressing the Growth 
Relation in Molluscan Shells". Sci. Rep. Tohoku Imp. Univ (4) 2 
63 (1926). . ' ' 

F. W. Weymouth and D. C. G. Mackay "Relative Growth In the 
Crab, Cancer magister". Soc. Exp. Biol. Med., 31, 

•w. J . Crozier and E . V. Enzmann " On the Relation between 
Birth-Weight, and Rate of 'Growth In Mice". J. Gen. 

PAlinol., 19, 249 (1935). 
1 M. Raja, postembrionale del Loligo vulgaris". 

BoU. Zool. Tonno, 5, 1 (1934). 
'C. Champy, "Sexualite et Hormones". G. Doln Paris (1924). 
1 A. Pezard, "Le conditionnement physiologique des caracteres 

sexuels secondalres chez les Oiseaux". Bull Biol Fr et Beln 52 1 (1918). • . . •• , ' 
1 R. Leuckart, 1876. "Die Menschllchen Parasiten" (Bd 2) Leipzig . ' 
"J. Melsenitelmer,,"G!l"chlecht und Geschlechter". Jena (1921). 
11 A. Weismann, Be1tr. zu. Naturgeschichte der Daphnoiden" 

Leipzig (1878). ' 
11 H. F. Osborn, "The Origin of Species". (2) "Distinctions between 

Rectigradations a'?;d Proc. Nat. Ac. Sci ., 11, 749 (1925). 
u A. H. Hersh, Evolntwnary Relative Growth In the Tiianotheres". 

Amer. Nat., 68, 637 (1934). 
." R. C. Robb, "Two Modes of Evolution in the Horse". Proc. 

8i3tll Internat. Conur. Genetics, 2, 166 (1932) . 

Structure of the Formate Ion 
IN two recent letters to NATURE, B. C. Ray1•9 and 

P. B. Sarkar1 proposed a structure [: 

for the formate ion in solution, while retaining the 
normal structure for the acid, its esters and the 
formate ion in the crystal ; they suppose that on 
solution the formate ion undergoes the prototropic 

change [ [: 
Such a prototropic change is usually pictured as 

an intermolecular process, and if the hypothesis of 
Sarkar and Ray is true it would be expected that the 
hydrogen of the formate ion would exchange very 
rapidly with deuterium in heavy water. The experi-
ments of Wynne-Jones3, Miinzberg' and ourselves 
(unpublished) all go to show that the exchange 
process between formate ion and heavy water is 
extremely slow. We have found, for example, that 
8 per cent exchange took place in 8 days at 100° 
with potassium formate in neutral solution, the 
exchange being accelerated by the presence of alkali. 
Miinzherg was unable to detect any exchange in 
neutral solution after 300 hours at 50° C. It would 
seem, therefore, either that the prototropic change 
must be exclusively intra-molecular, which we regard 
as very unlikely, or that the postulated prototropy 
does not take place. 

A second argument against the hypothesis of 
Sarkar and Ray, which is independent of the me-
chanism of the prototropic process, is to be found 
in the fact that an ion of the structure proposed 
would be expected to have an appreciable acid 
dissociation constant. Inasmuch as the hydroxyl 
group of phenol (KA = lQ-10 ) and even those of the 
sugars exchange quite rapidly in heavy water, the slow-
ness of the exchange of the formate ion seems to provide 
a second argument against the proposed structure of 
the formate ion. If the considerations we have put 
forward are valid, they constitute a further example 
of the application of deuterium to problems of 
molecular structure and mechanism. 

P. A. SMALL. 
J. H . WoLFENDEN. 

Physical Chemistry Laboratory, 
Balliol and Trinity Colleges , 

Oxford. 
March 26. 

1 NATURE, 133, 646 (1934). 
2 NATURE, 137, 495 (1936). 
' Chem. Rev. 17, 115 (1935). 
1 Z. phys. Chern., 31, B, 18 (1935). 

Production of Electron Pairs 
IN a recent paper1 we discussed the creation of 

positive-negative electron pairs by a beam of y-rays 
traversing lead, with atomic number Z = 82. R esults 
have since been obtained with Z = 50 and Z = 65 
for y-rays of energy hv = 3mc 2 • It is of interest 
to compare these with the values given by Bethe 
and Heitler•, using the Born approximation. We give 
below the two sets of r esults, together with the 
corresponding values of E+ -'BL, where E+ and Iff_ 
are the average energy of the positron and electron 
respectively. 

z 60 65 82 
axlO" 0·17 0·34 0 ·67 
ax10"(Born) 0·13 0·21 0 ·34 
('E+-E->Imc' o-22 0 ·28 o -aa 

• Power law description reflects self-similarity or scale invariance: ƒ(x)= b. xa ƒ(cx)= c . b.x  aa ƒ(x)µ so
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— maintains similar elastic deformations under equivalent loading conditions
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just twice the static deflection when the
load is gradually applied (12). The
true instantaneous loading condition for
each of the quasi-cylindrical elements is
thus some complicated sum of buckling,
bending, and torsional loads, but for-
tunately the elastic criteria predict the
same result independently of the type
of gravitational self-loading, namely
that every I should be proportional to
the 2/3 power of the equivalent d.

Rashevsky (20) assumed that the
trunk of an animal was a uniformly
loaded beam, and used the linearized
theory of beam bending to calculate
the same result, that trunk length
should go as diameter to the 23.
Rashevsky's model additionally re-
quired the cross-sectional area of the
animal's limbs to be proportional to
the weight of the trunk, leading to a
different set of rules for determining
limb proportions from those for trunk
proportions. In the present model all
the proportions of an animal would
change with size in the same way. If
W is the total body weight, the weight
of any limb is a specified fraction of
W, and:

W oc Id' (4)
but if P is proportional to d2, then

l cc W¼4; d cc W (5)
Comparative zoologists have long

been aware that the gross dimensions
of many species bear a power law rela-
tion to body weight. Brody (4) nmea-
sured the chest girth G and the height

at withers H of more than 3000 Hol-
stein cattle. His data fit the present
model well: he empirically found G
proportional to WO.36 (WO.375 pre-
dicted), while H goes as WO.24 (W025
predicted).

In a study of primates whose weights
ranged from 0.28 to 22 kg, Stahl and
Gummerson (21) reported many of the
important somatic and skeletal dimen-
sions, x, as power functions of body
weight, x = aWb. Figure 3a, reproduced
from their paper, shows that chest cir-
cumference in primates is proportional
to WO.37 with a correlation of .995.
Agreement with the proposed model is
excellent for most of his measurements:
b is 0.28 for trunk height (0.25 pre-
dicted) and 0.38 for maximum thigh
girth (0.375 predicted).

Let us return to the question of ex-
ternal body surface area. If the surface
area of each of the quasi-cylindrical
elements that make up the whole ani-
mal in the proposed model is calculated,
we find

surface area c Id+ d3/2 (6)
where the second term is due to the
ends of each cylindrical element, so
that it is absent or halved in the case
of many of the elements. For most
limbs and many of the trunks under
consideration, lid is approximately 10,
so that the second term is only 5 per-
cent of the first and may be neglected.
In this case, total body surface area is
proportional to Id and thus to W%W%,
or W%. Hemmingsen (8) presented a

plot of body surface area against weight
for animals in a weight range of 1 to
106 grams, and he also included points
representing defoliated beech trees. In
his figure, only one solid line appears,
that appropriate to the surface area of
a sphere of density 1.0 g/cm3. His fig-
ure is reproduced in Fig. 3b, with an
additional line representing the pro-
posed model of a cylinder whose sur-
face area is three times the sphere area
when both sphere and model weigh
close to 8 g, but only twice the sphere
area when both weigh about 70 kg.
The slope of the line for this stretched
cylinder is 0.63, while the slope of the
line for the sphere, and thus all geo-
metrically similar structures, is 0.67.
Although Hemmingsen argues that the
data points are well fitted by an imag-
inary line running parallel to that of
the sphere, it is apparent that a good
fit is obtained by the present model. In
data spanning the range from rats to
humans, Stahl (22) found that surface
area increases as the 0.65 power of
body weight. Thus, the present model
agrees with experimental observations
of body surface area as well as body
proportions.

Metabolic Rate

Our ideas describing how size de-
termines shape are now complete, and
we may return to the original question
concerning metabolism and Kleiber's
law. Suppose a muscle, whose cross-

Body weight (kg) Body weight (g)
Fig. 3. (a) Chest circumference, d4, plotted against body weight, W, for five species of primates. The broken lines represent the stand-
ard error in this least-squares fit [adapted from (21)]. The model proposed here, whereby each length, 1, increases as the % power
of diameter, d, is illustrated for two weights differing by a factor of 16. (b) Body surface area plotted against weight for verte-
brates. The animal data are reasonably well fitted by the stretched cylinder model [adapted from (8)].
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—Elastic similarity: size reflects constraints imposed by elasticity

Mass w proportional to body mass W

(3/8 = 0.375)
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analyzes how absorption into expanding so-
cieties affects the age and sex composition of
populations in formerly isolated social sys-
tems.

9. 0. D. Duncan, Handbook for Modern Sociol-
ogy, R. E. L. Faris, Ed. (Rand McNally,
Chicago, 1964), pp. 36-82.

10. K. Boulding describes the human ecosystem
as the "totality of human organizations" [The
Organizational Revolution (Quadrangle, Chica-
go, 1952), p. xxii] and 0. D. Duncan notes
that the cycling of information is a unique
feature of the human ecosystem (9, pp. 40-42).
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359-360.

Size and Shape in Biology
Elastic criteria impose limits on biological

proportions, and consequently on metabolic rates.

Thomas McMahon

Observers of living organisms since
Galileo have recognized that metabolic
activities must somehow be limited by
surface areas, rather than body vol-
umes. Rubner (1) observed that heat
production rate divided by total body
sLlrface area was nearly constant in
dogs of various sizes, and proposed the
explanation that metabolically produced
heat was limited by an animal's ability
to lose heat, and thus total body sur-

face area. When more precise methods
of measurement became available,
Kleiber (2) noticed that when rate of
heat production is plotted against body
weight on logarithmic scales for ani-
mals over a size range from rats to
steers, the points fall extremely close
to a straight line with slope 0.75 (Fig.
I ). The result has since been confirmed
for animals as different in size as the
mouse and the elephant (3-5), and has
been verified for other metabolically
related variables, such as rate of oxygen
consumption (6). Excellent reviews of
the problem are available (7-10).

While it is often true that biological
laws are not derivable from physical
laws in any simple sense, Kleiber's rule
may be one of those fortuitous excep-
tions which D'Arcy Thompson (11)
suggests lie at the basis of a funda-
mental "science of form." Plants as

well as animals must be built strongly
enough to stand under their own
weight. In the following, a general rule
is derived for the changing proportions
of idealized trees as a function of scale,
and later the results are applied to
animals.

Buckling

Consider a tall, slender cylindrical
column of length 1 and diameter d
loaded by the force P, representing the
total weight of the column, acting at
the center of mass. Such a column will
fail in compression if the applied stress
P/A, where A= 7d2/4, exceeds the
maximum compressive stress, amax' Pro-
vided that the column is slender enough,
it may also fail in what is known as

elastic buckling, whereby a small lateral
displacement (caused, for example, by
the smallest gust of wind), allows the
weight P to apply a toppling momenit
which the elastic forces of the bent
column below are not sufficient to re-

sist. In this case, "slender enough"'
means that lid is greater than 25, a

range which includes virtually all trees
(12). The critical length for buckling
is related to the diameter by:

ler =0.851 E d2/ (1)

pg

where p is the weight per unit volume
and E is the elastic modulus of the

material. The mathematician Greenhill
(13) showed that when the force due
to weight is distributed over the total
extent of the column instead of being
taken as acting at the center of mass,
the critical height becomes:

E '"
Icr = 0.792 d2,3

p
(2)

This result is identical to Eq. 1, with
only a change in the numerical con-
stant. It may be demonstrated that an-
other change in the constant occurs
when the solid cylinder is made hol-
low, provided that the thickness of the
wall is proportional to the diameter.
Greenhill further showed that if the
shape of the column is taken as a
cone, or a paraboloid of revolution, the
result is again only to change the nu-
merical constant. Recently, Keller and
Niordson (14) have derived that the
tallest self-supporting homogeneous ta-
pering column is 2.034 times as tall as
a cylindrical column made of the same
volume of the same material, and that
the distance to the top of such a taper-
ing column above any cross section is
proportional to the diameter of that
cross section raised to the 2/3 power.
The rule requiring height to go as
diameter to the 2/3 power is thus in-
dependent of many details of the model
proposed for the elastic stability of
tree trunks.

Bending

The limbs of trees must also be pro-
portioned to endure the bending forces
produced by their own weight. If a
branch is considered to be a cantilever
beam built into the trunk, there exists
a particular beam length ler for which
the tip of the branch extends the great-
est horizontal distance away from the
trunk (iS). Branches longer than ler
droop so much that their tips actually
come closer to the trunk. Suppose that
the purpose of branches is to carry
their leaves out of the shadow of higher
branches, and therefore to achieve a
maximum lateral displacement from

1201
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— maintains similar elastic deformations 
under equivalent loading conditions
— ensures elastic stability
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the trunk. Then the limb should grow
no longer than icr, where

lcw=C E |~ d% (3)

and C depends only on the droop angle
9D, which in turn depends only on the

angle at which the limb leaves the
trunk (15). The result may be made
general for a tapered or hollow limb
exactly as was done for the buckling
problem. Comparing Eqs. 1, 2, and 3,
it is apparent that elastic criteria set
length proportional to the % power
of diameter in both the trunk and the
branches.

It should be possible to check the
validity of these results by measuring
the proportions of trees of different
scale. Such a check would be arduous
if it were necessary to know E and p

for each species; fortunately, the ratio
E/p is quite accurately constant in
green woods (16, 17). In Fig. 2, the
trunk diameter 1.525 meters from the
ground is plotted against the total
height for 576 individual trees, repre-

senting nearly every species found in
the United States. The data, taken pri-

marily from the American Forestry
Association's "Social register of big
trees" (18), include specimens both
very slender and very stout, since trees
are eligible for this list according to
their bigness, an index depending on
the sum of their circumference and
height (19). A solid line representing
Eq. 2 is also shown in Fig. 2; it was
calculated for E = 1.05 X 105 kilo-
grams per square meter and p = 6.18 x

102 kilograms per cubic meter (16).

The broken line, which fits near the
center of the data points, has the same
slope as the solid line but represents a
sequence of trees whose height in each
case is only one-fourth of the critical
buckling height. The conclusion seems
to be that the proportions of trees are
limited by elastic criteria, since there
are no data points to the left of the
solid line.

Animal Proportions

Just as trees must assume thicker
proportions with increasing size, so
must animals adjust their shape with
scale. The argument has long been
offered that animals could not remain
geometrically similar from the small to
the large because their limbs, whose
cross-sectional area increases as the
square of characteristic body dimension
L, must then support a weight which
increases as L3 (7). The difficulty with
these arguments based on strength cri-
teria is the inevitable conclusion that
animals may grow no larger than a size
which makes the applied stress equal
to the yield stress of their materials.
Animals larger than this size would
have to increase supporting areas di-
rectly with weight, so that no increases
in height could be tolerated, only in-
creases in width. If yield stress were
the only criterion, an animal with
slender proportions like the bobcat
should be capable of attaining the same
absolute height as the lion. In fact,
it is widely found that some animals
grow larger than others, and animals of

small scale are relatively more slender
than those of large scale (see cover).
Perhaps this transformation occurs, as
in differently sized trees, for reasons
based on elastic rather than strength
criteria.

In the following, we consider com-
parisons between animals of the same
family, so that their shape is grossly
similar. The only change in shape per-
mitted is for lengths to bear a specified
relationship to diameters: all lengths
will be proportional to one another, as
will be all diameters. Each limb, bone,
or muscle will thus have a length I
and diameter d, where length will be
taken as a measurement parallel to the
direction of tension or compression and
diameter will be measured perpendicu-
lar to this direction. Thus, the length
of the trunk is the distance between
shoulder and hip whether the animal
is bipedal or quadrapedal (Fig. 3a,
bottom).

When a quadruped is standing at
rest, the four limbs will be exposed pri-
marily to buckling loads, but the verte-
bral column and its musculature must
withstand bending loads. When the
same animal runs, the situation is sub-
stantially reversed in those phases of
the motion where the limbs are provid-
ing their maximum propulsive effort.
At these moments, the limbs are sup-
porting bending loads, while the ver-
tebral column is receiving an end
thrust and thus a buckling load. The
fact that the loads are dynamic rather
than static is not a consideration: the
maximum deflection of a structure sud-
denly loaded under its own weight is

X lO2
to
I0

01.

10

lol 10'

Body weight (kg)

100

E
-f&

.wI

01 0.1 1.0

Diameter (m)
Fig. 1 (left). Metabolic heat production plotted against body weight on logarithmic scales. The solid line has slope 3/4. The broken
line, which does not fit the data, has slope 2A and represents the way surface area increases with weight for geometrically similar
shapes [adapted from (2)]. Fig. 2 (right). Tree height plotted against trunk base diameter on logarithmic scales for record trees
representing nearly every American species. The trunk proportions are limited by elastic buckling criteria, since no points lie to the
left of- the solid line. Data from (18, 19).
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Size and Shape in Biology
Elastic criteria impose limits on biological

proportions, and consequently on metabolic rates.

Thomas McMahon

Observers of living organisms since
Galileo have recognized that metabolic
activities must somehow be limited by
surface areas, rather than body vol-
umes. Rubner (1) observed that heat
production rate divided by total body
sLlrface area was nearly constant in
dogs of various sizes, and proposed the
explanation that metabolically produced
heat was limited by an animal's ability
to lose heat, and thus total body sur-

face area. When more precise methods
of measurement became available,
Kleiber (2) noticed that when rate of
heat production is plotted against body
weight on logarithmic scales for ani-
mals over a size range from rats to
steers, the points fall extremely close
to a straight line with slope 0.75 (Fig.
I ). The result has since been confirmed
for animals as different in size as the
mouse and the elephant (3-5), and has
been verified for other metabolically
related variables, such as rate of oxygen
consumption (6). Excellent reviews of
the problem are available (7-10).

While it is often true that biological
laws are not derivable from physical
laws in any simple sense, Kleiber's rule
may be one of those fortuitous excep-
tions which D'Arcy Thompson (11)
suggests lie at the basis of a funda-
mental "science of form." Plants as

well as animals must be built strongly
enough to stand under their own
weight. In the following, a general rule
is derived for the changing proportions
of idealized trees as a function of scale,
and later the results are applied to
animals.

Buckling

Consider a tall, slender cylindrical
column of length 1 and diameter d
loaded by the force P, representing the
total weight of the column, acting at
the center of mass. Such a column will
fail in compression if the applied stress
P/A, where A= 7d2/4, exceeds the
maximum compressive stress, amax' Pro-
vided that the column is slender enough,
it may also fail in what is known as

elastic buckling, whereby a small lateral
displacement (caused, for example, by
the smallest gust of wind), allows the
weight P to apply a toppling momenit
which the elastic forces of the bent
column below are not sufficient to re-

sist. In this case, "slender enough"'
means that lid is greater than 25, a

range which includes virtually all trees
(12). The critical length for buckling
is related to the diameter by:

ler =0.851 E d2/ (1)

pg

where p is the weight per unit volume
and E is the elastic modulus of the

material. The mathematician Greenhill
(13) showed that when the force due
to weight is distributed over the total
extent of the column instead of being
taken as acting at the center of mass,
the critical height becomes:

E '"
Icr = 0.792 d2,3

p
(2)

This result is identical to Eq. 1, with
only a change in the numerical con-
stant. It may be demonstrated that an-
other change in the constant occurs
when the solid cylinder is made hol-
low, provided that the thickness of the
wall is proportional to the diameter.
Greenhill further showed that if the
shape of the column is taken as a
cone, or a paraboloid of revolution, the
result is again only to change the nu-
merical constant. Recently, Keller and
Niordson (14) have derived that the
tallest self-supporting homogeneous ta-
pering column is 2.034 times as tall as
a cylindrical column made of the same
volume of the same material, and that
the distance to the top of such a taper-
ing column above any cross section is
proportional to the diameter of that
cross section raised to the 2/3 power.
The rule requiring height to go as
diameter to the 2/3 power is thus in-
dependent of many details of the model
proposed for the elastic stability of
tree trunks.

Bending

The limbs of trees must also be pro-
portioned to endure the bending forces
produced by their own weight. If a
branch is considered to be a cantilever
beam built into the trunk, there exists
a particular beam length ler for which
the tip of the branch extends the great-
est horizontal distance away from the
trunk (iS). Branches longer than ler
droop so much that their tips actually
come closer to the trunk. Suppose that
the purpose of branches is to carry
their leaves out of the shadow of higher
branches, and therefore to achieve a
maximum lateral displacement from
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The size of trees in America is limited by elastic buckling 
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Superficially, anurans appear stereo-
typed in body shape, with short trunks
and relatively long hindlimbs. This uni-
formity has been characterized by Inger
( 1967), who, borrowing from Gertrude
Stein, wrote a frog is a frog is a frog. Be-
cause frogs preserve a generally similar
body shape over a wide size range, they
are an interesting group in which to study
the relationship of locomotor function to
body geometry and size.

On land, jumping is the dominant loco-
motor mode of anurans. Previous studies
of frog jumping (e.g., Wermel, 1934; Rand
and Rand, 1966; Zug, 1972) have assumed
that the principal function of this loco-
motor mode is to maximize distance be-
tween the animal and a potential predator,
and have focused on the relationship be-
tween morphology and jump distance.
There are, however, other parameters of
jumping, such as quickness of movement
(acceleration) that may be important and
related to frog morphology. A correlated
examination of allometry and locomotor
behavior provides an approach for testing
two alternative hypotheses of jump func-
tion: jump distance vs. quickness of move-
ment.

MODELS OF FORM AND FUNCTION

Hill ( 1950) suggested, on theoretical
grounds, that animals which are geometri-
cally similar may be able to jump the
same absolute distance regardless of size.
Rapid acceleration over a short time in
small animals would result in the same dis-

1 Present address: Department of Biological
Sciences, University of Illinois at Chicago Circle,
Chicago, Illinois.

tance that larger animals would attain
through slower acceleration acting over
a longer time. If Hill's model is correct,
and if frogs are geometrically similar re-
gardless of size, then small frogs should be
able to jump as far as large frogs. Thus
one possible function-providing a spe-
cific jump distance-would be preserved
with changes in size. However, a second
function-providing a specific quickness
of movement (acceleration)-would be di-
minished with increasing size, because
larger animals have lesser accelerations.
For this model (a model of morphological
isometry) , the relationship between two
possible jump functions (distance and ac-
celeration) and size (body weight) can be
represented graphically (Figs. Ia and b).

Maintenance of geometric similarity im-
poses limitations on acceleration and jump
distance with increasing size. But, if geo-
metric similarity is not maintained, ac-
celeration may be maintained constant and
jump distance may be increased with in-
creasing size. It would be possible, for
example, for relative jump distance (i.e.,
absolute distance/body weight) to be
maintained constant with increasing body
size. These alternative relationships be-
tween jump functions and size are repre-
sented in Figs. Ie and Id, and are pre-
dictions of a morphological allometry
model. The special case of same relative
jump distance with increasing size is dia-
grammed (Fig. Ie, a = 1), but the gen-
eral prediction of the morphological allome-
try model is only that there will be some
change in distance with increasing size
(a#O).

These viewpoints provide a framework
for testing alternative hypotheses of jump
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Superficially, anurans appear stereo-
typed in body shape, with short trunks
and relatively long hindlimbs. This uni-
formity has been characterized by Inger
( 1967), who, borrowing from Gertrude
Stein, wrote a frog is a frog is a frog. Be-
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body shape over a wide size range, they
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body geometry and size.
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of frog jumping (e.g., Wermel, 1934; Rand
and Rand, 1966; Zug, 1972) have assumed
that the principal function of this loco-
motor mode is to maximize distance be-
tween the animal and a potential predator,
and have focused on the relationship be-
tween morphology and jump distance.
There are, however, other parameters of
jumping, such as quickness of movement
(acceleration) that may be important and
related to frog morphology. A correlated
examination of allometry and locomotor
behavior provides an approach for testing
two alternative hypotheses of jump func-
tion: jump distance vs. quickness of move-
ment.
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cally similar may be able to jump the
same absolute distance regardless of size.
Rapid acceleration over a short time in
small animals would result in the same dis-
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tance that larger animals would attain
through slower acceleration acting over
a longer time. If Hill's model is correct,
and if frogs are geometrically similar re-
gardless of size, then small frogs should be
able to jump as far as large frogs. Thus
one possible function-providing a spe-
cific jump distance-would be preserved
with changes in size. However, a second
function-providing a specific quickness
of movement (acceleration)-would be di-
minished with increasing size, because
larger animals have lesser accelerations.
For this model (a model of morphological
isometry) , the relationship between two
possible jump functions (distance and ac-
celeration) and size (body weight) can be
represented graphically (Figs. Ia and b).

Maintenance of geometric similarity im-
poses limitations on acceleration and jump
distance with increasing size. But, if geo-
metric similarity is not maintained, ac-
celeration may be maintained constant and
jump distance may be increased with in-
creasing size. It would be possible, for
example, for relative jump distance (i.e.,
absolute distance/body weight) to be
maintained constant with increasing body
size. These alternative relationships be-
tween jump functions and size are repre-
sented in Figs. Ie and Id, and are pre-
dictions of a morphological allometry
model. The special case of same relative
jump distance with increasing size is dia-
grammed (Fig. Ie, a = 1), but the gen-
eral prediction of the morphological allome-
try model is only that there will be some
change in distance with increasing size
(a#O).

These viewpoints provide a framework
for testing alternative hypotheses of jump
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a. Interspecijic.-Figure 4 shows the re-
lationship between body weight and
snout-vent length in four species of
preserved animals: Bufo asper, Hyla
regilla, Rana catesbeiana, and Rana
erythracea. There are significant dif-
ferences in weight among species of
the same snout-vent length as indi-
cated by differences in y-intercepts
(see Appendix IB).

b. Intraspecijic.-There are no signifi-
cant differences between calculated
regression slopes and isometry (pre-
dicted slope of 3.0) for three of the
species. Bujo asper, however, does
show negative allometry in body
weight vs. snout-vent (Appendix
IB).

confidence interval (Appendix IA).
Bufo asper shows negative allometry
in hindlimb length vs. snout-vent
length, i.e., hindlimbs become rela-
tively shorter with increasing body
length.

FIG. 4. Log-log plot of body weight vs. snout-
vent length. Black triangles, Rana erythracea;
black circles, Rana catesbeiana; white circles,
Hyla regilla; white triangles, Bujo asper.

100
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in hindlimb:snout-vent ratio with
interspecific differences in body size.

Figure 3 is a log-log graph of the
relationship between hindlimb and
snout-vent length in ontogenetic ser-
ies of six species (museum speci-
mens).

Differences in relative hindlimb
length of similar size (snout-vent
length) species are reflected in the
significant differences in the y-inter-
cepts of their respective axes or the
significant differences in slope (Ap-
pendix IA). These differences in y-
intercept and slope confirm that
there are differences in shape among
frog species.

b. Intraspecijic.-For five of the six
species there is no significant differ-
ence between the calculated regres-
sion line slopes and isometry (pre-
dicted slope of 1.0) using the 95%

Snout Vent (mm)

FIG. 3. Log-log plot of hindlimb length vs.
snout-vent length in six species of frogs. White
squares, Breuiceps adspersus ; black squares, Hy-
perolius viridiflavius; black triangles, Rana ery-
thracea; black circles, Rana catesbeiana; white
circles, Hyla regilla; white triangles, Bujo asper.

Rana erythracea Length L

• The length of hindlimb and body scale geometrically
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FIG. 1. Predictions of the morphological isome-
try model (IA + IB). Predictions of the mor-
phological allometry model (IC+ ID). a zc
slope, BW =body weight, dis =max. jump, ac-
eel. =acceleration.

METHODS AND MATERIALS

The morphological similarity model as-
sumes that frogs maintain geometric simi-
larity with increase in body size. The
morphological allometry model assumes
that frogs change body shape with increase
in size. These assumptions were tested by

measuring body weight, body length,
length of the hindlimbs, and hindlimb ex-
tensor muscle weight in size series of frog
species from museum collections (Appen-
dix I). Weights of preserved animals are
generally considered to be unreliable, but
in anurans they are no more variable than
weights of live animals. Individual live
frogs can vary up to 20% in body weight
over a 12-h period (Emerson, unpublished
observations) . Even with differences in
preservation, if anuran museum specimens
are slit to remove excess preservative and
blotted dry before weighing, the difference
between preserved weight and live weight
of a specimen is less than the possible
variability in live weight of an individual
frog over a 24-h period. Live weight is
important in this study only for calculating
locomotor parameters from trajectory for-
mulae, and in that part of the study (see
below), weights from live animals were
used and the animals were weighed di-
rectly after each jump sequence.

All measurements were taken on the
right side of the animal with a vernier
caliper (O.Ol-mm precision); measurement
definitions of body weight, body length
and hindlimb length are those of Zug
(1972). The principal hindlimb extensor
muscles are those defined by Calow and
Alexander (1973): the plantaris longus,
cruralis, gluteus magnus, semimembrano-
sus, gracilis major, and semitendinosus.
Muscle weight was determined by excising
the appropriate muscles, drying them for
48 h at 105 C, and then immediately weigh-
ing them on a Mettler balance. Regression
analysis involved use of the method of the
least squares. Confidence intervals were
calculated for all pairs of variables. A
Student's t-test was used to test for sig-
nificance of differences between two re-
gression coefficients. Regression axes were
calculated by the standard power function
of allometry:

log y = a log x + log b (y = bxa ) .

Ontogenetic series of Pseudacris triseri-
ata, Bufo americanus, and Rana pipiens

B

BW

D

BW

A

c

BW

BW

function by measuring size, shape, and
locomotor parameters in frogs and compar-
ing the results with the predictions of the
morphological isometry and allometry
models. If the principal function of jump-
ing is to provide a specific absolute jump
distance, and if Hill's model is correct,
then one would predict that with increasing
size, body proportions and jump distance
would remain constant and acceleration
would decrease. If the principal function
of jumping is quickness of movement or
maintenance of the same relative jumping
distance, then one would predict that with
increasing size body shape would change,
larger frogs would jump longer distances
than smaller frogs, and acceleration would
remain constant.

• Isometry: greater acceleration over shorter times in 
smaller animals should yield constant absolute jump 
length across sizes (same max distance than larger animal 
with lower acceleration over longer time)
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FIG. 8. Log-log plot of maximum jump vs. body weight compared to model predictions for mor-
phological isometry (MIM) and morphological allometry (MAM).

jump longer absolute distances with
increasing size, but shorter relative
distances (absolute distance: body
weight).

Figure 9 illustrates the relation-
ship between acceleration and body
weight for juveniles and adults of the
three experimental species. Acceler-
ation is roughly constant with in-
creasing size in Rana pipiens and
Pseudacris triseriata. Acceleration
decreases with increasing size in
Bujo americanus, but not as steeply
as predicted by the morphological
isometry model (Appendix IID and
Fig. 9). The predicted slope of ac-
celeration:body weight for the mor-
phological isometry model is -0.33
(derived from standard trajectory
formulae); the slope of acceleration:
body weight for Bujo americanus is
-0.15.

DISCUSSION

Analysis of acceleration and distance
performance for jumping frogs reveals
that: (1) all species tested increase jump
distance with increasing size; (2) all spe-
cies decrease relative jump distance with
increasing size; (3) some species do main-
tain constant accelerations with increas-
ing size; and (4) there are significant dif-
ferences in acceleration and jump distance
among frog species. These results indicate
a need to (1) re-examine what the princi-
pal function of jumping is in frogs; (2) to
explain the discrepancies between model
predictions and parameter performances;
and (3) make interspecific comparisons of
locomotor morphology and physiology in an
attempt to account for differences in per-
formance among species.

Jump Function
Maintenance of constant acceleration

with size increase requires morphological
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FIG. 9. Log-log plot of acceleration vs. body weight compared to model predictions for mor-
phological isometry (MIM) and morphological allometry (MAM).

specialization and is energetically expen-
sive in large animals. The fact that frogs
of two species maintain high acceleration
with increasing size suggests that quickness
of movement may be a critical parameter
of jumping for at least some frog species.

In general, smaller muscles and the mus-
cles of smaller animals are quicker (Hill,
1950) . Geometrically similar animals of
different sizes are postulated to jump the
same distance because in the larger animals
slower muscle contraction time (relatively
lower accelerations) is compensated for by
longer take-off time. If larger animals
maintain high accelerations, they must be
maintaining rapid contraction of the hind-

limb extensor musculature. Rapid con-
traction can be maintained against a vary-
ing load by adjusting the number of
muscle fibers employed, but it exacts a
metabolic cost. Preservation of a high in-
trinsic speed of contraction entails propor-
tionally higher expenditure of energy in
larger animals (Hill, 1950). If larger frogs
are maintaining high accelerations by
maintaining high speed of muscle con-
traction, one would expect to see differ-
ences in the amount of energy expenditure
between large and small animals. No com-
parisons of energy expenditure between
different sized individuals of the same spe-
cies are available, but data from physio-
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APPENDIX I
Museum specimen measurements

Species

Number
of

animals Equations

95% Confidence
intervals

Slope y-intercept
Correlation
coefficients

A. Hindlimb length/snout

Breuiceps adspersus 26
Hy perolius uiridijlapius 18
Rana erythracea 28
Rana catesbeiana 18
Hyla regilla 27
Bulo asper 38

vent length

log y = .900 log x + .2077
log y = 1.110 log x + .1016
log y = .961 log x + .3151
log y = 1.023 log x + .1985
log y = 1.018 log x + .2059
log y = .929 log x + .3496

0.171
0.208
0.097
0.068
0.040
0.032

0.013
0.022
0.010
0.013
0.004
0.006

0.92
0.97
0.97
0.99
0.99
0.99

0.97
0.99
0.97
0.98

0.037
0.D38
0.017
0.021

0.318
0.258
0.181
0.134

Significant difference between slopes: Rana catesbeiano and Bujo asper (t = 3.0575); Bufo
asper and Hyla regilla (t = 2.7563); Breuiceps adspersus and Hyperolius uiritlijlaois (t = 2.3856).

B. Body weight/snout vent length

Rana erythracea 28 log y = 2.864 log x - 4.1
Rana catesbeiana 18 log y = 3.070 log x - 4.1
Hyla regilla 27 log y = 3.180 log x - 4.3
Bujo asper 38 log y = 2.828 log x - 3.7

Significant difference between slopes: Hyla regilla and Bujo asper (t = 2.2666) .

C. Extensor muscle weight/body weight

Rana erythracea 24 log y 1.03 log x - 1.75 0.051 0.016
Rana catesbeiana 15 log y = 1.12 log x - 2.03 0.064 0.034
Hyla regilla 16 log y = .841 log x - 2.00 0.201 0.033
Bulo asper 33 log y = 1.111 log x - 2.10 0.061 0.033

0.99
0.99
0.92
0.99

Significant difference between slopes: Hyla regilla and Rana catesbeiana (t = 2.68); Hyla regilla
and Rana erythracea (t = 2.22); Rana erythracea and Rana catesbeiana (t = 2.29).

• Allometry: mechanical considerations
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—Dynamic allometry: ontogenic and evolutionary

256  M.A.  Rosales-Reynoso  et  al.

Great apes
316.7 cm3

Lesser apes
97.5 cm3

Old World monkeys
89.1 cm3

Measurement 
of brain volume 

New World monkeys
34.1 cm3

Prosimians
12.6 cm3

Human
1251.8 cm3

Figure  1  Comparison  of the  brains  of  humans,  prosimians,  and  Old  and  New  World  monkeys.

containing  nearly  20 billion  neurons.6 It is  therefore  much
larger than  the brain  of  any  extinct  primate,  and weighs  3
times more  than  the  brain  of  the chimpanzee,  our  closest
evolutionary relative  (Fig. 1).7

A  clear  relation  can  be seen  between  total  brain  size  and
the attributes  of  a  particular  species.  Brain  size  is  a general
predictor of  mental  capacity  in non-human  primates.  Intelli-
gence testing  measures  a species’ cognitive  power  according
to the  decisions  taken  by  individuals  in response  to  changing

conditions  or  circumstances  in a  controlled  environment.8

For  practical  ends,  we  can  consider  mental  flexibility  a type
of intelligence.  In  prosimians  and the  great  apes,  cognitive
flexibility increases  in line  with  brain  size.  The  small brain  of
the  australopiths  evolved  in the same  way  into  larger brains
such as  those  of  H.  habilis  and  H.  erectus,  and  ultimately
into the  large brain  of  H.  sapiens.

However,  cognitive  ability  is  not  fully  explained  by
total brain  size.  If  this  were  the  case,  elephants  (whose
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New World monkeysTarsier
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Figure  2  Logarithmic  scale  comparing  total  body  weight  (g)  and  the weight  of  the brain  (mg)  in 45  primate  species.  The  line
(regression)  shows  the  expected  brain  weight  for  different  body  sizes.  The X  below  the  regression  line  indicates  the  expected  brain
size  for  humans; the  actual  size  (represented  by  a  red  box)  is much  greater.  Generally,  prosimians  are  below  the  regression  line,
whereas  anthropoids  are  above.  This  demonstrates  that  there  was  a  selection  pressure  during  human  evolution  for  the  development
of brain  tissue.  Adapted  from  Stephan  et  al.7

M.A. Rosales-Reynoso et al. Neurología. 2018;33(4):254—265 

—Static allometry: intra and interspecific
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Here, we present a dataset on of brain sizes compiled from 
the literature for 1,552 species spanning 28 extant taxonomic 
orders. We analyze the allometry of brain size to body size 
across all mammals in our dataset and at multiple evolutionary 
scales. We summarize the general patterns in relative brain size 
variation among and within major evolutionary lineages and 
lifestyle groups. We end by highlighting some questions and 
gaps in the literature on brain size, offering future research 
opportunities.

Materials and Methods
Brain size data.—We conducted an extensive search using 

the key words “mammal brain size” in Google Scholar and 
datadryad.org for published datasets on brain size and other 
publications reporting brain size measurements. When these 
sources led to previously compiled datasets, we checked those 
references to confirm authenticity. We report both sources in 
Supplementary Data SD1. Data for each species were checked 
by at least two authors to confirm authenticity between the ini-
tial and second source encountered. We did not go beyond the 
second reference in checking data.

Data inclusion was based on the following criteria. We 
used brain and body size data from the same published source 
when possible. We referenced body size data when they were 
obtained from a different source than brain size. We report sex 
and sample sizes or ranges (e.g., 1 < n < 10) of adult animals 

used in estimating brain size when reported. We used aver-
ages for adults of both sexes, and brain and body size of adult 
females for lineages known to exhibit sexual size dimorphism 
following (Isler and van Schaik 2012). For published datasets, 
we verified references for accuracy and merged data into a 
master file standardized by the taxonomy in Wilson and Reeder 
(2005) to be consistent with comparative databases of mam-
mal life history and ecology (Jones et al. 2009; Myhrvold et al. 
2015). When subspecies were reported, we took mean values 
for species weighted for sample sizes. We used a conversion of 
1 g to 1 cm3 when different units were reported following ear-
lier studies (e.g., Isler and van Schaik 2009). The final dataset 
includes estimates of brain size and body size for 1,552 mam-
mal species collated and verified from 54 published references. 
For each entry, we include taxonomy (order, family, genus, and 
Latin binomial), mean brain size in grams (g), mean body size 
in grams (g), brain size residuals from the overall allometry 
(e.g., H. sapiens compared to all other mammals), and order-
specific residuals (e.g., H. sapiens compared to other primates; 
see Supplementary Data SD1).

Analysis.—The scaling of brain size with body size has typi-
cally been characterized by a power law (Snell 1891; Dubois 
1898; Jerison 1973), where (Brain Size) = α (Body Size)β and 
α and β are constants representing the intercept and slope, 
respectively. This relationship becomes linear by log trans-
forming both sides of the equation: log(Brain Size) = log(α) 
+ βlog(Body Size). Ordinary least squares (OLS) regressions 

Fig. 2.—The allometry of brain size to body size across all species (A) and with median values by genera (B), families (C), and orders (D). Gray 
bands represent the 95% confidence intervals. Note that confidence intervals at all taxonomic scales are statistically indistinguishable from 0.75 
with the exception of the family-level allometry. See the online version of this figure for color coding.
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allometries showed robust and consistent ~3/4 scaling at all levels, 
suggesting strong and ubiquitous convergence to a general allo-
metric scaling rule. Presumably, this is due to fundamental under-
lying constraints on brain size evolution across evolutionary scales 
and body sizes.

Our findings differ from some previous studies that report 2/3 
scaling (e.g., Dubois 1898; Jerison 1973; Sol et al. 2008) but are con-
sistent with others reporting ~3/4 scaling (Isler and van Schaik 2009; 
Boddy et al. 2012; Stankowich and Romero 2017). A recent large 
comparative analysis reports ~0.5 scaling using phylogenetic analysis 

Fig. 3.—The phylogenetic distribution and violin plots of residual brain sizes by taxonomic order. Plots show mirror curves of kernel density 
estimation of the data. Inserted box and whisker plots show range (whiskers), interquartile ranges (white boxes), and median values (horizontal 
black lines) of the data. Circles in plot tails indicate outliers. Vertical dashed line at 0 corresponds with dashed lines in Fig. 1. Taxonomy based on 
Wilson and Reeder (2005) and mammal supertree from Bininda-Emonds et al. (2007) and Fritz et al. (2009).

Table 1.—Allometries for log10 brain size versus log10 body size across mammals and orders with > 10 species for which we have brain size 
data. CI = confidence interval. 

Order R2 n = species Slope (95% CI) Intercept (95% CI)

Afrosoricida 0.85 13 0.54 (0.38, 0.699) −1.07 (−1.4, −0.743)
Artiodactyla 0.89 95 0.56 (0.518, 0.599) −0.44 (−0.637, −0.246)
Carnivora 0.96 199 0.65 (0.632, 0.669) −0.83 (−0.908, −0.762)
Cetacea 0.74 43 0.29 (0.238, 0.35) 1.51 (1.19, 1.83)
Chiroptera 0.93 309 0.81 (0.786, 0.835) −1.37 (−1.41, −1.34)
Dasyuromorphia 0.95 50 0.64 (0.597, 0.687) −1.21 (−1.3, −1.12)
Didelphimorphia 0.93 16 0.56 (0.472, 0.652) −0.94 (−1.15, −0.792)
Diprotodontia 0.95 112 0.63 (0.604, 0.658) −1.08 (−1.17, 0.99)
Lagomorpha 0.96 15 0.75 (0.742, 0.759) −1.26 (−1.29, −1.24)
Peramelemorphia 0.43 14 0.24 (0.056, 0.423) −0.06 (−0.594, 0.466)
Perissodactyla 0.44 11 0.35 (0.0286, 0.67) 0.74 (−1.06, 2.54)
Primates 0.92 248 0.79 (0.764, 0.825) −1.14 (−1.24, −1.03)
Rodentia 0.92 351 0.64 (0.622, 0.663) −1.06 (−1.11, −1.02)
Soricomorpha 0.88 28 0.75 (0.634, 0.864) −1.32 (−1.47, −1.16)
All mammals 0.96 1,552 0.75 (0.742, 0.758) −1.26 (−1.28, −1.24)
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• Scaling Energy and Mass

—Evolution is constrained by energy demands, delivery and 
conversion across scales

—Life is a self-sustaining (heritable) organisation of matter 
brought out of equilibrium locally and persistently

—The organisation, growth, and maintenance at all levels of 
organisation, molecules, organelles, cells, organs and whole 
organisms requires constant energy conversion flux

Metabolic rates (Power)

In human:    100W~ 
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 — Delivery of energy to every single cell in an organism is a huge challenge
 — Control over energy supply and energy conversion at local, universal cellular scale
 — Such a control is essential: absence of energy supply causes cell death within few min
      [humans turnover half their body weight (80 moles) in ATP per day to sustain the active, living state of all cells (3. 10^13):
          this is about 3. 10   ATP/cell/second]. 

 

3. 10   ATP/cell/second7

2000kcal/day

7

Thomas LECUIT   2019-2020

• How to manage the rate of energy demand for all cells
in an organism? 

1000 µm3

13

drive organism 
size increase

via cell growth 
and division

Organism Cell

« democratic »
energy supply

— What underlies the efficacy and democratic nature of resource management and growth 
control in an organism?

3. 10   cells

29 
 

 
 
 

Figure 6: An order of magnitude census of the major components 
of the three model cells we employ often in the lab and in this 
book. A bacterial cell (E. coli), a unicellular eukaryote (the budding 
yeast S. cerevisiae, and a mammalian cell line (such as an 
adherent HeLa cell).  
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• Allometry: relation between size and metabolic rate

— size and metabolic power : the « surface law »

Thomas LECUIT   2019-2020
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Pl M, L: T,-3 _-.-.- 
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TO arrive at the claimed proportionality of power to the square of a linear 
size L, Teissier assumed that the times of the two organisms are at a constant 
ratio, that of their linear sizes (Gunther, 1975). Because the organisms are 
geometrically similar, their body masses are as their volumes or cubes of their 
linear sizes. Therefore equation (1) becomes : 

Pl L: L: Lp Pl G 
p,- 
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(2) 

Thus, heat (power) can be produced only porportional to the square of a 
linear dimension of the organism, i.e. the surface law for basal metabolic rate 
was obtained as a consequence of physical properties of the organisms 
without consideration of their biological properties or the nature of 
organism-environment interaction, at least so it was claimed. However, the 
assumption on the time variables is such a consideration of the nature of the 
organisms. This assumption does not agree with experimental evidence. 
Thus, basal metabolic rate (BMR) is proportional to the total blood Row to 
the tissues or cardiac output (CO). If HR denoted heart rate and SV heart 
stroke volume, then 

BMRoc HR.SV (3) 
and because SV oc L3, and further, as claimed by Teissier, BMR a L’, we 
derive 

HRa L-l. (4) 
This relationship is in variance with experimental data. Indeed, heart rate is 
related with body mass (Gordon, 1972; Guyton et al., 1970) according to 

HR a M-o’25 , (5) 
but not according to 

HR a M-‘j3, (6) 
as equation (4) implies. For instance, the heart rate of a 30-g mouse is about 
20 times faster than the heart rate of a 4- to 5-ton elephant and not 50 times 
faster as equation (6) predicts. 

Using equation (3) and (5) we obtain 
BMR a M”‘75, (7) 

which is the currently generally accepted form of the basal metabolic rate- 
body mass relationship or “Kleiber’s law”. By contrast, on the assumption 
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Because cells and organisms interface with the environment through 
surfaces, their design should be governed by surface laws. Yet, basal 
metabolic rate is not proportional to the 0.67-power of body mass (surface 
law) but to the 0.75-power of body mass. From the many theories that have 
derived a surface law, Teissier’s dimensional analysis theory was probably 
the neatest. However, the surface law has been empirically invalidated. 
Moreover, Teissier assumed that times in the prototype animal and a 
similar one with different size are in the same ratio as their linear sizes. This 
is incorrect, however, because heart rates, being inverses of times, should be 
proportional to the l/3-power of body mass-but are proportional to the 
l/-power of body mass, which is consistent with a 0.75~power law of basal 
metabolic rate. McMahon’s recent attempt to explain the deviation of the 
empirical law from a surface law based entirely on structural considerations, 
is critically examined. It does not appear that purely structural 
considerations could explain the deviation between the empirical 0.7%law of 
basal metabolic rate and the surface law. 

1. Introduction 
A cell and a multicellular organism both are separated from and 
communicate with the environment through a surface or surfaces (cell 
membrane, alimentary canal, capillaries, excretory system, skin). Therefore, 
in a constant environment that does not influence the organism in any other 
way than through its surface interfaces, evolution of larger, biologically 
similar organisms will be governed by “surface laws”. The finding that basal 
metabolic rate in many different animals (mammals, birds, marsupials, etc.) 
does not follow a surface law (Kleiber, 1936, 1961; Hemmingsen, 1960) 
appears to contradict this premise (Schmidt-Nielsen, 1975). 

Thus, biologically similar organisms will be also geometrically similar, 
assuming that there is no asymmetrically acting environmental force. The 
biochemical-thermodynamic processes inside cells by necessity are 
proportional to the rate food and other chemicals enter them ; the same is 
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true of output waste products (including heat). Because these rates are 
proportional to surface area, the rates of cellular biochemical processes as 
well as of the associated heat production are also proportional to surface 
area. Basal metabolic rate should therefore be proportional to surface area 
(“surface law”)-but is not. This decrepancy is difficult to explain (Schmidt- 
Nielsen, 1975). 

Around 1900, Rubner and many others proposed (based on studies of 
homeotherms) that the rate of heat loss through body surface sets the rate of 
heat production by an animal to achieve a thermal equilibrium at a constant 
body temperature, hence a surface law. This hypothesis has been recently 
abandoned for various reasons besides the now available strong empirical 
evidence against a surface law for basal metabolic rate, most importantly 
because a similar law holds in homeotherms and poikilotherms as well as in 
unicellular organisms (Hemmingsen, 1960; Gordon, 1972). Nevertheless, it 
could be proposed that heat production and the biochemical processes 
associated with it are set to match the rate of elimination of waste products 
independent of temperature regulation considerations; this would be a 
universal mechanism. However, a surface law would be obtained, which is 
also obtained when it is proposed that basal metabolic rate is set by the rate 
at which nutrients and oxygen enter the organism. 

2. Surface Law from Dimensional Analysis 
Another approach was used by Teissier (Lambert & Teissier, 1927; 

Teissier, 1927) in deriving the surface law. Brody (1945) described this 
approach as the neatest ofall arguments proposed until 1950 to account for a 
surface law. He wrote: “From the theory of similitude, surface area varies 
with the square of linear size, regardless of size, provided only that the large 
and small animals are similar in the way that large and small circles are 
similar. Likewise, power (energy metabolism) varies with the square of linear 
size regardless of size, provided that the animals are strictly similar and the 
environmental conditions are strictly homologous. (Homology of environ- 
ment is obtained at rest in post-absorptive conditions and thermal neutrality, 
i.e. under ‘basal conditions’), Since both surface area and power are 
proportional to the square of linear size, or to the 2/3 power of volume, they 
are proportional to each other. The surface law is thus arrived at 
independently of physiological considerations.” 

Teissier used the method of dimensional analysis (Gunther, 1975). If M, L, 
T were physical dimensions of mass, length and time, power production in a 
prototype organism and its “model” would have the ratio 
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size L, Teissier assumed that the times of the two organisms are at a constant 
ratio, that of their linear sizes (Gunther, 1975). Because the organisms are 
geometrically similar, their body masses are as their volumes or cubes of their 
linear sizes. Therefore equation (1) becomes : 

Pl L: L: Lp Pl G 
p,- 

--.-.j or -=-. 
L”, L$ L; PI G 

(2) 

Thus, heat (power) can be produced only porportional to the square of a 
linear dimension of the organism, i.e. the surface law for basal metabolic rate 
was obtained as a consequence of physical properties of the organisms 
without consideration of their biological properties or the nature of 
organism-environment interaction, at least so it was claimed. However, the 
assumption on the time variables is such a consideration of the nature of the 
organisms. This assumption does not agree with experimental evidence. 
Thus, basal metabolic rate (BMR) is proportional to the total blood Row to 
the tissues or cardiac output (CO). If HR denoted heart rate and SV heart 
stroke volume, then 

BMRoc HR.SV (3) 
and because SV oc L3, and further, as claimed by Teissier, BMR a L’, we 
derive 

HRa L-l. (4) 
This relationship is in variance with experimental data. Indeed, heart rate is 
related with body mass (Gordon, 1972; Guyton et al., 1970) according to 

HR a M-o’25 , (5) 
but not according to 

HR a M-‘j3, (6) 
as equation (4) implies. For instance, the heart rate of a 30-g mouse is about 
20 times faster than the heart rate of a 4- to 5-ton elephant and not 50 times 
faster as equation (6) predicts. 

Using equation (3) and (5) we obtain 
BMR a M”‘75, (7) 

which is the currently generally accepted form of the basal metabolic rate- 
body mass relationship or “Kleiber’s law”. By contrast, on the assumption 448 A. C. ECONOMOS 

of geometrically similar organisms, L cc I’@‘~, and therefore : 
~2 a ~0.67 

so that the “surface law” stated 
BMR a M”‘67. (8) 

3. Muscle Dimensions and BMR 
Recently, McMahon (1973) described a derivation of Kleiber’s law based 

on physical dimensions of organisms, specifically mammals, without 
consideration again of surface-related rates at the organism+nvironment 
interfaces. He started by acknowledging the existence of geometrical 
dissimilarity (change of form) imposed by gravity. This concept goes back to 
Galilei (1638). Because of compression load (Galilei) or buckling and 
bending loads (McMahon), length L and diameter d of a quasi-cylinder part 
of a mammalian body (limb or trunk) are related by 

La d213. (9) 
Because Ld2 a M, it follows that 

La Mo’o25 and d cc M”-375. (10) 
McMahon used equation (10) to prove Kleiber’s law. The relation 

Pa o.$.d2 (11) 

gives the power of a muscle, where D is the tensile strength of a muscle fiber of 
length L and diameter d. McMahon assumed that 0 and AL/At are the same 
in the same kind of muscle in animals of various sizes, and further that BMR 
is proportional to muscle power P. From these assumptions and equations 
(10) and (11) he obtained Kleiber’s law. 

However, because AL a L, as McMahon also pointed out in a subsequent 
paper (McMahon, 1975), equation (11) becomes 

Paa.L.d2.(l/At). 
Observing that L . d2 a M, we obtain 

Paa.M/At, (12) 
which is independent of considerations of geometric similarity or 
dissimilarity, i.e. of structural considerations. Clearly, to derive Kleiber’s law 
it is necessary to postulate that time is scaled according to the l/4-power of 
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yet, …
Georges TEISSIER,(1927). Ann. Physiol. Physicochim. Biol. 4, 1 

« Théorie de la similitude biologique »

Georges Teissier 1900-1972

the trunk. Then the limb should grow
no longer than icr, where

lcw=C E |~ d% (3)

and C depends only on the droop angle
9D, which in turn depends only on the

angle at which the limb leaves the
trunk (15). The result may be made
general for a tapered or hollow limb
exactly as was done for the buckling
problem. Comparing Eqs. 1, 2, and 3,
it is apparent that elastic criteria set
length proportional to the % power
of diameter in both the trunk and the
branches.

It should be possible to check the
validity of these results by measuring
the proportions of trees of different
scale. Such a check would be arduous
if it were necessary to know E and p

for each species; fortunately, the ratio
E/p is quite accurately constant in
green woods (16, 17). In Fig. 2, the
trunk diameter 1.525 meters from the
ground is plotted against the total
height for 576 individual trees, repre-

senting nearly every species found in
the United States. The data, taken pri-

marily from the American Forestry
Association's "Social register of big
trees" (18), include specimens both
very slender and very stout, since trees
are eligible for this list according to
their bigness, an index depending on
the sum of their circumference and
height (19). A solid line representing
Eq. 2 is also shown in Fig. 2; it was
calculated for E = 1.05 X 105 kilo-
grams per square meter and p = 6.18 x

102 kilograms per cubic meter (16).

The broken line, which fits near the
center of the data points, has the same
slope as the solid line but represents a
sequence of trees whose height in each
case is only one-fourth of the critical
buckling height. The conclusion seems
to be that the proportions of trees are
limited by elastic criteria, since there
are no data points to the left of the
solid line.

Animal Proportions

Just as trees must assume thicker
proportions with increasing size, so
must animals adjust their shape with
scale. The argument has long been
offered that animals could not remain
geometrically similar from the small to
the large because their limbs, whose
cross-sectional area increases as the
square of characteristic body dimension
L, must then support a weight which
increases as L3 (7). The difficulty with
these arguments based on strength cri-
teria is the inevitable conclusion that
animals may grow no larger than a size
which makes the applied stress equal
to the yield stress of their materials.
Animals larger than this size would
have to increase supporting areas di-
rectly with weight, so that no increases
in height could be tolerated, only in-
creases in width. If yield stress were
the only criterion, an animal with
slender proportions like the bobcat
should be capable of attaining the same
absolute height as the lion. In fact,
it is widely found that some animals
grow larger than others, and animals of

small scale are relatively more slender
than those of large scale (see cover).
Perhaps this transformation occurs, as
in differently sized trees, for reasons
based on elastic rather than strength
criteria.

In the following, we consider com-
parisons between animals of the same
family, so that their shape is grossly
similar. The only change in shape per-
mitted is for lengths to bear a specified
relationship to diameters: all lengths
will be proportional to one another, as
will be all diameters. Each limb, bone,
or muscle will thus have a length I
and diameter d, where length will be
taken as a measurement parallel to the
direction of tension or compression and
diameter will be measured perpendicu-
lar to this direction. Thus, the length
of the trunk is the distance between
shoulder and hip whether the animal
is bipedal or quadrapedal (Fig. 3a,
bottom).

When a quadruped is standing at
rest, the four limbs will be exposed pri-
marily to buckling loads, but the verte-
bral column and its musculature must
withstand bending loads. When the
same animal runs, the situation is sub-
stantially reversed in those phases of
the motion where the limbs are provid-
ing their maximum propulsive effort.
At these moments, the limbs are sup-
porting bending loads, while the ver-
tebral column is receiving an end
thrust and thus a buckling load. The
fact that the loads are dynamic rather
than static is not a consideration: the
maximum deflection of a structure sud-
denly loaded under its own weight is
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Fig. 1 (left). Metabolic heat production plotted against body weight on logarithmic scales. The solid line has slope 3/4. The broken
line, which does not fit the data, has slope 2A and represents the way surface area increases with weight for geometrically similar
shapes [adapted from (2)]. Fig. 2 (right). Tree height plotted against trunk base diameter on logarithmic scales for record trees
representing nearly every American species. The trunk proportions are limited by elastic buckling criteria, since no points lie to the
left of- the solid line. Data from (18, 19).
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TABLE 2 

CROUP ANIHAL AUTHOR BODY WT. YETABOL. RATE 
PER DAY 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

23 

24 

25 

26 

- 

a. Data used for calculation of regression line 

Mouse 
Rat 23MOO days old 
Guinea pig 
Rabbit 
Rabbit 
Rabbit 
Rabbit 

1 
Rabbit 
Rabbit 
Cat 
Macaque 
Doti! 
Dog 

I Dog 
Dog 
Goat 
Chimpanzee 
Sheep Q 
Sheep 3 1 
Woman 
Woman 
Woman 

cow 

cow 

Beef heifers 

cow 

Benedict and Lee, 1936 
Kleiber, unpubl. 
Benedict, 1938 
Tomme and Loria, 1936 

R. Lee, 1939 

Benedict, 1938 
Benedict, 1938 

Galvgo, 1942 

de Beer and Hjort, 1938 
Benedict, 1938 
Bruhn and Benedict, 1936 
Lines and Peirce, 1931 
McKittrick, 1936 
Lewis, Iliff and Duval, 1943 
McCrery, Wolf and Ba- 

vousett, 1940 
Benedict and Ritzman, 

1935 
Kleiber, Regan and Mead, 

1945 
Kleiber, Goss and Guil- 

bert, 1936 
Benedict and Ritzman, 

1935 

kg. heal 
0.021 3.6 
0.282 28.1 
0.410 35.1 
2.98 167 
1.52 83 
2.46 119 
3.57 164 
4.33 191 
5.33 233 
3.00 152 
4.2 207 
6.6 288 

14.1 534 
24.8 875 
23.6 872 
36.0 800 
38.0 1090 
46.4 1254 
46.8 1330 
57.2 1368 
54.8 1224 
57.9 1320 

300 4221 

435 8166 

482 7754 

600 7877 

b, Data not used for calculation because conditions not comparable 

Shrew 

Swiss mice 

Dwarf mouse 
Rats (giant) 
Rata (growth hormone) 
Swine 
Steer calves 
Elephant 
Porpoise 
Whale 

Morrison and Pearson, 
1946 

U. S. Navy Res. Unit and 
Kleiber, 1944 

Benedict, 1938 
Benedict, 1938 
Kleiber and Cole, 1939 
Breirem, 1936 
Mitchell et al., 1940 
Benedict, 1938 
Irving et al., 1941 
Irving, 1941 

0.0035 

0.0105 

0.008 1 
0.400 33.2 
0.391 28.6 

150 2678 
200 3817 

3672 49000 
170 6768 

70000 1.2 x 10’ 

2.9 

3.7 
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The two bands, described by the two regression equations with their standard 
error of estimate, could be distinguished only by extrapolation to animals weigh- 
ing less than 4 grams or more than 800 tons. 

The figure shows the line by which the results would have to be represented if 
the metabolic rate were proportional to body weight, and also the line which 
would summarize the results if the metabolic rate were proportional to the 2/3 
power of body weight (or approximately body surface). 

The line expressing proportionality of metabolic rate to body weight stays 
within the band expressing metabolic rates proportional to the 3/4 power of 

0 I I I I I I _./ 

Fig. 1. Log. metabol. rate/log body weight 

weight over a ratio of weights of 3.2. That means one would not be able to 
decide whether metabolic rates are proportional to body weight or proportional 
to its 3/4 power, unless the heaviest animals studied would weigh at least three 
times as much as the lightest animals. 

Similarly, one may calculate that a significant difference between propor- 
tionality to the 3/4 power of body weight and proportionality to the 2/3 power 
of body weight (representing roughly the surface area), could not be established 
with groups of animals in which the heaviest animals weighed less than 9 times 
as much as the lightest animals. 

C. Intraspecijic comparisons. Since the differences in size have to be so con- 
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CORRELATION BETWEEN BODY SIZE AND METABOLIC RATE. Gunther (1944) 
introduces a recent review on body weight and metabolic rate with a motto which 
starts as follows : 

“It is believed that far greater progress will be made by discarding all thoughts 
of a uniformity in heat loss and emphasizing the non-uniformity in heat 
production. . . .” 

The sentence is a citation from Benedict’s book, VW Energetics (1938, p. 194). 
It is rather difficult to understand how forgetting all thoughts of uniformity 

and emphasizing non-uniformity can stimulate a comparison of metabolic rates 
of large and small animals. Any comparison presupposes a common basis, and 
if I were convinced of the “futility of attempts to discover a unifying principle in 
metabolism” (Benedict, l.c., p. 178) I should not attempt to write a review on the 
relation of body size and metabolic rate. 

The reader can be expected to spend time on this review only when he can be 
convinced that body size and metabolic rate are actually related. That these 
two variables are related is in fact common knowledge. 

Does a horse produce more heat per day than a rat or do some rats produce 
more heat than do some horses? Almost anybody who understands what is 
meant by “heat production per day” will not hesitate to give the correct answer 
and will even be convinced that the daily rate of heat production of men or sheep 
is greater than that of rats, but smaller than that of horses. Thus most people 
(among those who understand the question) are convinced that in general the 
bigger homeotherms produce more heat per day than the smaller homeotherms, 
that, in other words, the metabolic rate of homeotherms is positively correlated 
to body size. 

The answer to the next question: “does a horse produce more heat per day 
per kilogram of body weight than a rat?” requires some biological training. Most 
biologists, however, will not hesitate to answer that the rate of heat production 
per unit body weight of the big animal is less than that of the small animal. 

The positive correlation between metabolic rate and body size, and the nega- 
tive correlation between metabolic rate per unit weight and body size, establish 
two limits between which we expect to find the rate of heat production of a horse 
if we know the rate of heat production of a rat. We expect the metabolic rate 
of the horse to be somewhat between that of the rat, and that of the rat times 
the ratio of horse weight to rat weight, provided of course that we do not regard 
these two correlations as simply accidental. 

If we are firmly convinced that the metabolic rate of horses, and other homeo- 
therms of similar size, is never outside these two limits, then we admit to recog- 
nize a natural law between body size and metabolic rate. The firmness of the 
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The fact that metabolic rate scales as the three-quarter power of
body mass (M) in unicellular, as well as multicellular, organisms
suggests that the same principles of biological design operate at
multiple levels of organization. We use the framework of a general
model of fractal-like distribution networks together with data on
energy transformation in mammals to analyze and predict allo-
metric scaling of aerobic metabolism over a remarkable 27 orders
of magnitude in mass encompassing four levels of organization:
individual organisms, single cells, intact mitochondria, and enzyme
molecules. We show that, whereas rates of cellular metabolism in
vivo scale as M!1/4, rates for cells in culture converge to a single
predicted value for all mammals regardless of size. Furthermore, a
single three-quarter power allometric scaling law characterizes the
basal metabolic rates of isolated mammalian cells, mitochondria,
and molecules of the respiratory complex; this overlaps with and
is indistinguishable from the scaling relationship for unicellular
organisms. This observation suggests that aerobic energy trans-
formation at all levels of biological organization is limited by the
transport of materials through hierarchical fractal-like networks
with the properties specified by the model. We show how the mass
of the smallest mammal can be calculated (!1 g), and the observed
numbers and densities of mitochondria and respiratory complexes
in mammalian cells can be understood. Extending theoretical and
empirical analyses of scaling to suborganismal levels potentially
has important implications for cellular structure and function as
well as for the metabolic basis of aging.

The classic allometric scaling relationship relating metabolic
rate (B) to body mass (M),

B ! B0M
3⁄4 [1]

(with B0 being a normalization coefficient), was formulated first
for mammals and birds by Kleiber in the 1930s (1–4). It has since
been extended to a wide range of organisms from the smallest
microbes (!10"13 g) to the largest vertebrates and plants (!108

g; refs. 4 and 5). Although the value of B0 varies among broad
taxonomic or functional groups (endotherms, ectotherms, pro-
tists, and vascular plants; ref. 4), the value of the scaling exponent
(b) is invariably close to 3⁄4. Furthermore, many other physio-
logical variables such as lifespan, heart-rate, radius of aorta,
respiratory rate, and so on scale with exponents that are typically
simple multiples of 1⁄4 (2). The origin of the universal quarter
power and, in particular, of the 3⁄4 exponent in Eq. 1 rather than
a linear relationship (b # 1) or a simple Euclidean surface-to-
volume relationship (b # 2⁄3) has been sought for decades. A
quantitative theoretical model (6) has been developed that
accounts for quarter-power scaling on the basis of the assump-
tion that metabolic rates are constrained by the rate of resource
supply. Accordingly, allometric exponents are determined from
generic universal properties of hierarchical transport networks
such as the vascular systems of mammals and plants, which occur
naturally in biological systems. More generally, it has been shown

that quarter powers reflect the effective four-dimensional frac-
tal-like character of biological networks (7).

In this paper we apply the general ideas underlying the model to
show how the scaling of metabolism can be extended down through
all levels of organization from the intact organism to the cell,
mitochondrion, respiratory complex, and ultimately to an individual
molecule of cytochrome oxidase, the terminal enzyme of cellular
respiration. Accordingly, a relatively simple variant of Eq. 1 con-
nects complex biological phenomena spanning an astounding 27
orders of magnitude in mass from a single molecule to the largest
mammal. We know of no precedent for this observation nor any
previous theory that could explain it. Its universal character clearly
reflects something fundamental about the general principles of
biological design and function. The extension of scaling phenomena
down to the molecular level offers potentially important insights
into the organization of metabolic pathways within cells and
organelles as well as into how these fundamental units are inte-
grated functionally at higher levels of organization. In addition to
showing how the general principles of the network model account
for these phenomena, we show how the turnover rate of the enzyme
molecules of the respiratory complex propagates through the
hierarchy to limit the maximum aerobic metabolic capacity of whole
organisms. Furthermore, the allometric scaling of metabolism at
cellular and molecular levels focuses attention on processes asso-
ciated with aging and mortality.

The origin of b # 3⁄4 for both animals and plants follows from
three key properties of their branching transport systems (6): (i)
networks are space-filling (thus, for example, they must reach
every cell in the organism), (ii) their terminal branch units such
as capillaries in the circulatory system or mitochondria within
cells are the same size, respectively, for all organisms or cells of
the same class, and (iii) natural selection has acted to minimize
energy expenditure in the networks. More generally, the uni-
versal quarter power can be derived by assuming that the number
of terminal units (such as capillaries or mitochondria) in the
hierarchical network is maximized when scaled (7). Because this
latter argument does not invoke any specific structural design or
dynamical mechanism, it can be expected to hold at all levels of
biological organization. Because this model works so well for
plants and animals with macroscopic vascular systems, it is
natural to speculate that similar geometric constraints affect
transport processes at the cellular, organelle, and molecular
levels. The observation that b # 3⁄4 for unicellular (4) as well as
multicellular organisms suggests that the distribution networks
within single cells obey the same design principles. Furthermore,
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MAX JCLEIBER 

The great amount of material on metabolic rates, secured by reliable measure- 
ments in Benedict’s laboratory, and condensed to a logarithmic chart on the 
relation of body size and metabolic rate (Benedict (1938) p. 171) is an excellent 
confirmation of Kleiber’s earlier results (1932, p. 321). The two regression lines 
expressing the mean trends of these two sets of data are practically identical. 

B. Check with recent data. To reinvestigate the relation of body size and 
metabolic rate among mammals, I have compiled 26 groups of metabolic rates 
measured under apparently comparable conditions. The animals were mature, 
in postabsorptive condition, measured in the range of metabolically indifferent 
environmental temperature, and at rest, or at least without abnormal activity. 
No data were used that were already incorporated in the earlier study (1932). 

The basic data and the source of the material are given in table 2. 
In figure 1 the logarithms of metabolic ratle are plotted against the logarithms 

of body weight. The results used for calculating the regression line are indi- 
cated by dots in circles; those that are not used in the calculation are marked 
with brackets. 

The reasons for not including these data in the calculation are as follows: 
The result of only one shrew is so far reported and it is questionable whether 

the conditions of measurement allow a direct comparison with standard meta- 
bolic rate of the other animals. The Swiss mice were not in postabsorptive con- 
dition as indicated by a mean respiratory quotient of 0.96. Dwarf mice and 
growth hormone rats have an abnormal endocrine system. The result for swine 
was calculated from a mean net energy requirement for maintenance. The steer 
calves may be regarded as not yet mature and therefore their metabolic rate 
not strictly comparable with that of the other groups of animals. The conditions 
of measurement of metabolic rate of elephant, porpoise and whale are not strictly 
in line with the normal conditions of measuring standard metabolic rates. 

Unfortunately, a lot of valuable data on man could not be incorporated in our 
chart because the result,s were given only per square meter of body surface. 
This is particularly true for the material of Boothby and Sandiford (1924), and 
the more recent findings of Young, Pittman, Donelson, and Kinsman (1943). 

For the 26 comparable results, the method of least squares leads to the follow- 
ing linear regression equation : 

log M = 1.83 + 0.756 log W 3z 0.05 

where M = metabolic rate of animal in kilocalories per day 

W = body weight in kilograms. 

The regression coefficient of 0.756 =t 0.004 indicates that for the 26 results 
compiled in our table, the metabolic rate is most nearly proportional to the 0.756 
or close to the 3/4 power of body weight. 

The same interpolation of the earlier data (Kleiber, 1932) on ten groups of 
mammals leads to the equation: 

log M = 1.87 + 0.739 log W rfr: 0.03 
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THE POWER LAW FOR ORGANISMS 
In biology, West argues, a ¾ power law is particularly widespread. Let’s look at the 
metabolic rate, which is centrally important because it is the internal engine of all living 
things, the rate at which an organism converts inputs (food) to outputs (work):  
 

Elephants are roughly 10,000 times (four orders of magnitude, 104) heavier than 
rats; consequently they have roughly 10,000 times as many cells. The ¾ power 
scaling law says that, despite having 10,000 times as many cells to support, the 
metabolic rate of an elephant (that is, the amount of energy needed to keep it 
alive) is only 1000 times (three orders of magnitude, 103) larger than a rat’s; note 
the ratio of 3:4 in the powers of ten. This represents an extraordinary economy 
of scale [in the use of resources] as size increases. 
 

Figure 1 shows this relationship, which also explains the relentless march toward 
larger size as evolution proceeds: small reptile to dinosaur, eohippus (an early 
horse about the size of a fox terrier) to modern horse, small sea mammal to 
whale.3 Yet, as we saw at the outset, scaling factors also impose limits to size, as 
the organism encounters tradeoffs between the efficiency of larger size and the 
handicaps that large size inflicts.  

 
FIGURE 1 
RELATION BETWEEN SIZE (BODY MASS) AND METABOLIC RATE OF ANIMALS 

‘ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Mann, Charles C. “How Nature Scales Up” (review of Scale by Geoffrey West). Wall Street Journal, 
June 23, 2017. After West [2017], Figure 1 on page 3.  

                                                        
3 We are now supposed to call eohippus (“dawn horse”) hyracotherium. Almost no one does, eohippus 
being much more melodious; and, while the comparison of eohippus to fox terrier is copied from textbook 
to magazine article to this essay, few people know what a fox terrier is, much less how big one is. Gould 
[1991] documents the spread of this silly meme. Gould, Stephen Jay. 1991. “The Case of the Creeping Fox 
Terrier Clone,” in Bully for Brontosaurus, W. W. Norton & Co.  
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!0.04 mW in Isoptera to 1.5 mW in Orthoptera. This finding, as will
be discussed below, does not contradict the predictions of the WBE
model. Instead, this variation points to phylogenetic patterning of
B0 that likely reflects fundamental physiological and anatomical
differences between major insect taxa. Nevertheless, when we
analyzed the data by using the RMA model, we found that two
orders, Hymenoptera and Isoptera, significantly deviate from the
WBE predicted exponent (Table 1). For each, the slopes were
always greater than expected. In the case of Isoptera the slope even
exceeded isometry or 1. However, an important diversity of
intercepts was observed again, ranging from (after log10 transfor-
mation) !0.23 mW in Isoptera to 1.39 mW in Diptera.

At the family level our analysis provided a more detailed view of
the source of variation. Using OLS regression, in two families
(Carabidae and Scarabaeidae) did the slope of the BS–MR
relationship deviated from the expected 0.75 (Table 2). Interest-
ingly, the exclusion of either of these families from the set of data
did not produce a change in the slope toward the expected 0.75.
Also, as in our analysis of orders, we observed a great diversity of
intercepts across families, ranging from !0.10 mW in Termitidae to
1.63 mW in Carabidae. Interestingly, when we analyzed the data

using the RMA method, we found only one family, Termitidae
(order Isoptera), to deviate from the expected pattern (F = 18.292,
P < 0.001, n = 224). Once again, we also observed a remarkable
variation in the intercepts, ranging from !0.23 mW in Termitidae
to 1.29 mW in Carabidae.

3.2. The importance of termites in influencing Chown et al. (2007)
results

Together, our analyses revealed the consistent deviation at
the order and family level of one group, the termites. Since 24 out
of the 29 species reported here for Isoptera belong to the family
Termitidae, it is difficult to determine whether the deviation
occurs at the order in general or whether only the family
Termitidae drives it. Importantly, exclusion of this family leads to
a BS–MR relationship that follows the pattern expected by the
WBE model (Fig. 1; F = 0.496, P = 0.482, n = 367) when the data
are analyzed under an OLS, but not an RMA model (F = 10.96,
P = 0.001, n = 367). As mentioned at the beginning, a visual
analysis of the entire set of data reveals that the species in the
family Termitidae appear as ‘‘outliers’’, exhibiting metabolic
rates considerably lower than expected for their body sizes. Since
all those deviating data points were reported from a single
research paper (Jeeva et al., 1999), experimental problems
affecting the original reported results might be taken into
account (see below).

3.3. The role of wings in influencing insect metabolism

Next, following Chown et al. (2007) and using the corrected
dataset, we tested the potential effect of wing possession in the BS–
MR relationship. Chown et al. (2007) analyzed the role of wings
and found it to be significant, although the direction of the
significance was not reported or discussed. Furthermore, the
significant effect of wing status was only found without applying a
phylogeny correction. For our analysis, we excluded the species of
the family Termitidae, which strongly diverge in their intercept
and slope from other taxa. Since the worker caste in Isoptera do not
have wings, their inclusion might overestimate potential differ-
ences between winged and non-winged groups. This new analysis
showed that winged species (n = 204) have greater metabolic rate
than wingless species (n = 134; Wald test = 77.49, P < 0.001) of
similar body size. Nevertheless, although in the species without
wings the slope of the BS–MR relationship did not differ from the
predicted value 0.75 (F = 0.43, P = 0.513), in the species with wings
the slope was lower and significantly different than predicted
(F = 16.15, P < 0.001).

Table 2
Correlations between body mass and metabolic rate in families using a RMA and OLS models. The two columns to the right present a test for the hypothesized slope of 3/4.

Family n R2 P Model Slope [95% Cl] Ho slope = 0.75

F P

Carabidae 20 0.61 <0.001 RMA 0.62 [0.46, 0.84] 1.612 0.22
OLS 0.49 [0.29, 0.68] 8.272 0.01

Curculionidae 21 0.78 <0.001 RMA 0.70 [0.56, 0.88] 0.33 0.573
OLS 0.62 [0.46, 0.78] 2.814 0.110

Formicidae 43 0.78 <0.001 RMA 0.79 [0.68, 0.91] 0.42 0.518
OLS 0.69 [0.58, 0.81] 0.94 0.338

Scarabaeidae 24 0.72 <0.001 RMA 0.64 [0.50, 0.80] 2.18 0.0154
OLS 0.54 [039, 0.69] 8.69 0.007

Sphingidae 20 0.67 <0.001 RMA 0.96 [0.72, 1.27] 3.30 0.086
OLS 0.78 [0.51, 1.06] 0.06 0.802

Tenebrionidae 44 0.74 <0.001 RMA 0.79 [0.67, 0.92] 0.35 0.556
OLS 0.68 [0.55, 0.80] 1.46 0.233

Termitidae 24 0.61 <0.001 RMA 1.29 [0.98, 1.69] 18.292 <0.001
OLS 1.01 [0.65, 1.36] 2.27 0.147

Values in bold are significant at a = 0.05.

Fig. 1. Correlation of body mass and metabolic rate in insects based on an OLS
regression. The dashed line represents a 95% CI for the correlation. A separate
correlation is presented for the family Termitidae (crosses; order: Isoptera). Data
points circled are the corrected values of metabolic rate for three species of
Coleoptera that were incorrectly reported in Chown et al., 2007 (see text).
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The fact that metabolic rate scales as the three-quarter power of
body mass (M) in unicellular, as well as multicellular, organisms
suggests that the same principles of biological design operate at
multiple levels of organization. We use the framework of a general
model of fractal-like distribution networks together with data on
energy transformation in mammals to analyze and predict allo-
metric scaling of aerobic metabolism over a remarkable 27 orders
of magnitude in mass encompassing four levels of organization:
individual organisms, single cells, intact mitochondria, and enzyme
molecules. We show that, whereas rates of cellular metabolism in
vivo scale as M!1/4, rates for cells in culture converge to a single
predicted value for all mammals regardless of size. Furthermore, a
single three-quarter power allometric scaling law characterizes the
basal metabolic rates of isolated mammalian cells, mitochondria,
and molecules of the respiratory complex; this overlaps with and
is indistinguishable from the scaling relationship for unicellular
organisms. This observation suggests that aerobic energy trans-
formation at all levels of biological organization is limited by the
transport of materials through hierarchical fractal-like networks
with the properties specified by the model. We show how the mass
of the smallest mammal can be calculated (!1 g), and the observed
numbers and densities of mitochondria and respiratory complexes
in mammalian cells can be understood. Extending theoretical and
empirical analyses of scaling to suborganismal levels potentially
has important implications for cellular structure and function as
well as for the metabolic basis of aging.

The classic allometric scaling relationship relating metabolic
rate (B) to body mass (M),

B ! B0M
3⁄4 [1]

(with B0 being a normalization coefficient), was formulated first
for mammals and birds by Kleiber in the 1930s (1–4). It has since
been extended to a wide range of organisms from the smallest
microbes (!10"13 g) to the largest vertebrates and plants (!108

g; refs. 4 and 5). Although the value of B0 varies among broad
taxonomic or functional groups (endotherms, ectotherms, pro-
tists, and vascular plants; ref. 4), the value of the scaling exponent
(b) is invariably close to 3⁄4. Furthermore, many other physio-
logical variables such as lifespan, heart-rate, radius of aorta,
respiratory rate, and so on scale with exponents that are typically
simple multiples of 1⁄4 (2). The origin of the universal quarter
power and, in particular, of the 3⁄4 exponent in Eq. 1 rather than
a linear relationship (b # 1) or a simple Euclidean surface-to-
volume relationship (b # 2⁄3) has been sought for decades. A
quantitative theoretical model (6) has been developed that
accounts for quarter-power scaling on the basis of the assump-
tion that metabolic rates are constrained by the rate of resource
supply. Accordingly, allometric exponents are determined from
generic universal properties of hierarchical transport networks
such as the vascular systems of mammals and plants, which occur
naturally in biological systems. More generally, it has been shown

that quarter powers reflect the effective four-dimensional frac-
tal-like character of biological networks (7).

In this paper we apply the general ideas underlying the model to
show how the scaling of metabolism can be extended down through
all levels of organization from the intact organism to the cell,
mitochondrion, respiratory complex, and ultimately to an individual
molecule of cytochrome oxidase, the terminal enzyme of cellular
respiration. Accordingly, a relatively simple variant of Eq. 1 con-
nects complex biological phenomena spanning an astounding 27
orders of magnitude in mass from a single molecule to the largest
mammal. We know of no precedent for this observation nor any
previous theory that could explain it. Its universal character clearly
reflects something fundamental about the general principles of
biological design and function. The extension of scaling phenomena
down to the molecular level offers potentially important insights
into the organization of metabolic pathways within cells and
organelles as well as into how these fundamental units are inte-
grated functionally at higher levels of organization. In addition to
showing how the general principles of the network model account
for these phenomena, we show how the turnover rate of the enzyme
molecules of the respiratory complex propagates through the
hierarchy to limit the maximum aerobic metabolic capacity of whole
organisms. Furthermore, the allometric scaling of metabolism at
cellular and molecular levels focuses attention on processes asso-
ciated with aging and mortality.

The origin of b # 3⁄4 for both animals and plants follows from
three key properties of their branching transport systems (6): (i)
networks are space-filling (thus, for example, they must reach
every cell in the organism), (ii) their terminal branch units such
as capillaries in the circulatory system or mitochondria within
cells are the same size, respectively, for all organisms or cells of
the same class, and (iii) natural selection has acted to minimize
energy expenditure in the networks. More generally, the uni-
versal quarter power can be derived by assuming that the number
of terminal units (such as capillaries or mitochondria) in the
hierarchical network is maximized when scaled (7). Because this
latter argument does not invoke any specific structural design or
dynamical mechanism, it can be expected to hold at all levels of
biological organization. Because this model works so well for
plants and animals with macroscopic vascular systems, it is
natural to speculate that similar geometric constraints affect
transport processes at the cellular, organelle, and molecular
levels. The observation that b # 3⁄4 for unicellular (4) as well as
multicellular organisms suggests that the distribution networks
within single cells obey the same design principles. Furthermore,
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1. Metabolic rate increases sublinearly as 
size increases

2. Economy of scale:    25% economy as 
size doubles

3. This means that 1 g of living material 
consumes less energy per unit of time in 
large animals than in smaller ones. 
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The fact that metabolic rate scales as the three-quarter power of
body mass (M) in unicellular, as well as multicellular, organisms
suggests that the same principles of biological design operate at
multiple levels of organization. We use the framework of a general
model of fractal-like distribution networks together with data on
energy transformation in mammals to analyze and predict allo-
metric scaling of aerobic metabolism over a remarkable 27 orders
of magnitude in mass encompassing four levels of organization:
individual organisms, single cells, intact mitochondria, and enzyme
molecules. We show that, whereas rates of cellular metabolism in
vivo scale as M!1/4, rates for cells in culture converge to a single
predicted value for all mammals regardless of size. Furthermore, a
single three-quarter power allometric scaling law characterizes the
basal metabolic rates of isolated mammalian cells, mitochondria,
and molecules of the respiratory complex; this overlaps with and
is indistinguishable from the scaling relationship for unicellular
organisms. This observation suggests that aerobic energy trans-
formation at all levels of biological organization is limited by the
transport of materials through hierarchical fractal-like networks
with the properties specified by the model. We show how the mass
of the smallest mammal can be calculated (!1 g), and the observed
numbers and densities of mitochondria and respiratory complexes
in mammalian cells can be understood. Extending theoretical and
empirical analyses of scaling to suborganismal levels potentially
has important implications for cellular structure and function as
well as for the metabolic basis of aging.

The classic allometric scaling relationship relating metabolic
rate (B) to body mass (M),

B ! B0M
3⁄4 [1]

(with B0 being a normalization coefficient), was formulated first
for mammals and birds by Kleiber in the 1930s (1–4). It has since
been extended to a wide range of organisms from the smallest
microbes (!10"13 g) to the largest vertebrates and plants (!108

g; refs. 4 and 5). Although the value of B0 varies among broad
taxonomic or functional groups (endotherms, ectotherms, pro-
tists, and vascular plants; ref. 4), the value of the scaling exponent
(b) is invariably close to 3⁄4. Furthermore, many other physio-
logical variables such as lifespan, heart-rate, radius of aorta,
respiratory rate, and so on scale with exponents that are typically
simple multiples of 1⁄4 (2). The origin of the universal quarter
power and, in particular, of the 3⁄4 exponent in Eq. 1 rather than
a linear relationship (b # 1) or a simple Euclidean surface-to-
volume relationship (b # 2⁄3) has been sought for decades. A
quantitative theoretical model (6) has been developed that
accounts for quarter-power scaling on the basis of the assump-
tion that metabolic rates are constrained by the rate of resource
supply. Accordingly, allometric exponents are determined from
generic universal properties of hierarchical transport networks
such as the vascular systems of mammals and plants, which occur
naturally in biological systems. More generally, it has been shown

that quarter powers reflect the effective four-dimensional frac-
tal-like character of biological networks (7).

In this paper we apply the general ideas underlying the model to
show how the scaling of metabolism can be extended down through
all levels of organization from the intact organism to the cell,
mitochondrion, respiratory complex, and ultimately to an individual
molecule of cytochrome oxidase, the terminal enzyme of cellular
respiration. Accordingly, a relatively simple variant of Eq. 1 con-
nects complex biological phenomena spanning an astounding 27
orders of magnitude in mass from a single molecule to the largest
mammal. We know of no precedent for this observation nor any
previous theory that could explain it. Its universal character clearly
reflects something fundamental about the general principles of
biological design and function. The extension of scaling phenomena
down to the molecular level offers potentially important insights
into the organization of metabolic pathways within cells and
organelles as well as into how these fundamental units are inte-
grated functionally at higher levels of organization. In addition to
showing how the general principles of the network model account
for these phenomena, we show how the turnover rate of the enzyme
molecules of the respiratory complex propagates through the
hierarchy to limit the maximum aerobic metabolic capacity of whole
organisms. Furthermore, the allometric scaling of metabolism at
cellular and molecular levels focuses attention on processes asso-
ciated with aging and mortality.

The origin of b # 3⁄4 for both animals and plants follows from
three key properties of their branching transport systems (6): (i)
networks are space-filling (thus, for example, they must reach
every cell in the organism), (ii) their terminal branch units such
as capillaries in the circulatory system or mitochondria within
cells are the same size, respectively, for all organisms or cells of
the same class, and (iii) natural selection has acted to minimize
energy expenditure in the networks. More generally, the uni-
versal quarter power can be derived by assuming that the number
of terminal units (such as capillaries or mitochondria) in the
hierarchical network is maximized when scaled (7). Because this
latter argument does not invoke any specific structural design or
dynamical mechanism, it can be expected to hold at all levels of
biological organization. Because this model works so well for
plants and animals with macroscopic vascular systems, it is
natural to speculate that similar geometric constraints affect
transport processes at the cellular, organelle, and molecular
levels. The observation that b # 3⁄4 for unicellular (4) as well as
multicellular organisms suggests that the distribution networks
within single cells obey the same design principles. Furthermore,
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• Allometry: relation between size and metabolic rate

—Data from Prokaryotes to Metazoans 

1. Superlinear scaling for 
prokaryotes

2. Linear scaling for protists
3. Sublinear scaling for 

metazoans 

E ¼ rmax=ðB=MÞ [2]

E is not only a fundamental biological parameter; it has impor-
tant practical applications in areas such as agriculture, bio-
technology, and biofuel production. So it is timely to quantify the
scaling of E as a function of body size and across the evolutio-
nary transitions.
Here we compile data on the scaling of these three fundamental

characteristics, metabolic rate, B, maximum population growth
rate, rmax, and efficiency of biomass production, E, in three
functional groups of heterotrophic organisms: prokaryotes, pro-
tists, and small multicellular aquatic animals (hereafter “meta-
zoans”; SI Text). Application of a scaling framework is especially
powerful and informative when the organisms vary in body size by
many orders of magnitude in body mass. Our data include or-
ganisms spanning approximately 16 orders of magnitude in body
size and representing the evolutionary transitions from prokar-
yotes to unicellular eukaryotes to multicellular animals. To con-
trol for the effects of food supply and activity, the metabolic rate
data are classified into two categories according to the conditions
under which the measurements were taken: (i) active and fed and
(ii) inactive or endogenous or starved. We refer to these as active
and inactive. The data include 167 and 188 species in each state,
respectively. We analyze these data in the context of allometric
scaling to evaluate our hypothesis that scaling of metabolic rate
changed across the evolutionary transitions from small, simple
prokaryotes to much larger and more complex metazoans. By
using nested ANOVAs, we identify differences in scaling slopes
and intercepts among groups. Our findings contradict current
dogma about the scaling of metabolism and rmax, demonstrate
how existing constraints and new innovations affected the evolu-
tionary transitions, and suggest a role for energy in the diversi-
fication of life.

Results and Discussion
Whole-organism metabolic rate increases with body size across
prokaryotes, protists, and metazoans, but each group is charac-
terized by a distinctive scaling relationship that is unique to the
body size range of the group (Fig. 1). Although the entire dataset
for each metabolic state can be fit with a single power law that
accounts for most of the variation, the relationship between body

mass and metabolic rate for both active and inactive states is sig-
nificantly improved by incorporating evolutionary group (ANOVA
comparing a three-line with a one-line model; active, F4,161 = 9.57,
P < 0.0001; inactive, F4,182 = 6.07, P= 0.0001). We also tested for
differences in slopes between protists and metazoans, which differ
for both active and inactive rates (ANOVA comparing a two-
line with a one-line model; active, F1,119 = 3.87, P= 0.05; inactive,
F1,63 = 3.96; P = 0.05). Fig. 1 shows the raw data, fits, and expo-
nents (±SE) for each group. The slopes for the two physio-
logical states are parallel. There is a pronounced shift in the scaling
of both active and inactivemetabolic rates, fromhighly superlinear
(α= 1.7 and 2.0) in prokaryotes, to nearly linear (α= 1.0 and 1.1)
in protists, to sublinear (α = 0.76 and 0.79; i.e., approximately
Kleiber’s law) in metazoans.
The differences across groups and the large discrepancy be-

tween the canonical α=0.75 and the observed, significantly larger,
exponents for protists and especially for prokaryotes clearly show
that Kleiber’s law, long thought to extend across all living things,
does not hold for single-celled organisms. These data suggest that
the scaling of metabolic rate is not governed by a single, over-
arching design principle that applies to all living things, but in-
stead by different constraints at different body sizes and levels of
structural and functional organization.
The scaling of rmax also changes across the evolutionary tran-

sitions. rmax increases with mass in prokaryotes and scales neg-
atively in both protists and metazoans (Fig. 2A). This result
contradicts previous findings that found rmax scaling with an ex-
ponent of approximately −0.25 across diverse taxa from pro-
karyotes to mammals (20). As metabolic rate fuels biomass
production and population growth, the naive expectation is that
rmax should scale similarly to active mass-specific metabolic rate,
so as Mα− 1. Overall, the scalings of rmax roughly parallel the
scalings of mass-specific active metabolic rate as expected, with
no significant differences in slopes (ANOVA, F3,331 = 0.13; P
value not significant; Fig. 2A). This supports the interpretation
that metabolism fuels biomass production.
From these parallel scalings of rmax and mass-specific metabolic

rate, it follows that the efficiency of biomass production, measured
as the ratio of these two variables, is invariant with size within
groups. Indeed, the efficiency of production shows no size de-
pendence within groups. Importantly, however, themean efficiency
decreases with each successive transition, from 23 × 10−4 gJ−1 for

Fig. 1. Relationship between whole organism metabolic rate
and body mass for heterotrophic prokaryotes, protists, and
metazoans plotted on logarithmic axes. Fits are RMA slopes ±
SE. Data for active (filled symbols, solid line) and inactive (un-
filled symbols, gray line) metabolic rates are shown. Differ-
ences in slopes among all groups are significant for both
physiological states (P ≤ 0.05).
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Allometric scaling of metabolic rate from molecules
and mitochondria to cells and mammals
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The fact that metabolic rate scales as the three-quarter power of
body mass (M) in unicellular, as well as multicellular, organisms
suggests that the same principles of biological design operate at
multiple levels of organization. We use the framework of a general
model of fractal-like distribution networks together with data on
energy transformation in mammals to analyze and predict allo-
metric scaling of aerobic metabolism over a remarkable 27 orders
of magnitude in mass encompassing four levels of organization:
individual organisms, single cells, intact mitochondria, and enzyme
molecules. We show that, whereas rates of cellular metabolism in
vivo scale as M!1/4, rates for cells in culture converge to a single
predicted value for all mammals regardless of size. Furthermore, a
single three-quarter power allometric scaling law characterizes the
basal metabolic rates of isolated mammalian cells, mitochondria,
and molecules of the respiratory complex; this overlaps with and
is indistinguishable from the scaling relationship for unicellular
organisms. This observation suggests that aerobic energy trans-
formation at all levels of biological organization is limited by the
transport of materials through hierarchical fractal-like networks
with the properties specified by the model. We show how the mass
of the smallest mammal can be calculated (!1 g), and the observed
numbers and densities of mitochondria and respiratory complexes
in mammalian cells can be understood. Extending theoretical and
empirical analyses of scaling to suborganismal levels potentially
has important implications for cellular structure and function as
well as for the metabolic basis of aging.

The classic allometric scaling relationship relating metabolic
rate (B) to body mass (M),

B ! B0M
3⁄4 [1]

(with B0 being a normalization coefficient), was formulated first
for mammals and birds by Kleiber in the 1930s (1–4). It has since
been extended to a wide range of organisms from the smallest
microbes (!10"13 g) to the largest vertebrates and plants (!108

g; refs. 4 and 5). Although the value of B0 varies among broad
taxonomic or functional groups (endotherms, ectotherms, pro-
tists, and vascular plants; ref. 4), the value of the scaling exponent
(b) is invariably close to 3⁄4. Furthermore, many other physio-
logical variables such as lifespan, heart-rate, radius of aorta,
respiratory rate, and so on scale with exponents that are typically
simple multiples of 1⁄4 (2). The origin of the universal quarter
power and, in particular, of the 3⁄4 exponent in Eq. 1 rather than
a linear relationship (b # 1) or a simple Euclidean surface-to-
volume relationship (b # 2⁄3) has been sought for decades. A
quantitative theoretical model (6) has been developed that
accounts for quarter-power scaling on the basis of the assump-
tion that metabolic rates are constrained by the rate of resource
supply. Accordingly, allometric exponents are determined from
generic universal properties of hierarchical transport networks
such as the vascular systems of mammals and plants, which occur
naturally in biological systems. More generally, it has been shown

that quarter powers reflect the effective four-dimensional frac-
tal-like character of biological networks (7).

In this paper we apply the general ideas underlying the model to
show how the scaling of metabolism can be extended down through
all levels of organization from the intact organism to the cell,
mitochondrion, respiratory complex, and ultimately to an individual
molecule of cytochrome oxidase, the terminal enzyme of cellular
respiration. Accordingly, a relatively simple variant of Eq. 1 con-
nects complex biological phenomena spanning an astounding 27
orders of magnitude in mass from a single molecule to the largest
mammal. We know of no precedent for this observation nor any
previous theory that could explain it. Its universal character clearly
reflects something fundamental about the general principles of
biological design and function. The extension of scaling phenomena
down to the molecular level offers potentially important insights
into the organization of metabolic pathways within cells and
organelles as well as into how these fundamental units are inte-
grated functionally at higher levels of organization. In addition to
showing how the general principles of the network model account
for these phenomena, we show how the turnover rate of the enzyme
molecules of the respiratory complex propagates through the
hierarchy to limit the maximum aerobic metabolic capacity of whole
organisms. Furthermore, the allometric scaling of metabolism at
cellular and molecular levels focuses attention on processes asso-
ciated with aging and mortality.

The origin of b # 3⁄4 for both animals and plants follows from
three key properties of their branching transport systems (6): (i)
networks are space-filling (thus, for example, they must reach
every cell in the organism), (ii) their terminal branch units such
as capillaries in the circulatory system or mitochondria within
cells are the same size, respectively, for all organisms or cells of
the same class, and (iii) natural selection has acted to minimize
energy expenditure in the networks. More generally, the uni-
versal quarter power can be derived by assuming that the number
of terminal units (such as capillaries or mitochondria) in the
hierarchical network is maximized when scaled (7). Because this
latter argument does not invoke any specific structural design or
dynamical mechanism, it can be expected to hold at all levels of
biological organization. Because this model works so well for
plants and animals with macroscopic vascular systems, it is
natural to speculate that similar geometric constraints affect
transport processes at the cellular, organelle, and molecular
levels. The observation that b # 3⁄4 for unicellular (4) as well as
multicellular organisms suggests that the distribution networks
within single cells obey the same design principles. Furthermore,
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• Predominance of quarter power scaling in biology?

—Many power law exponents in allometric relationships are multiples of ¼
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(1983) (see also Schmidt-Nielsen 1984, pp. 60–62). As
a consequence, the debate subsided, the ubiquity of
quarter powers was widely accepted, and there was
relatively little research in allometry until the late 1990s
when a series of  theoretical papers appeared (West

 

et al

 

. 1997, 1999a, 2001, 2002; Enquist, Brown & West
1998; Banavar 

 

et al

 

. 1999, 2002; West, Brown & Enquist
1999b; Enquist & Niklas 2001, 2002; Niklas & Enquist
2001, 2002; Gillooly 

 

et al

 

. 2002; Savage 

 

et al

 

. 2004).
West, Brown, Enquist and their collaborators devel-

oped detailed models for the geometry and hydro-
dynamics of hierarchically branched mammal and plant
vascular systems that accurately predicted empirically
determined allometric scaling relations for many
structural and functional traits (West 

 

et al

 

. 1997, 1999a).
Extensions of  these models predict the allometries
of ontogenetic growth trajectories (West 

 

et al

 

. 2001),
population growth rates and other life-history attributes
(Savage 

 

et al

 

. 2004), variability in biomass, abundance
and productivity of plant communities (Enquist 

 

et al

 

.
1998; West 

 

et al

 

. 1999b; Enquist & Niklas 2001, 2002;
Niklas & Enquist 2001, 2002; Belgrano 

 

et al

 

. 2002;
Niklas, Midgely & Enquist 2003), and metabolic rates
at cellular, organelle and molecular levels (West 

 

et al

 

.
2002). The theory of West, Brown & Enquist and its
extensions quantitatively explain and predict a large
body of empirical measurements taken across broad
scales for a variety of  biological phenomena; this
includes not only quarter-power allometric exponents
but, just as importantly, details of hierarchical branch-
ing and hydrodynamic flow.

 

Analyses: basal metabolic rate of mammals

 

The debate as to whether BMR scales as 

 

M

 

3/4

 

 or 

 

M

 

2/3

 

has recently been resurrected. Dodds 

 

et al

 

. (2001)
reanalysed Heusner’s (1991) and some other existing
data sets using different statistical methods and con-

cluded that the 

 

2

 

/

 

3

 

 exponent for BMR in mammals and
birds cannot be statistically rejected and that over a
limited range it is, in fact, favoured. White & Seymour
(2003) compiled and analysed a large data set on BMR
in mammals and reached similar conclusions. We argue
here that there are two reasons why these studies are
inadequate to address the generality of  quarter- 

 

vs

 

third-power allometric scaling. First, each study uses
questionable, 

 

ad hoc

 

 methods. Second, these studies
focus exclusively on the BMR of mammals and birds
and ignore the large number of published empirical
scaling relations for different taxonomic groups and
for other traits, many of which are easier to measure
accurately and are closely tied to metabolism.

 

QUESTION  

 

1

 

:  HOW  DOES  MAMMALIAN  BMR  
SCALE?

 

Much of  the interest in allometry has focused on
mammalian BMR. There have been many studies,
which have generated a large quantity of data, repre-
senting measurements for hundreds of species. The
vast majority of these studies were designed to address
specific questions about the physiology of  mammals
in particular environments or taxonomic groups. They
were not designed to address the question of allometric
scaling of BMR across all mammals. Consequently,
these large compilations of data represent an oppor-
tunistic collection that may not be representative of the
Class Mammalia. In addition, these data seriously
violate assumptions of the parametric statistics used to
fit regression lines and calculate allometric exponents
(Sokal & Rohlf  1981). Two problems are especially
serious. First, the vast majority of data are for small
mammals (i.e. 

 

M

 

 < 1 kg) (see Fig. 1). Unless some
correction is made for this imbalance, the calculated
regression statistics (slope, intercept and confidence
intervals) will be biased. Second, because BMR data-
bases contain multiple values for species in certain
genera or families and few or no values for other gen-
era or families, the data are neither independent nor
representative. For example, measurements for rodents
are abundant and thus contribute an undue influence
on the scaling of BMR.

 

Methods

 

We compiled data on mammalian BMR from the large
data sets used in the previous studies of Hart (1971),
Heusner (1991), Lovegrove (2000, 2003) and White &
Seymour (2003). In compiling this data set we found
several discrepancies between the data sets of Heusner
(1991), Lovegrove (2000, 2003) and White & Seymour
(2003), e.g. values that differed by an order of magni-
tude in mass and BMR for the same species taken from
the same study. These discrepancies were the result
of incorrect or changed scientific names in Heusner
(1991), apparent transcription and conversion errors
in Lovegrove (2000, 2003), and misplaced decimal

Fig. 1. Plot of the combined mammalian data sets of Hart (1971), Heusner
(1991), Lovegrove (2000, 2003) and White & Seymour (2003), which yields a
total of 626 species data points. The numerous bars are the raw data. The regres-
sion line is fitted to the average of the logarithms for every 0·1 log unit interval
of mass, represented by the squares. Note that the slope is very close to 3/4, b =
0·737 (P < 0·0001, n = 52, 95% C.I. 0·711, 0·762), and the 95% C.I. exclude 2/3.
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scale as M 3/4. In addition, extensions and applications
of the theory predict that mass-specific metabolic rates
and most other biological rates scale as M −1/4, and
biological times, which are the inverse of rates, scale as
M 1/4. Although largely overlooked in recent work, the
seminal treatments of biological allometry (McMahon
& Bonner 1983; Peters 1983; Calder 1984; Schmidt-
Nielsen 1984) had reached similar conclusions by the
1980s. Recent studies have shown that these allometric
equations also apply to both unicellular algae and higher
plants – including both gymnosperms and angiosperms
(Enquist et al. 1998; West et al. 1999b; Enquist & Niklas
2001; Niklas & Enquist 2001; Enquist & Niklas 2002;
Niklas & Enquist 2002). For example, both whole plant
rates of biomass production and whole plant chlorophyll
content scale as M 3/4 (Niklas 1994). Further, intra-
specific rates of production for 45 species of tropical
trees scale with exponents indistinguishable from the
predicted M 3/4 scaling of metabolism (Enquist et al. 1999).

Methods

The four books by McMahon & Bonner (1983), Peters
(1983), Calder (1984) and Schmidt-Nielsen (1984) in
the 1980s still contain the most comprehensive treat-
ments of biological allometry, including compilations

of allometric equations for many different traits and
taxonomic groups. We present meta-analyses of these
data by compiling the allometric scaling exponents in
histograms and by calculating the average and stand-
ard error for each histogram. Data for whole organism
and mass-specific biological rates are from Peters
(1983), and for biological times are from Lindstedt &
Calder (1981). We also present the results of a recent
compilation of rates of annual biomass production for
numerous groups of plants and animals as compiled by
Ernest et al. (2003).

Further, we reanalyse data on whole plant xylem
flow from Enquist et al. (1998). Xylem flow is directly
related to plant metabolic rate due to the stoichio-
metry of photosynthesis and respiration. When these data
were collected (in litres of fluid transported vertically
through the plant per day), xylem flux was measured in
relation to stem diameter. To facilitate comparison
with allometric equations for animals, we converted
stem diameter, D (in cm), to above-ground plant mass,
M (in g), using the empirical relationship M = 124D 2·53,
as outlined by Enquist & Niklas (2001). This relation
of diameter to mass is well supported both theoretic-
ally and empirically (West et al. 1999b; Enquist 2002).
We then divided the data into biomass bins, calculated
an average for each bin, and performed a Reduced
Major Axis (RMA) regression on the averaged data.
Since the biomass is only an estimate, there are larger
errors in the mass data than for the other plots in this
paper. Furthermore, the errors for the masses are now
comparable to the errors in measurement for the whole
plant xylem flow, resulting in comparable errors for
the variables on the x and y-axes of our plot. Con-
sequently, reduced major axis (RMA) regression was
used to fit these data (Niklas 1994).

Results

Exponents of  whole-organism biological rates are
plotted in Fig. 4. These data (see also Fig. 4.1 in Peters
1983) show a distinct mean and mode at 3/4 and not at
2/3 (b = 0·749 ± 0·007, SE). These data are for metabolic
and other biological rates, e.g. feeding and defecation
rates, and include values for a wide variety of organ-
isms, including insects, crustaceans, mollusks, nematodes,
cnidarians, porifera, algae, protists and all classes of verte-
brates; they include freshwater, marine and terrestrial
organisms.

There is considerable variation around 3/4. This is
understandable because there are many uncontrolled
sources of variation (e.g. sample size, range of variation
in mass, experimental methods). Peters includes all
studies that met minimal criteria, and we used all of his
data.

Figure 4 shows a similar histogram for exponents of
mass-specific metabolic rates and other related biological
rates. Values clustered around –1/4 (b = −0·247 ± 0·011,
SE). Figure 4 also contains a histogram for expon-
ents of  biological times, from muscle contractions to

Fig. 3. Plot of (a) heart rates (Brody 1945) and (b) respiratory
rates of  mammals at rest (Calder 1968). The regression
lines are fitted to the average of the logarithms for every 0·1
log unit interval of mass, but both the average (squares) and
raw data (bars) are shown in the plots. Both slopes clearly
include –1/4 and exclude −1/3, for heart rate the slope is −0·251
(P < 0·0001, n = 17, 95% CI −0·221, −0·281) and for respir-
atory rate −0·256 (P < 0·0001, n = 18, 95% CI −0·194, −0·318).
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Both of these issues arise in the recent work by Dodds
et al. (2001) and White & Seymour (2003). Dodds et al.
(2001) ignore phylogeny, even to the point of combin-
ing passerines and non-passerines to calculate a single
allometric equation for all birds. In this case, there is an
a priori basis, supported by phylogenetic analyses, for
subdividing the data into two groups of birds (Garland
& Ives 2000). The passerines, which constitute about
half  of existing bird species, are a monophyletic lineage
that resulted from an extensive and separate radiation
during the Tertiary (Garland & Ives 2000). Addition-
ally, since the work of Lasiewski & Dawson (1967) in
the 1960s, physiologists have recognized that when
analysed separately, the two groups have very similar
exponents (e.g. 0·72–0·75). The normalization constant,
however, is higher for passerines than non-passerines
(Lasiewski & Dawson 1967). Since the majority of pas-
serines are smaller than non-passerines, the effect of
combining the two groups is to reduce the apparent
value of  the exponent. The higher normalization
constant for passerines is probably due in part to their
slightly but consistently higher body temperatures.
White & Seymour (2003) addressed the issue of phylo-
geny by calculating average values of  the logarithms
of mammalian body size and BMR for each taxonomic
level: species, genus, family and order, and then fitted
regression equations for each level. This is questionable
for several reasons, including greatly reducing the
sample size (from 619 data points (590 species after
subspecies are removed and all scientific names are
standardized) to 17 orders) and total range of variation
in mass (by about an order of magnitude). The latter
practice artefactually reduces the calculated value of
the OLS regression slope, and hence underestimates the
exponent (Pagel & Harvey 1988; Harvey & Pagel 1991).

Dodds et al. (2001) recognized there was a prepon-
derance of data for small mammals and a curvilinearity
across the entire body size range shown in our Fig. 1.
They addressed this issue by calculating regression

equations after progressively eliminating data for all
species above some threshold body size. As the size
threshold was reduced, they found a systematic decrease
in the exponent, with an apparent break at M ∼ 10 kg
and b ∼ 2/3 below this threshold. For M > 10 kg the CI
included 3/4, and for M < 10 kg the CI did not include
3/4 and closely approached 2/3. White & Seymour’s
(2003) compilation, while quite accurate and extensive,
does not contain some of the data available for the
largest mammals. Consequently, their data set and
analysis are even more strongly biased by the values for
small mammals.

The original paper by West et al. (1997), which derives
a model for the mammalian arterial system, predicts
that smaller mammals should show consistent devi-
ations in the direction of higher metabolic rates than
expected from M 3/4 scaling. Thus, metabolic scaling
relationships are predicted to show a slight curviline-
arity at the smallest size range. Therefore, fitting a
regression through an allometric metabolic rate data
set that samples a disproportionate number of small
mammals will artificially give a slightly shallower slope.
Prior to Dodds et al. (2001), Bartels (1982) found that
above a threshold of 260 g, BMR data was best fit with
an exponent of 0·76, and that below this threshold, the
exponent was less than 2/3 or 3/4. Additionally, Calder
(1984) noted that the smallest birds (hummingbirds)
and mammals (shrews) have BMRs that are consistently
above the predictions from allometry. Both Dodds
et al. (2001) and White & Seymour (2003) ignore this
prediction of  the West et al. model. Ironically, the
apparent deviation from 3/4 for small mass is therefore
supportive of the West et al. (1997) model.

In addition to these statistical issues, White &
Seymour (2003) use two biological arguments to adjust
or exclude data. First, as shown in Gillooly et al. (2001),
variation in body temperature may cause significant
variation in BMR. White & Seymour (2003) find a weak
but significant correlation between body temperature
and size in mammals:

Tb = 35·8 + 0·21 log M. eqn 2

They corrected their BMR data to a constant body
temperature using a Q10 factor. Second, White & Seymour
(2003) eliminated data for entire taxonomic groups
(artiodactyls, macropodid marsupials, lagomorphs and
shrews) because these data may not meet the strict criteria
required for BMR. After using these two procedures,
they found that the temperature-adjusted BMR for the
remaining species or orders scaled approximately as M 2/3.

We can explicitly calculate the influence of body
temperature on the scaling exponent. Substituting
equation 2 into a Q10 factor, we derive that

bmeasured = bactual + 0·02,

where bmeasured is the value of b that is measured when
no correction has been made for temperature. Note

Fig. 5. Plot of maximum reported xylem flux rates (litres of
fluid transported vertically through a plant stem per day) for
plants from Enquist et al. (1998). The RMA regression line is
fitted to the average of the logarithm for every 0·1 log unit
interval of plant biomass, but both the average (squares) and
raw data (bars) are shown in the plot. The slope is 0·736
(P < 0·0001, n = 31, 95% CI 0·647, 0·825).
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metabolic rate of mammalian cells growing in culture isolated
from the vascular network (Fig.·2).

The derivation that gives the 3/4 exponent is only an
approximation, because of the changing roles of pulsatile and
Poiseuille flow with body size. Strictly speaking, the theory
predicts that the exponent for B is exactly 3/4 only where
pulsatile flow completely dominates. In general, the exponent
is predicted to depend weakly on M, manifesting significant
deviations from 3/4 only in small mammals, where only the
first few branches of the arterial system can support a pulse
wave (West et al., 1997, 2002b). Since small mammals
dissipate relatively more energy in their networks, they require
elevated metabolic rates to generate the increased energy
expenditure to circulate the blood. This leads to the prediction
that the allometric exponent for B should decrease below 3/4
as Mb decreases to the smallest mammal, as observed (Dodds
et al., 2001; Savage et al., 2004b).

If the total number of cells, Nc, increases linearly with Mb,
then both cellular metabolic rate, Bc(!B/Nc), and specific
metabolic rate, B/Mb, decrease as Mb

–1/4. In this sense,
therefore, larger animals are more efficient than smaller ones,
because they require less power to support unit body mass and
their cells do less work than smaller animals. In terms of our
theory this is because the total hydrodynamic resistance of the
network decreases with size as Mb

–3/4. This has a further
interesting consequence that, since the ‘current’ or volume rate
of flow of blood in the network, Q0, increases as Mb

3/4, whereas
the resistance decreases as Mb

–3/4, the analog to Ohm’s law
(pressure=current!resistance) predicts that blood pressure
must be an invariant, as observed (Caro et al., 1978; Fung,
1984). This may seem counterintuitive, since the radius of the
aorta varies from approximately 0.2·mm in a shrew up to
approximately 30·cm in a whale!

Scaling up the hierarchy: from molecules to mammals
At each organisational level within an organism, beginning

with molecules and continuing up through organelles, cells,
tissues and organs, new structures emerge, each with different

physical characteristics, functional parameters, and resource
and energy network systems, thereby constituting a hierarchy
of hierarchies. Metabolic energy is conserved as it flows
through this hierarchy of sequential networks. We assume that
each network operates subject to the same general principles
and therefore exhibits quarter-power scaling (West et al.,
2002b). From the molecules of the respiratory complex up to
intact cells, metabolic rate obeys 3/4-power scaling.
Continuity of flow imposes boundary conditions between
adjacent levels, leading to constraints on the densities of
invariant terminal units, such as respiratory complexes and
mitochondria, and on the networks of flows that connect
them (West et al., 2002b). The total mitochondrial mass
relative to body mass is correctly predicted to be
(Mminmm/mcMb)1/4!0.06Mb

–1/4, where mm is the mass of a
mitochondrion, Mmin is minimum mass, mc is average cell
mass and Mb is expressed in g. Since mitochondria are
assumed to be approximately invariant, the total number in the
body is determined in a similar fashion. This shows why there
are typically only a few hundred per human cell, whereas there
are several thousand in a shrew cell of the same type.

As already stressed, a central premise of the theory is that
general properties of supply networks constrain the coarse-
grained, and therefore the scaling properties, of biological
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metabolic rate of mammalian cells growing in culture isolated
from the vascular network (Fig.·2).

The derivation that gives the 3/4 exponent is only an
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are several thousand in a shrew cell of the same type.

As already stressed, a central premise of the theory is that
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entirely eliminated. It can be minimized, however, using the
classic method of Lagrange multipliers to enforce the
appropriate constraints (Marion and Thornton, 1988; West et
al., 1997). To sustain a given metabolic rate in an organism of
fixed mass with a given volume of blood, Vb, the cardiac output
must be minimized subject to a space-filling geometry. The
calculation shows that area-preserving branching is thereby
replaced by area-increasing branching in small vessels, so
blood slows down allowing efficient diffusion of oxygen from
the capillaries to the cells. Branching, therefore, changes
continuously down through the network, so that the ratio rk+1/rk

is not independent of k but changes continuously from n–1/2 at
the aorta to n–1/3 at the capillaries. Consequently, the network
is not strictly self-similar, but within each region (pulsatile in
large vessels and Poiseuille in small ones), self-similarity is a
reasonable approximation that is well supported by empirical
data (Caro et al., 1978; Fung, 1984; Zamir, 1999).

In order to derive allometric relations between animals of
different sizes we need to relate the scaling of vessel
dimensions within an organism to its body mass, Mb. A natural
vehicle for this is the total volume of blood in the network,
Vb, which can be shown to depend linearly on Mb if cardiac
output is minimized, i.e. Vb!Mb, in agreement with data (Caro
et al., 1978; Fung, 1984). This is straightforwardly given by
Vb=ΣNkVk=Σnkπrk

2lk, where Nk=nk is the number of vessels at
level k. Provided there are sufficiently large vessels in the
network with |α|>1 so that pulsatile flow dominates, the
leading-order behavior for the blood volume is Vb!n4N/3VN.
Conservation of blood requires that the flow rate in the aorta,
Q0= NNQN, where QN is the flow rate in a capillary and
NN!nN, the total number of capillaries. But Q0!B, the total
metabolic rate, so putting these together we obtain
B!(Vb/VN)3/4QN. However, capillaries are invariant units, so
VN and QN are both independent of Mb, whereas from
minimization of energy loss, Vb!Mb, so we immediately
obtain the seminal result B!Mb

3/4.
The allometric scaling of radii, lengths and many other

physiological characteristics, such as the flow, pulse and
dimensions in any branch of a mammal of any size, can be
derived from this whole-system model and shown to have
quarter-power exponents. Quantitative predictions for all these
characteristics of the cardiovascular system are in good
agreement with data (West et al., 1997). For example, even the
residual pulse wave component in capillaries is determined: it
is predicted to be attenuated to 0.1% with its velocity being
~10·cm·s–1, compared to ~580·cm·s–1 for the unattenuated
wave in the aorta, both numbers being invariant with respect
to body size.

To summarise: there are two independent contributions to
energy expenditure: viscous energy dissipation, which is
important only in smaller vessels, and energy reflected at
branch points, which is important only in larger vessels and is
eliminated by impedance matchings In large vessels (arteries),
pulse-waves suffer little attenuation or dissipation, and
impedance matching leads to area-preserving branching, such
that the cross-sectional area of daughter branches equals that

of the parent; so radii scale as rk+1/rk=n–1/2 with the blood
velocity remaining constant. In small vessels (capillaries and
arterioles) the pulse is strongly damped since Poiseuille flow
dominates and substantial energy is dissipated. Here
minimization of energy dissipation leads to area-increasing
branching with rk+1/rk=n–1/3, so blood slows down, almost
ceasing to flow in the capillaries. Consequently, the ratio of
vessel radii between adjacent levels, rk+1/rk, changes
continuously from n–1/2 to n–1/3 down through the network,
which is, therefore, not strictly self-similar. Nevertheless, since
the length ratio lk+1/lk remains constant throughout the network
because of space-filling, branch-lengths are self-similar and the
network has some fractal-like properties. Quarter-power
allometric relations then follow from the invariance of
capillaries and the prediction from energy optimization that
total blood volume scales linearly with body mass.

The dominance of pulsatile flow, and consequently of area-
preserving branching, is crucial for deriving power laws,
including the 3/4 exponent for metabolic rate, B. However, as
body size decreases, narrow tubes predominate and viscosity
plays an ever-increasing role. Eventually even the major
arteries would become too constricted to support wave
propagation, blood flow would become steady and branching
exclusively area-increasing, leading to a linear dependence on
mass. Since energy would be dissipated in all branches of the
network, the system is now highly inefficient; such an
impossibly small mammal would have a beating heart (with a
resting heart-rate in excess of approximately 1000·beats·min–1)
but no pulse! This provides a framework to estimate the
size of the smallest mammal in terms of fundamental
cardiovascular parameters. This gives a minimum mass
Mmin~1·g, close to that of a shrew, which is indeed the smallest
mammal (Fig.·3; West et al., 2002b). Furthermore, the
predicted linear extrapolation of B below this mass to the mass
of a single cell should, and does, give the correct value for the
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Fig.·3. Plot of heart rates (fH) of mammals at rest vs body mass Mb

(data taken from Brody, 1945). The regression lines are fitted to the
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Savage et al. (2004b) with permission.
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Figure 3: The body mass allometry for lifespan among 195
species of terrestrial mammals where the mean exponent, ±
S.E.M., is 0.25 ± 0.04 (open circles), and among 40 species
of marine mammals where the exponent is 0.16±0.02 (solid
circles). From Witting (1997), data from Nowak (1991).

hold for organisms that forage in two spatial dimen-
sions, while the corresponding exponents should be 1/6
and 5/6 for organisms that forage in three spatial di-
mensions. This prediction is confirmed for terrestrial
mammals that forage in two spatial dimensions and ma-
rine mammals that forage in three spatial dimensions
(Fig. 3).

5.5 Senescence and soma

Senescence is a deterioration of tissue with age that
causes the age-specific survival probabilities and fecun-
dities to decline with age. While all non-negligible-sized
organisms appear to be senescing, they could, at least
in principle, have evolved a degree of tissue self-repair
that would allow for potential immortality.
Since Weismann (1889) senescence has been seen as a

contingent character that evolves from the intrinsic con-
straints of a soma that is not passed on in either sexual
or asexual reproduction. Somatic organisms have a de-
cline in the force of selection with age (Medawar 1946,
1952; Hamilton 1966), and this implies that senescence
can evolve by the accumulation of deleterious mutations
because this would a↵ect mainly the older age classes
where the force of selection is weak (Medawar 1952;
Edney and Gill 1968; Charlesworth 1990; Partridge
and Barton 1993). Alternatively senescence can evolve
by antagonistic pleiotropy where age-structured trade-
o↵s favour mutations that increase survival and/or fe-
cundity in the younger age classes at the cost of sur-
vival and/or fecundity in the older age classes (Williams

1957; Kirkwood 1977, 1990; Charlesworth 1980; Tem-
pleton 1980; Rose 1985; Kirkwood and Rose 1991).
While senescence by deleterious mutation accumula-
tion seems almost inevitable given reasonable mu-
tation rates and a supply of age-specific mutations
(Charlesworth 1990; Partridge and Barton 1993), the
evolution of senescence by antagonistic pleiotropy re-
quires that the fitness benefits of enhanced early sur-
vival/reproduction are larger than the costs of reduced
late survival/reproduction.
The di�culty with senescence, however, it seems, is

not to explain its evolution, but rather to explain why
it apparently did not evolve in simple self-replicator-
like organisms. The traditional explanation is that age-
structured demography applies only to organisms with
a soma so that the Malthusian parameter, and the de-
cline in force of selection with age, cannot be calculated
from the age structure of an asomatic organism (Rose
1991). As asomatic organisms tend to reproduce by bi-
nary fission it is impossible to distinguish the “mother”
from the “o↵spring” and we should therefore be un-
able to determine the age structure of the demographic
rates for an individual with no soma. This conclusion,
however, is true only if the demographic rates of the
“mother” and the “o↵spring” di↵er. But in asomatic
organisms with binary fission the two rates are statisti-
cally the same and, thus, the age-structured demogra-
phy of an asomatic evolutionary lineage is easily defined
by its reproduction and survival rate, and potential for
infinite individual lifespan. The decline in the force
of selection with age will therefore apply to both aso-
matic and somatic organisms, and this indicates that
soma and the declining force of selection with age are
not the essential components that determine that some
organisms have senescence while others do not.
Noting instead that senescence cannot evolve with-

out a clear separation between a senescing somatic tis-
sue and a non-senescing reproductive tissue, Witting
(1997) proposed that the soma is the trait through
which senescence is expressed. Selection for senescence
simply implies that there is selection for the expression
of senescence in a soma and for the absence of senes-
cence in a germ line. If this division is not the case the
senescing organisms will have zero fitness because the
senescing tissue of the mother will be passed on to her
o↵spring, and both the mother and her o↵spring will
die from senescence at approximately the same time.
Such lineages cannot persist and nor can they evolve
by natural selection.
The critical point left is then a dichotomy that

will explain the absence of senescence in simple self-
replicator-like organisms and the presence of senescence
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plained. Thus, a specific role for cardiac slowing in the
prolongation of life in digoxin-treated A/J mice remains at best
uncertain.

Together, the above observations suggest that a primary
reduction in myocardial metabolic rate, with associated cardiac
slowing, may have the potential to prolong human life. How-
ever, because myocardial O2 consumption/unit weight is the
same in normal, hypertrophied and failing human hearts (12),
the demonstration that a primary reduction in heart rate
prolongs life would have to invoke a mechanism other than a
reduction in myocardial metabolic rate. Nonetheless, clinical
studies abound with the suggestion that cardiac slowing may
improve survival. Beta-adrenergic blockade improves survival

in patients after myocardial infarction (13) and possibly in
patients with dilated cardiomyopathy (14,15), and the brady-
cardic effects of regular exercise are considered by many to
extend life in those with or at risk for coronary disease.
Although it is acknowledged that the malefic effects of sus-
tained beta-adrenergic stimulation in cardiac disease are far
greater than that of positive chronotropism, the provocative
observation that heart rate and life expectancy among mam-
mals are inversely related and that their product is a near
constant begs the question, “Can human life be extended by
cardiac slowing?”

Thus, although there are considerable constraints on the
likelihood of demonstrating a life-prolonging effect of cardiac
slowing in humans, efforts to do so should not be discouraged.
Perhaps a first attempt in this direction would be an actuarial
analysis of life insurance data because a purely bradycardic
agent for use in animal studies and clinical trials is not yet
available to us.
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p888, which contains a Bam HI to Not I fragment
encoding a full-length profilin cDNA (16); p989,
which encodes a mutant form of profilin, Pfy1p-3,
lacking the last three amino acids (18); p890, which
contains the Bgl II to Stu I fragment from p182 (26),
encoding Bni1p(1227–1397); p813, which con-
tains the Bgl II to Not I fragment from p182, encod-
ing Bni1p(1414–1953); and p951, which contains
the Hpa I to Not I fragment from p182, encoding
Bni1p(1647–1953). The pJG4-5–derived plasmids
were p561, which contains the Bam HI to Not I
fragment from p532 (26), encoding Bni1p(1–1953);
p717, which contains the Bam HI to Eco47 III frag-
ment from p532, encoding Bni1p(1–1214); p558,
which contains the Eco 47III to Not I fragment from
p182, encoding Bni1p(1215–1953); p913, which
contains the Bgl II to Stu I fragment from p182,
encoding Bni1p(1227–1397); p929, which con-
tains the Bgl II to Not I fragment from p182, encod-
ing Bni1p(1414–1953); p952, which contains the
Hpa I to Not I fragment from p182, encoding
Bni1p(1647–1953); and p887, which contains the
Bam HI to Not I fragment encoding a full-length
profilin cDNA (16). The pACT-derived plasmid was
p1124, encoding full-length Act1p as isolated in a
catch and release screen (22). The pGAD-C–de-
rived plasmid was p688, encoding the COOH-ter-
minal 311 amino acids (478–788) of Bud6p, as
isolated in a catch and release screen (22).

29. For localization of Bni1p, SY2625 (11) cells carrying a
multicopy plasmid encoding either HA-tagged Bni1p
[pY39tet1 (9)] or nontagged Bni1p were induced to
form mating projections (12). HA-Bni1p was localized
by immunofluorescence with monoclonal antibody
HA.11(Berkeley Antibody Company) as described [J.
R. Pringle, A. E. M. Adams, D. G. Drubin, B. K. Haarer,
Methods Enzymol. 194, 565 (1991)]. For localization
of Bud6p, SY2625 cells expressing GFP-Bud6p (23)
or containing the control plasmid pRS316 (26) were
induced to form mating projections (12), then ob-
served by fluorescence microscopy with the use of a
fluorescein isothiocyanate filter set.

30. Yeast cells of strain B5459 (MATa pep4::HIS3
prb1D1-6R ura3 trp1 lys2 leu2 his3D200 can1) car-
rying p1025 (26) were grown to mid-log phase in
raffinose medium, and galactose was added to
induce the production of HA-tagged Bni1p(1215–
1953). After 1 hour, extracts were prepared by
grinding cells with glass beads in lysis buffer [0.6 M
sorbitol, bovine serum albumin (1%), 140 mM
NaCl, 5 mM EDTA, 50 mM tris-HCl (pH 7.6), 0.06%
Triton X-100, 2 mM phenylmethylsulfonyl fluoride,
aprotinin (10 mg/ml)] as described (2). Escherichia
coli strain BL 21 (Novagen) was transformed with
pGEX-3X (Pharmacia) or p907 (26) and induced for
expression of GST or GST-profilin, respectively.
GST proteins were purified on glutathione-Sepha-
rose (Pharmacia) and washed twice with phos-
phate-buffered saline (PBS) [140 mM NaCl, 2.7
mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 (pH
7.3)]. Glutathione-Sepharose beads with GST or
GST-profilin bound were then added to the yeast
extract containing HA-Bni1p(1215–1953) and in-
cubated on ice. After 45 min, the beads were col-
lected and washed twice with PBS. The GST pro-
teins and associated proteins were eluted with glu-
tathione [10 mM glutathione, 50 mM tris-HCl (pH
8.0)] and subjected to immunoblot analysis with
antibodies to GST (Pharmacia) or the HA epitope
(29) as described (27).
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Dorer, S. J. Elledge, S. Givan, B. K. Haarer, J.
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horst, J. Brown, N. Davis, S. Kim, B. Nelson, and I.
Pot for comments on the manuscript; and G. Poje
and I. Pot for assistance with experiments. Support-
ed by grants to C.B. from the Natural Sciences and
Engineering Research Council of Canada and the
National Cancer Institute of Canada; by a grant from
the Swiss National Science Foundation to M.P.; and
by NIH grant GM31006 to J.R.P.
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A General Model for the Origin of Allometric
Scaling Laws in Biology

Geoffrey B. West, James H. Brown,* Brian J. Enquist
Allometric scaling relations, including the 3/4 power law for metabolic rates, are char-
acteristic of all organisms and are here derived from a general model that describes how
essential materials are transported through space-filling fractal networks of branching
tubes. The model assumes that the energy dissipated is minimized and that the terminal
tubes do not vary with body size. It provides a complete analysis of scaling relations for
mammalian circulatory systems that are in agreement with data. More generally, the
model predicts structural and functional properties of vertebrate cardiovascular and
respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution
networks.

Biological diversity is largely a matter of
body size, which varies over 21 orders of
magnitude (1). Size affects rates of all bio-
logical structures and processes from cellu-
lar metabolism to population dynamics (2,
3). The dependence of a biological variable
Y on body mass M is typically characterized
by an allometric scaling law of the form

Y 5 Y0Mb (1)
where b is the scaling exponent and Y0 a
constant that is characteristic of the kind
of organism. If, as originally thought, these
relations reflect geometric constraints,
then b should be a simple multiple of
one-third. However, most biological phe-
nomena scale as quarter rather than third
powers of body mass (2–4): For example,
metabolic rates B of entire organisms scale
as M3/4; rates of cellular metabolism,
heartbeat, and maximal population
growth scale as M21/4; and times of blood
circulation, embryonic growth and devel-
opment, and life-span scale as M1/4. Sizes
of biological structures scale similarly: For
example, the cross-sectional areas of mam-
malian aortas and of tree trunks scale as
M3/4. No general theory explains the ori-
gin of these laws. Current hypotheses,
such as resistance to elastic buckling in
terrestrial organisms (5) or diffusion of
materials across hydrodynamic boundary
layers in aquatic organisms (6), cannot
explain why so many biological processes
in nearly all kinds of animals (2, 3), plants
(7), and microbes (8) exhibit quarter-pow-
er scaling.

We propose that a common mechanism

underlies these laws: Living things are sus-
tained by the transport of materials
through linear networks that branch to
supply all parts of the organism. We de-
velop a quantitative model that explains
the origin and ubiquity of quarter-power
scaling; it predicts the essential features of
transport systems, such as mammalian
blood vessels and bronchial trees, plant
vascular systems, and insect tracheal
tubes. It is based on three unifying princi-
ples or assumptions: First, in order for the
network to supply the entire volume of
the organism, a space-filling fractal-like
branching pattern (9) is required. Second,
the final branch of the network (such as
the capillary in the circulatory system) is a
size-invariant unit (2). And third, the en-
ergy required to distribute resources is
minimized (10); this final restriction is
basically equivalent to minimizing the to-
tal hydrodynamic resistance of the system.
Scaling laws arise from the interplay be-
tween physical and geometric constraints
implicit in these three principles. The
model presented here should be viewed as
an idealized representation in that we ig-
nore complications such as tapering of
vessels, turbulence, and nonlinear effects.
These play only a minor role in determin-
ing the dynamics of the entire network
and could be incorporated in more de-
tailed analyses of specific systems.

Most distribution systems can be de-
scribed by a branching network in which
the sizes of tubes regularly decrease (Fig.
1). One version is exhibited by vertebrate
circulatory and respiratory systems, anoth-
er by the “vessel-bundle” structure of mul-
tiple parallel tubes, characteristic of plant
vascular systems (11). Biological networks
vary in the properties of the tube (elastic
to rigid), the fluid transported (liquid to
gas), and the nature of the pump (a pul-
satile compression pump in the cardiovas-
cular system, a pulsatile bellows pump in
the respiratory system, diffusion in insect
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• All organisms require efficient energy import 
and delivery to all cells to ensure energy 
conversion at the molecular scale within cells

• The model proposes that natural selection 
solved this problem through the evolution of 
hierarchical fractal-like branching networks

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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• Three key principles:
1. Networks are space-filling to ensure service to 

all biologically active entities (eg. cells) 

2. The terminal units of the network are invariant
 The terminal units are the sites of energy 
exchanges. They are not rescaled as the 
organism grows or as species evolve. 

3. The performance of the network is optimised 
by minimising the energy and parameters 
required for resource delivery (eg. 
minimisation of cardiac output in vertebrates)

B µ M aMetabolic power

25



Thomas LECUIT   2019-2020

• A theory of allometric scaling: the WBE framework (model)

GB. West, JH. Brown and BJ Enquist Science, (1997) 276:122-126
DOI: 10.1126/science.276.5309.122 

1. Networks are space-filling to ensure service to all biologically active entities (eg. cells) 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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branching ratio

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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• The « service volume » is the volume of cells delivered by each capillary
The total volume supplied is:               d    where         is the number of capillaries
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Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
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Here, we present a condensed version of the model that contains
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In order to describe the network we need to determine how
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network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
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The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
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where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
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vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be

(5)
co
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Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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especially as k=N is large, 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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1579Allometric scaling laws

Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be

(5)
co

2ρ
πr2c

,and Z ~
J2(i3/2α)
J0(i3/2α)

~ –
⎛
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⎝

⎞
⎟
⎠

c

c0

2

(4)
∂2ξ
∂t2

= E"2ξ – "p ,ρw

(2)
∂v
∂t

= µ"2v – "p ,ρ

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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and fractal, volume-preserving network yields: 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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(geometric approximation)
k-1

kk+1
(« democratic » network:

all cells are served)

26



• A theory of allometric scaling: the WBE framework (model)

GB. West, JH. Brown and BJ Enquist Science, (1997) 276:122-126
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2. The terminal units of the network are invariant

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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• Blood volume is conserved as it flows through the network:

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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This is invariant of body size

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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volume rate of flow

velocity

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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• Blood flow rate is proportional to oxygen supply rate and to body metabolism:

since then

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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• Therefore, invariance of capillaries gives an allometric scaling of the number of capillaries to body size. 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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since then

which relates scaling of vessel 
dimensions to body mass: the 
number of generations scales 
logarithmically with body size. 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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• Self-similar fractal network: 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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• This yields

and energy minimisation 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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3. Minimization of energy output in the system: 

In pulsatile network (aorta and arterial system), the minimisation of energy dissipation (principally 
by minimising reflection at branch points because viscous dissipation is negligible) gives rise to
area-preserving branching

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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Therefore: 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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Summary: Optimisation:

Space-filling:

Invariant termini

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is
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where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc
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yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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• How does energy minimisation gives rise to area-preserving branching?

—Pulsatile network:  # hydrodynamic (Navier Stokes) equations
          # wave propagation through an elastic network

    # incompressible blood

1579Allometric scaling laws

Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be

(5)
co

2ρ
πr2c

,and Z ~
J2(i3/2α)
J0(i3/2α)

~ –
⎛
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c
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2

(4)
∂2ξ
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= E"2ξ – "p ,ρw
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= µ"2v – "p ,ρ
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3/4, where B is total
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features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
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symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
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the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.
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are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
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1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
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equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
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the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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impedance matching nearly eliminates dissipation in large vessels subject to pulsatile flow 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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—Consider laminar flow of viscous fluid:  Viscous resistance is given by the Poiseuille formula: 

• Minimisation of energy dissipation in non pulsative networks 
(plants, insects and capillary vessels)
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Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be
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blood viscosity
in capillaries where viscosity dominates, energy dissipation cannot be 
eliminated but only minimised. 
This requires area-increasing branching to reduce flow velocity and oxygen 
diffusion so the network is not strictly self-similar. 

depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk

Nk
5 O

k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S c
c0
D2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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1579Allometric scaling laws

Metabolic rate and the vascular network
Metabolic rate, the rate of transformation of energy and

materials within an organism, literally sets the pace of life.
Consequently it is central in determining the scale of biological
phenomena, including the sizes and dimensions of structures
and the rates and times of activities, at levels of organization
from molecules to ecosystems. Aerobic metabolism in
mammals is fueled by oxygen whose concentration in blood is
invariant, so cardiac output or blood volume flow rate through
the cardiovascular system is a proxy for metabolic rate. Thus,
characteristics of the circulatory network constrain the scaling
of metabolic rate. We shall show how the body-size dependence
for basal and field metabolic rates, B!Mb

3/4, where B is total
metabolic rate, can be derived by modeling the hemodynamics
of the cardiovascular system based on the above general
assumptions. In addition, and just as importantly, this whole-
system model also leads to analytic solutions for many other
features of the blood supply network. These results are derived
by solving the hydrodynamic and elasticity equations for blood
flow and vessel dynamics subject to space-filling and the
minimization of cardiac output (West et al., 1997). We make
certain simplifying assumptions, such as cylindrical vessels, a
symmetric network, and the absence of significant turbulence.
Here, we present a condensed version of the model that contains
the important features pertinent to the scaling problem.

In order to describe the network we need to determine how
the radii, rk, and lengths, lk, of vessels change throughout the
network; k denotes the level of the branching, beginning with
the aorta at k=0 and terminating at the capillaries where k=N.
The average number of branches per node (the branching
ratio), n, is assumed to be constant throughout the network.

Space-filling (Mandelbrot, 1982) ensures that every local
volume of tissue is serviced by the network on all spatial scales,
including during growth from embryo to adult. The capillaries
are taken to be invariant terminal units, but each capillary
supplies a group of cells, referred to as a ‘service volume’, vN,
which can scale with body mass. The total volume to be
serviced, or filled, is therefore given by VS=NNvN, where NN is
the total number of capillaries. For a network with many levels,
N, space-filling at all scales requires that this same volume, VS,
be serviced by an aggregate of the volumes, vk, at each level k.
Since rk<<lk, vk!lk3, so VS!Nkvk!Nklk3 for every level, k. Thus
lk+1/lk!n–1/3, so space-filling constrains only branch lengths, lk.

The equation of motion governing fluid flow in any single
tube is the Navier–Stokes equation (Landau and Lifshitz,
1978). If non-linear terms responsible for turbulence are
neglected, this reads:

where v is the local fluid velocity at some time t, p the local
pressure, ρ, blood density and µ, blood viscosity. Assuming
blood is incompressible, then local conservation of fluid
requires ∇•v=0. When combined with Eq.·2, this gives:

∇2p = 0·. (3)

The beating heart generates a pulse wave that propagates down
the arterial system causing expansion and contraction of
vessels as described by the Navier equation, which governs the
elastic motion of the tube. This is given by:

where ξ is the local displacement of the tube wall, ρw its
density, and E its modulus of elasticity. These three coupled
equations, Eq.·2–4, must be solved subject to boundary
conditions that require the continuity of velocity and force at
the tube wall interfaces. In the approximation where the vessel
wall thickness, h, is small compared to the static equilibrium
value of the vessel radius, r, i.e. h<<r, the problem can be
solved analytically, as first shown by Womersley (Caro et al.,
1978; Fung, 1984), to give:

where Jn denotes the Bessel function of order n. Here, ω is
the angular frequency of the wave, α"(ωρ/µ)1/2r is a
dimensionless parameter known as the Womersley number,
c0"(Eh/2ρr)1/2 is the classic Korteweg–Moens velocity, and Z
is the vessel impedance. Both Z and the wave velocity, c, are
complex functions of ω so, in general, the wave is attenuated
and dispersed as it propagates along the tubes. The character
of the wave depends critically on whether |α| is less than or
greater than 1. This can be seen explicitly in Eq.·5, where the
behavior of the Bessel functions changes from a power-series
expansion for small |α| to an expansion with oscillatory
behavior when |α| is large. In humans, |α| has a value of around
15 in the aorta, 5 in the arteries, 0.04 in the arterioles, and 0.005
in the capillaries. When |α| is large (>>1), Eq.·5 gives c~c0,
which is a purely real quantity, so the wave suffers neither
attenuation nor dispersion. Consequently, in these large vessels
viscosity plays almost no role and virtually no energy is
dissipated. In an arbitrary unconstrained network, however,
energy must be expended to overcome possible reflections at
branch junctions, which would require increased cardiac power
output. Minimization of energy expenditure is therefore
achieved by eliminating such reflections, a phenomenon
known as impedance matching. From Eq.·5, Z~ρc0/πr2 for
large vessels, and impedance matching leads to area-preserving
branching: πrk

2=nπrk+1
2, so that rk+1/rk=n–1/2. For small

vessels, however, where |α|<<1, the role of viscosity and
the subsequent dissipation of energy become increasingly
important until they eventually dominate the flow. Eq.·5 then
gives c~(1/4)i1/2αc0→0, in quantitative agreement with
observation (Caro et al., 1978; Fung, 1984). Because c now has
a dominant imaginary part, the traveling wave is heavily
damped, leaving an almost steady oscillatory flow whose
impedance is, from Eq.·5, just the classic Poiseuille formula,
Zk=8µlk/πrk

4. Unlike energy loss due to reflections at branch
points, energy loss due to viscous dissipative forces cannot be

(5)
co

2ρ
πr2c

,and Z ~
J2(i3/2α)
J0(i3/2α)

~ –
⎛
⎜
⎝

⎞
⎟
⎠

c

c0

2

(4)
∂2ξ
∂t2

= E"2ξ – "p ,ρw

(2)
∂v
∂t

= µ"2v – "p ,ρ

depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk

Nk
5 O

k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S c
c0
D2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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Z

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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invariant, thus

depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk

Nk
5 O

k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S c
c0
D2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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and                   (‘Ohm’s law’) so—Energy minimisation (cardiac output) 

depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk

Nk
5 O

k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S c
c0
D2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk

Nk
5 O

k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give
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J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
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N Rk
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k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S c
c0
D2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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so this requires minimisation of impedance and leads to 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk

Nk
5 O

k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S c
c0
D2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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and

Therefore the exponent is strictly ¾ only if network is purely pulsatile 

capillary invariance
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tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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metabolic rate of mammalian cells growing in culture isolated
from the vascular network (Fig.·2).

The derivation that gives the 3/4 exponent is only an
approximation, because of the changing roles of pulsatile and
Poiseuille flow with body size. Strictly speaking, the theory
predicts that the exponent for B is exactly 3/4 only where
pulsatile flow completely dominates. In general, the exponent
is predicted to depend weakly on M, manifesting significant
deviations from 3/4 only in small mammals, where only the
first few branches of the arterial system can support a pulse
wave (West et al., 1997, 2002b). Since small mammals
dissipate relatively more energy in their networks, they require
elevated metabolic rates to generate the increased energy
expenditure to circulate the blood. This leads to the prediction
that the allometric exponent for B should decrease below 3/4
as Mb decreases to the smallest mammal, as observed (Dodds
et al., 2001; Savage et al., 2004b).

If the total number of cells, Nc, increases linearly with Mb,
then both cellular metabolic rate, Bc(!B/Nc), and specific
metabolic rate, B/Mb, decrease as Mb

–1/4. In this sense,
therefore, larger animals are more efficient than smaller ones,
because they require less power to support unit body mass and
their cells do less work than smaller animals. In terms of our
theory this is because the total hydrodynamic resistance of the
network decreases with size as Mb

–3/4. This has a further
interesting consequence that, since the ‘current’ or volume rate
of flow of blood in the network, Q0, increases as Mb

3/4, whereas
the resistance decreases as Mb

–3/4, the analog to Ohm’s law
(pressure=current!resistance) predicts that blood pressure
must be an invariant, as observed (Caro et al., 1978; Fung,
1984). This may seem counterintuitive, since the radius of the
aorta varies from approximately 0.2·mm in a shrew up to
approximately 30·cm in a whale!

Scaling up the hierarchy: from molecules to mammals
At each organisational level within an organism, beginning

with molecules and continuing up through organelles, cells,
tissues and organs, new structures emerge, each with different

physical characteristics, functional parameters, and resource
and energy network systems, thereby constituting a hierarchy
of hierarchies. Metabolic energy is conserved as it flows
through this hierarchy of sequential networks. We assume that
each network operates subject to the same general principles
and therefore exhibits quarter-power scaling (West et al.,
2002b). From the molecules of the respiratory complex up to
intact cells, metabolic rate obeys 3/4-power scaling.
Continuity of flow imposes boundary conditions between
adjacent levels, leading to constraints on the densities of
invariant terminal units, such as respiratory complexes and
mitochondria, and on the networks of flows that connect
them (West et al., 2002b). The total mitochondrial mass
relative to body mass is correctly predicted to be
(Mminmm/mcMb)1/4!0.06Mb

–1/4, where mm is the mass of a
mitochondrion, Mmin is minimum mass, mc is average cell
mass and Mb is expressed in g. Since mitochondria are
assumed to be approximately invariant, the total number in the
body is determined in a similar fashion. This shows why there
are typically only a few hundred per human cell, whereas there
are several thousand in a shrew cell of the same type.

As already stressed, a central premise of the theory is that
general properties of supply networks constrain the coarse-
grained, and therefore the scaling properties, of biological

5.0

5.5

6.0

6.5

7.0

7.5

8.0

–15 –14 –13 –12 –11 –10 –9
log(cellular mass)

lo
g(

ge
no

m
e 

le
ng

th
)

Slope=0.24±0.02
Intercept=9.4±0.2

Non-photosynthetic prokaryotes
Cyanophyta

Fig.·4. Plot of genome length (number of base pairs) vs mass (in g)
for a sequence of unicells on a log–log scale. The best straight-line fit
has a slope very close to 1/4.

–13

–12

–11

–10

–9

0 2 4 6 8
log(mass of organism)

lo
g(

po
w

er
 p

er
 c

el
l)

Cells in vivo, B"Mb–1/4

Cultured cells
in vitro, B"Mb0

M=µ

Fig.·5. Metabolic rates (in W) of mammalian cells in vivo (blue line)
and cultured in vitro (red line) plotted as a function of organism mass
(Mb in g) on a log–log scale. While still in the body and constrained
by vascular supply networks cellular metabolic rates scale as Mb

–1/4.
When cells are removed from the body and cultured in vitro, their
metabolic rates converge to a constant value predicted by theory
(West et al., 2002b). The two lines meet at the mass of the smallest
mammal (the shrew with mass ~1·g, as predicted). Figure taken from
West et al. (2002b) with permission.
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metabolic rate of mammalian cells growing in culture isolated
from the vascular network (Fig.·2).

The derivation that gives the 3/4 exponent is only an
approximation, because of the changing roles of pulsatile and
Poiseuille flow with body size. Strictly speaking, the theory
predicts that the exponent for B is exactly 3/4 only where
pulsatile flow completely dominates. In general, the exponent
is predicted to depend weakly on M, manifesting significant
deviations from 3/4 only in small mammals, where only the
first few branches of the arterial system can support a pulse
wave (West et al., 1997, 2002b). Since small mammals
dissipate relatively more energy in their networks, they require
elevated metabolic rates to generate the increased energy
expenditure to circulate the blood. This leads to the prediction
that the allometric exponent for B should decrease below 3/4
as Mb decreases to the smallest mammal, as observed (Dodds
et al., 2001; Savage et al., 2004b).

If the total number of cells, Nc, increases linearly with Mb,
then both cellular metabolic rate, Bc(!B/Nc), and specific
metabolic rate, B/Mb, decrease as Mb

–1/4. In this sense,
therefore, larger animals are more efficient than smaller ones,
because they require less power to support unit body mass and
their cells do less work than smaller animals. In terms of our
theory this is because the total hydrodynamic resistance of the
network decreases with size as Mb

–3/4. This has a further
interesting consequence that, since the ‘current’ or volume rate
of flow of blood in the network, Q0, increases as Mb

3/4, whereas
the resistance decreases as Mb

–3/4, the analog to Ohm’s law
(pressure=current!resistance) predicts that blood pressure
must be an invariant, as observed (Caro et al., 1978; Fung,
1984). This may seem counterintuitive, since the radius of the
aorta varies from approximately 0.2·mm in a shrew up to
approximately 30·cm in a whale!

Scaling up the hierarchy: from molecules to mammals
At each organisational level within an organism, beginning

with molecules and continuing up through organelles, cells,
tissues and organs, new structures emerge, each with different

physical characteristics, functional parameters, and resource
and energy network systems, thereby constituting a hierarchy
of hierarchies. Metabolic energy is conserved as it flows
through this hierarchy of sequential networks. We assume that
each network operates subject to the same general principles
and therefore exhibits quarter-power scaling (West et al.,
2002b). From the molecules of the respiratory complex up to
intact cells, metabolic rate obeys 3/4-power scaling.
Continuity of flow imposes boundary conditions between
adjacent levels, leading to constraints on the densities of
invariant terminal units, such as respiratory complexes and
mitochondria, and on the networks of flows that connect
them (West et al., 2002b). The total mitochondrial mass
relative to body mass is correctly predicted to be
(Mminmm/mcMb)1/4!0.06Mb

–1/4, where mm is the mass of a
mitochondrion, Mmin is minimum mass, mc is average cell
mass and Mb is expressed in g. Since mitochondria are
assumed to be approximately invariant, the total number in the
body is determined in a similar fashion. This shows why there
are typically only a few hundred per human cell, whereas there
are several thousand in a shrew cell of the same type.

As already stressed, a central premise of the theory is that
general properties of supply networks constrain the coarse-
grained, and therefore the scaling properties, of biological
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metabolic rate of mammalian cells growing in culture isolated
from the vascular network (Fig.·2).

The derivation that gives the 3/4 exponent is only an
approximation, because of the changing roles of pulsatile and
Poiseuille flow with body size. Strictly speaking, the theory
predicts that the exponent for B is exactly 3/4 only where
pulsatile flow completely dominates. In general, the exponent
is predicted to depend weakly on M, manifesting significant
deviations from 3/4 only in small mammals, where only the
first few branches of the arterial system can support a pulse
wave (West et al., 1997, 2002b). Since small mammals
dissipate relatively more energy in their networks, they require
elevated metabolic rates to generate the increased energy
expenditure to circulate the blood. This leads to the prediction
that the allometric exponent for B should decrease below 3/4
as Mb decreases to the smallest mammal, as observed (Dodds
et al., 2001; Savage et al., 2004b).

If the total number of cells, Nc, increases linearly with Mb,
then both cellular metabolic rate, Bc(!B/Nc), and specific
metabolic rate, B/Mb, decrease as Mb

–1/4. In this sense,
therefore, larger animals are more efficient than smaller ones,
because they require less power to support unit body mass and
their cells do less work than smaller animals. In terms of our
theory this is because the total hydrodynamic resistance of the
network decreases with size as Mb

–3/4. This has a further
interesting consequence that, since the ‘current’ or volume rate
of flow of blood in the network, Q0, increases as Mb

3/4, whereas
the resistance decreases as Mb

–3/4, the analog to Ohm’s law
(pressure=current!resistance) predicts that blood pressure
must be an invariant, as observed (Caro et al., 1978; Fung,
1984). This may seem counterintuitive, since the radius of the
aorta varies from approximately 0.2·mm in a shrew up to
approximately 30·cm in a whale!

Scaling up the hierarchy: from molecules to mammals
At each organisational level within an organism, beginning

with molecules and continuing up through organelles, cells,
tissues and organs, new structures emerge, each with different

physical characteristics, functional parameters, and resource
and energy network systems, thereby constituting a hierarchy
of hierarchies. Metabolic energy is conserved as it flows
through this hierarchy of sequential networks. We assume that
each network operates subject to the same general principles
and therefore exhibits quarter-power scaling (West et al.,
2002b). From the molecules of the respiratory complex up to
intact cells, metabolic rate obeys 3/4-power scaling.
Continuity of flow imposes boundary conditions between
adjacent levels, leading to constraints on the densities of
invariant terminal units, such as respiratory complexes and
mitochondria, and on the networks of flows that connect
them (West et al., 2002b). The total mitochondrial mass
relative to body mass is correctly predicted to be
(Mminmm/mcMb)1/4!0.06Mb

–1/4, where mm is the mass of a
mitochondrion, Mmin is minimum mass, mc is average cell
mass and Mb is expressed in g. Since mitochondria are
assumed to be approximately invariant, the total number in the
body is determined in a similar fashion. This shows why there
are typically only a few hundred per human cell, whereas there
are several thousand in a shrew cell of the same type.

As already stressed, a central premise of the theory is that
general properties of supply networks constrain the coarse-
grained, and therefore the scaling properties, of biological
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mammal (the shrew with mass ~1·g, as predicted). Figure taken from
West et al. (2002b) with permission.
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from the vascular network (Fig.·2).

The derivation that gives the 3/4 exponent is only an
approximation, because of the changing roles of pulsatile and
Poiseuille flow with body size. Strictly speaking, the theory
predicts that the exponent for B is exactly 3/4 only where
pulsatile flow completely dominates. In general, the exponent
is predicted to depend weakly on M, manifesting significant
deviations from 3/4 only in small mammals, where only the
first few branches of the arterial system can support a pulse
wave (West et al., 1997, 2002b). Since small mammals
dissipate relatively more energy in their networks, they require
elevated metabolic rates to generate the increased energy
expenditure to circulate the blood. This leads to the prediction
that the allometric exponent for B should decrease below 3/4
as Mb decreases to the smallest mammal, as observed (Dodds
et al., 2001; Savage et al., 2004b).

If the total number of cells, Nc, increases linearly with Mb,
then both cellular metabolic rate, Bc(!B/Nc), and specific
metabolic rate, B/Mb, decrease as Mb

–1/4. In this sense,
therefore, larger animals are more efficient than smaller ones,
because they require less power to support unit body mass and
their cells do less work than smaller animals. In terms of our
theory this is because the total hydrodynamic resistance of the
network decreases with size as Mb

–3/4. This has a further
interesting consequence that, since the ‘current’ or volume rate
of flow of blood in the network, Q0, increases as Mb

3/4, whereas
the resistance decreases as Mb

–3/4, the analog to Ohm’s law
(pressure=current!resistance) predicts that blood pressure
must be an invariant, as observed (Caro et al., 1978; Fung,
1984). This may seem counterintuitive, since the radius of the
aorta varies from approximately 0.2·mm in a shrew up to
approximately 30·cm in a whale!

Scaling up the hierarchy: from molecules to mammals
At each organisational level within an organism, beginning

with molecules and continuing up through organelles, cells,
tissues and organs, new structures emerge, each with different

physical characteristics, functional parameters, and resource
and energy network systems, thereby constituting a hierarchy
of hierarchies. Metabolic energy is conserved as it flows
through this hierarchy of sequential networks. We assume that
each network operates subject to the same general principles
and therefore exhibits quarter-power scaling (West et al.,
2002b). From the molecules of the respiratory complex up to
intact cells, metabolic rate obeys 3/4-power scaling.
Continuity of flow imposes boundary conditions between
adjacent levels, leading to constraints on the densities of
invariant terminal units, such as respiratory complexes and
mitochondria, and on the networks of flows that connect
them (West et al., 2002b). The total mitochondrial mass
relative to body mass is correctly predicted to be
(Mminmm/mcMb)1/4!0.06Mb

–1/4, where mm is the mass of a
mitochondrion, Mmin is minimum mass, mc is average cell
mass and Mb is expressed in g. Since mitochondria are
assumed to be approximately invariant, the total number in the
body is determined in a similar fashion. This shows why there
are typically only a few hundred per human cell, whereas there
are several thousand in a shrew cell of the same type.

As already stressed, a central premise of the theory is that
general properties of supply networks constrain the coarse-
grained, and therefore the scaling properties, of biological
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Reason: The viscous resistance of the vessel network scales as 

depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk

Nk
5 O

k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S c
c0
D2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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metabolic rate of mammalian cells growing in culture isolated
from the vascular network (Fig.·2).

The derivation that gives the 3/4 exponent is only an
approximation, because of the changing roles of pulsatile and
Poiseuille flow with body size. Strictly speaking, the theory
predicts that the exponent for B is exactly 3/4 only where
pulsatile flow completely dominates. In general, the exponent
is predicted to depend weakly on M, manifesting significant
deviations from 3/4 only in small mammals, where only the
first few branches of the arterial system can support a pulse
wave (West et al., 1997, 2002b). Since small mammals
dissipate relatively more energy in their networks, they require
elevated metabolic rates to generate the increased energy
expenditure to circulate the blood. This leads to the prediction
that the allometric exponent for B should decrease below 3/4
as Mb decreases to the smallest mammal, as observed (Dodds
et al., 2001; Savage et al., 2004b).

If the total number of cells, Nc, increases linearly with Mb,
then both cellular metabolic rate, Bc(!B/Nc), and specific
metabolic rate, B/Mb, decrease as Mb

–1/4. In this sense,
therefore, larger animals are more efficient than smaller ones,
because they require less power to support unit body mass and
their cells do less work than smaller animals. In terms of our
theory this is because the total hydrodynamic resistance of the
network decreases with size as Mb

–3/4. This has a further
interesting consequence that, since the ‘current’ or volume rate
of flow of blood in the network, Q0, increases as Mb

3/4, whereas
the resistance decreases as Mb

–3/4, the analog to Ohm’s law
(pressure=current!resistance) predicts that blood pressure
must be an invariant, as observed (Caro et al., 1978; Fung,
1984). This may seem counterintuitive, since the radius of the
aorta varies from approximately 0.2·mm in a shrew up to
approximately 30·cm in a whale!

Scaling up the hierarchy: from molecules to mammals
At each organisational level within an organism, beginning

with molecules and continuing up through organelles, cells,
tissues and organs, new structures emerge, each with different

physical characteristics, functional parameters, and resource
and energy network systems, thereby constituting a hierarchy
of hierarchies. Metabolic energy is conserved as it flows
through this hierarchy of sequential networks. We assume that
each network operates subject to the same general principles
and therefore exhibits quarter-power scaling (West et al.,
2002b). From the molecules of the respiratory complex up to
intact cells, metabolic rate obeys 3/4-power scaling.
Continuity of flow imposes boundary conditions between
adjacent levels, leading to constraints on the densities of
invariant terminal units, such as respiratory complexes and
mitochondria, and on the networks of flows that connect
them (West et al., 2002b). The total mitochondrial mass
relative to body mass is correctly predicted to be
(Mminmm/mcMb)1/4!0.06Mb

–1/4, where mm is the mass of a
mitochondrion, Mmin is minimum mass, mc is average cell
mass and Mb is expressed in g. Since mitochondria are
assumed to be approximately invariant, the total number in the
body is determined in a similar fashion. This shows why there
are typically only a few hundred per human cell, whereas there
are several thousand in a shrew cell of the same type.

As already stressed, a central premise of the theory is that
general properties of supply networks constrain the coarse-
grained, and therefore the scaling properties, of biological
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Fig.·4. Plot of genome length (number of base pairs) vs mass (in g)
for a sequence of unicells on a log–log scale. The best straight-line fit
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by vascular supply networks cellular metabolic rates scale as Mb

–1/4.
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metabolic rates converge to a constant value predicted by theory
(West et al., 2002b). The two lines meet at the mass of the smallest
mammal (the shrew with mass ~1·g, as predicted). Figure taken from
West et al. (2002b) with permission.

so the weight of the pulsatile network dominates the whole network except in small animals

Makes the prediction of what should be the smallest animal where heart beats without 
pulses due to viscous damping (hydrodynamic resistance is in all branches is maximal) : 1g

• Large animals are more efficient because they need less 
power to support cells in the body

• Since blood flow rate scales as                , blood pressure                  is predicted to be
size invariant (same in whale and mouse!) 

tracheae, and osmotic and vapor pressure
in the plant vascular system). In spite of
these differences, these networks exhibit
essentially the same scaling laws.

For convenience we shall use the lan-
guage of the cardiovascular system, name-
ly, aorta, arteries, arterioles, and capillar-
ies; the correspondence to other systems is
straightforward. In the general case, the
network is composed of N branchings from
the aorta (level 0) to the capillaries (level
N, denoted here by a subscript c) (Fig.
1C). A typical branch at some intermedi-
ate level k has length lk, radius rk, and
pressure drop Dpk (Fig. 1D). The volume
rate of flow is Q̇k 5 prk

2uk where uk is the
flow velocity averaged over the cross sec-
tion and, if necessary, over time. Each
tube branches into nk smaller ones (12), so
the total number of branches at level k is
Nk 5 n0n1 . . . nk. Because fluid is con-
served as it flows through the system

Q̇0 5 NkQ̇k 5 Nkprk
2 uk 5 Ncprc

2 uc (2)

which holds for any level k. We next intro-
duce the important assumption, the second
above, that the terminal units (capillaries)
are invariant, so rc, lc, uc, and, consequently,
Dpc are independent of body size. Because
the fluid transports oxygen and nutrients for
metabolism, Q̇0 } B; thus, if B } Ma (where
a will later be determined to be 3/4), then
Q̇0 } Ma. Equation 2 therefore predicts that
the total number of capillaries must scale as
B, that is, Nc } Ma.

To characterize the branching, we in-
troduce scale factors bk [ rk11/rk and gk [
lk11/lk. We shall prove that in order to
minimize the energy dissipated in the sys-
tem in the sense of the third principle
above, the network must be a convention-
al self-similar fractal in that bk 5 b, gk 5
g, and nk 5 n, all independent of k (an
important exception is bk in pulsatile sys-
tems). For a self-similar fractal, the num-
ber of branches increases in geometric pro-
portion (Nk 5 nk) as their size geometri-
cally decreases from level 0 to level N.
Before proving self-similarity, we first ex-
amine some of its consequences.

Because Nc 5 nN, the number of gener-
ations of branches scales only logarithmi-
cally with size

N 5
a ln~M/Mo)

ln n
(3)

where M0 is a normalization scale for M
(13). Thus, a whale is 107 times heavier
than a mouse but has only about 70% more
branchings from aorta to capillary. The to-
tal volume of fluid in the network (“blood”
volume Vb) is

Vb 5 O
k 5 0

N

NkVk 5 O
k 5 0

N

prk
2lknk

5
~ngb2!2~N 1 1! 2 1

~ngb2!21 2 1 nNVc (4)

where the last expression reflects the fractal
nature of the system. As shown below, one
can also prove from the energy minimiza-
tion principle that Vb } M. Because ngb2 ,
1 and N .. 1, a good approximation to Eq.
4 is Vb 5 V0/(1 2 ngb2) 5 Vc(gb2)2N/
(1 2 ngb2). From our assumption that cap-
illaries are invariant units, it therefore fol-
lows that (gb2)2N } M. Using this relation
in Eq. 3 then gives

a 5 2
ln n

ln~gb2!
(5)

To make further progress requires knowl-
edge of g and b. We shall show how the
former follows from the space-filling fractal
requirement, and the latter, from the energy
minimization principle.

A space-filling fractal is a natural struc-
ture for ensuring that all cells are serviced
by capillaries. The network must branch so
that a group of cells, referred to here as a
“service volume,” is supplied by each capil-
lary. Because rk ,, lk and the total number
of branchings N is large, the volume sup-
plied by the total network can be approxi-
mated by the sum of spheres whose diame-
ters are that of a typical kth-level vessel,
namely 4/3p(lk/2)3Nk. For large N, this es-
timate does not depend significantly on the
specific level, although it is most accurate
for large k. This condition, that the fractal
be volume-preserving from one generation
to the next, can therefore be expressed as
4/3p(lk/2)3Nk ' 4/3p(lk11/2)3Nk11. This
relation gives g3

k [ (lk11/lk)
3 ' Nk/Nk11 5

1/n, showing that gk ' n21/3 ' g must be
independent of k. This result for gk is a
general property of all space-filling fractal
systems that we consider.

The 3/4 power law arises in the simple
case of the classic rigid-pipe model, where
the branching is assumed to be area-pre-

serving, that is, the sum of the cross-sec-
tional areas of the daughter branches equals
that of the parent, so prk

2 5 nprk
2
11. Thus,

bk [ rk11/rk 5 n21/2 5 b, independent of k.
When the area-preserving branching rela-
tion, b 5 n21/2, is combined with the
space-filling result for g, Eq. 5 yields a 5
3/4, so B } M3/4. Many other scaling laws
follow. For example, for the aorta, r0 5
b2Nrc 5 Nc

1/2rc and l0 5 g2Nrc 5 Nc
1/3lc,

yielding r0 } M3/8 and l0 } M1/4. This
derivation of the a 5 3/4 law is essentially a
geometric one, strictly applying only to sys-
tems that exhibit area-preserving branch-
ing. This property has the further conse-
quence, which follows from Eq. 2, that the
fluid velocity must remain constant
throughout the network and be indepen-
dent of size. These features are a natural
consequence of the idealized vessel-bundle
structure of plant vascular systems (Fig. 1B),
in which area-preserving branching arises
automatically because each branch is as-
sumed to be a bundle of nN2k elementary
vessels of the same radius (11). Pulsatile
mammalian vascular systems, on the other
hand, do not conform to this structure, so
for them, we must look elsewhere for the
origin of quarter-power scaling laws.

Some features of the simple pipe model
remain valid for all networks: (i) The quan-
tities g and b play a dual scaling role: they
determine not only how quantities scale
from level 0 (aorta) to N (capillary) within
a single organism of fixed size, but also how
a given quantity scales when organisms of
different masses are compared. (ii) The frac-
tal nature of the entire system as expressed,
for example, in the summation in Eq. 4
leads to a scaling different from that for a
single tube, given by an individual term in
the series. These network systems must
therefore be treated as a complete integrat-
ed unit; they cannot realistically be mod-
eled by a single or a few representative
vessels. (iii) The scaling with M does not

Fig. 1. Diagrammatic examples of
segments of biological distribu-
tion networks: (A) mammalian cir-
culatory and respiratory systems
composed of branching tubes;
(B) plant vessel-bundle vascular
system composed of diverging
vessel elements; (C) topological
representation of such networks,
where k specifies the order of the
level, beginning with the aorta
(k 5 0) and ending with the capil-
lary (k 5 N ); and (D) parameters of
a typical tube at the kth level.
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depend on the branching ratio n.
We next consider the dynamics of the

network and examine the consequences of
the energy minimization principle, which is
particularly relevant to mammalian vascu-
lar systems. Pulsatile flow, which dominates
the larger vessels (aorta and major arteries),
must have area-preserving branching, so
that b 5 n21/2, leading to quarter-power
scaling. The smaller vessels, on the other
hand, have the classic “cubic-law” branch-
ing (10), where b 5 n21/3, and play a
relatively minor role in allometric scaling.

First consider the simpler problem of
nonpulsatile flow. For steady laminar flow
of a Newtonian fluid, the viscous resistance
of a single tube is given by the well-known
Poiseuille formula Rk 5 8mlk/prk

4, where m is
the viscosity of the fluid. Ignoring small
effects such as turbulence and nonlineari-
ties at junctions, the resistance of the entire
network is given by (14)

Z 5 O
k 5 0

N Rk

Nk
5 O

k 5 0

N 8mlk
prk

4nk

5
@1 2 ~nb4/g!N 1 1#Rc

~1 2 nb4/g!nN (6)
Now, nb4/g , 1 and N .. 1, so a good
approximation is Z 5 Rc/(1 2 nb4/g)Nc.
Because Rc is invariant, Z } Nc

21 } M2a,
which leads to two important scaling laws:
blood pressure Dp 5 Q̇0Z must be indepen-
dent of body size and the power dissipated
in the system (cardiac output) W 5 Q̇0Dp }
Ma, so that the power expended by the
heart in overcoming viscous forces is a size-
independent fraction of the metabolic rate.
Neither of these results depends on detailed
knowledge of n, b, or g, in contrast to
results based on Vb } M, such as Eq. 5, a 5
3/4, and r0 } M3/8. From Eq. 2, Q̇0 5 pr0

2u0,
which correctly predicts that the velocity of
blood in the aorta u0 } M0 (2). However, an
area-preserving scaling relation b 5 n21/2

also implies by means of Eq. 2 that uk 5 u0
for all k. This relation is valid for fluid flow
in plant vessels (because of the vascular bun-
dle structure) (11, 15) and insect tracheae
(because gas is driven by diffusion) (16);
both therefore exhibit area-preserving
branching, which leads to 3/4 power scaling
of metabolic rate. Branching cannot be en-
tirely area-preserving in mammalian circula-
tory systems because blood must slow down
to allow materials to diffuse across capillary
walls. However, the pulsatile nature of the
mammalian cardiovascular system solves the
problem.

Energy minimization constrains the net-
work for the simpler nonpulsatile systems.
Consider cardiac output as a function of all
relevant variables: W(rk, lk, nk, M). To sus-
tain a given metabolic rate in an organism
of fixed mass M with a given volume of

blood Vb(rk, lk, nk, M), the minimization
principle requires that the cardiac output be
minimized subject to a space-filling geome-
try. To enforce such a constraint, we use the
standard method of Lagrange multipliers (l,
lk, and lM) and so need to minimize the
auxiliary function

F(rk, lk, n) 5 W(rk, lk, nk, M)

1 lVb(rk, lk, nk, M) 1 O
k 5 0

N

lkNklk
3 1 lMM

(7)

Because B } Q0 and W 5 Q̇0
2Z, this prob-

lem is tantamount to minimizing the im-
pedance Z, which can therefore be used in
Eq. 7 in place of W. First, consider the case
where nk 5 n, so that we can use Eqs. 4 and
6 for Vb and Z, respectively. For a fixed mass
M, the auxiliary Lagrange function F,
which incorporates the constraints, must be
minimized with respect to all variables for
the entire system (rk, lk, and n). This re-
quires ]F/]lk 5 ]F/]rk 5 ]F/]n 5 0, which
straightforwardly leads to bk 5 n21/3. More
generally, by considering variations with
respect to nk, one can show that nk 5 n,
independent of k. The result, bk 5 n21/3, is
a generalization of Murray’s finding (17),
derived for a single branching, to the com-
plete network. Now varying M and mini-
mizing F in Eq. 7 (]F/]M 5 0) leads to Vb
} M, which is just the relation needed to
derive Eq. 5. Although the result bk 5 n21/3

is independent of k, it is not area-preserving
and therefore does not give a 5 3/4 when
used in Eq. 5; instead, it gives a 5 1. It does,
however, solve the problem of slowing
blood in the capillaries: Eq. 2 gives uc/ u0 5
(nb2)2N 5 Nc

21/3. For humans, Nc ' 1010,
so uc/ u0 ' 1023, in reasonable agreement
with data (18). On the other hand, it leads
to an incorrect scaling law for this ratio:
uc/ u0 } M21/4. Incorporating pulsatile flow
not only solves these problems, giving the
correct scaling relations (a 5 3/4 and uc/ u0
} M0), but also gives the correct value for
uc/ u0.

A complete treatment of pulsatile flow
is complicated; here, we present a simpli-
fied version that contains the essential
features needed for the scaling problem.
When an oscillatory pressure p of angular
frequency v is applied to an elastic (char-
acterized by modulus E) vessel with wall
thickness h, a damped traveling wave is
created: p 5 p

0
ei(vt 2 2pz/l). Here, t is time,

z is the distance along the tube, l is the
wavelength, and p0 is the amplitude aver-
aged over the radius; the wave velocity
c 5 2pvl. Both the impedance Z and the
dispersion relation that determines c are
derived by solving the Navier-Stokes
equation for the fluid coupled to the
Navier equations for the vessel wall (19).

In the linearized incompressible-fluid,
thin-wall approximation, this problem can
be solved analytically to give

S c
c0
D2

' 2
J2~i3/2a!

J0~i3/2a!
and Z '

c0
2r

pr2c
(8)

Here a [ (vr/m)1/2r is the dimensionless
Womersley number (13), and c0 [ (Eh/
2rr)1/2 is the Korteweg-Moens velocity. In
general, both c and Z are complex functions
of v, so the wave is attenuated and disperses
as it propagates. Consider the consequences
of these formulas as the blood flows through
progressively smaller tubes: For large tubes,
a is large (in a typical human artery, a '
5), and viscosity plays almost no role. Equa-
tion 8 then gives c 5 c0 and Z 5 rc0/pr2;
because both of these are real quantities,
the wave is neither attenuated nor dis-
persed. The r dependence of Z has changed
from the nonpulsatile r24 behavior to r22.
Minimizing energy loss now gives hk/rk (and,
therefore, ck) independent of k and, most
importantly, an area-preserving law at the
junctions, so bk 5 n21/2. This relation en-
sures that energy-carrying waves are not
reflected back up the tubes at branch points
and is the exact analog of impedance
matching at the junctions of electrical
transmission lines (18). As k increases, the
sizes of tubes decrease, so a3 0 (in human
arterioles, for example, a ' 0.05), and the
role of viscosity increases, eventually dom-
inating the flow. Equation 8 then gives c '
i1/2ac0/4 3 0, in agreement with observa-
tion (18). Because c and, consequently, l
now have imaginary parts, the traveling
wave is heavily damped, leaving an almost
steady oscillatory flow whose impedance is,
from Eq. 8, given by the Poiseuille formula;
that is, the r24 behavior is restored. Thus,
for large k, corresponding to small vessels,
bk 5 n21/3. We conclude that for pulsatile
flow, bk is not independent of k but rather
has a steplike behavior (Fig. 2). This picture

Fig. 2. Schematic variation of the Womersley num-
ber ak and the scaling parameters bk and gk with
level number (k) for pulsatile systems. Note the
steplike change in bk at k 5 k from area-preserving
pulse-wave flow in major vessels to area-increasing
Poiseuille-type flow in small vessels.
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Figure 1. Kleiber’s law scaling during S.mediterranea body size changes. (A) Feeding (growth) and starvation (degrowth) dependent body size changes

of Schmidtea mediterranea. Scale bar, 1 mm. (B) Wet versus dry mass scaling with body size. The scaling exponent ± standard error was derived from a

linear fit for wet mass > 0.5 mg and represents the exponent b of the power law y = axb. See Figure 1—source data 1 for numerical data. (C)
Metabolic rate versus wet mass scaling by microcalorimetry. The metabolic rate was determined by a horizontal line fitted to the stabilised post-
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Figure 2. Growth and degrowth dynamics in S.mediterranea. (A) Assays to measure organismal cell numbers. (Top) image-based quantification of

nuclei (grey) versus tracer beads (magenta) following whole animal dissociation in presence of the volume tracer beads. (Bottom) Histone H3 protein

quantification by quantitative Western blotting, which scales linearly with the number of FACS-sorted cells (bottom right). The line represents a fitted

linear regression (data of 4 technical replicates) and serves as standard for converting the H3 band in planarian lysates (bottom left) run on the same gel
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quantification by quantitative Western blotting, which scales linearly with the number of FACS-sorted cells (bottom right). The line represents a fitted

linear regression (data of 4 technical replicates) and serves as standard for converting the H3 band in planarian lysates (bottom left) run on the same gel
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• Changes in animal size (area) reflects changes in cell number (and not cell size) 
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Figure 2. Growth and degrowth dynamics in S.mediterranea. (A) Assays to measure organismal cell numbers. (Top) image-based quantification of

nuclei (grey) versus tracer beads (magenta) following whole animal dissociation in presence of the volume tracer beads. (Bottom) Histone H3 protein

quantification by quantitative Western blotting, which scales linearly with the number of FACS-sorted cells (bottom right). The line represents a fitted

linear regression (data of 4 technical replicates) and serves as standard for converting the H3 band in planarian lysates (bottom left) run on the same gel
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• Size-dependence of planarian growth/de-
growth dynamics 

— growth rate decreases with size

— de-growth rate decreases with size

Feeding Starving

• A (modified) theory of allometric scaling:  planarians

quantitative western 
blotting of histone H3 
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Figure 3. Size-dependent scaling of energy content explains growth/degrowth dynamics. (A) Planarian energy balance model. At the organismal level,

changes in the physiological energy content E result from a change in the net energy influx J (feeding) and/or heat loss P (metabolic rate). Dividing E, J

and P by the total cell number N approximates the energy balance on a per-cell basis. (B) Three hypothetical control paradigms of E during growth and

degrowth (columns), which make specific predictions regarding the size-dependence of J/N, E/N and P/N (rows). Prediction traces and scale exponents

Figure 3 continued on next page
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and P by the total cell number N approximates the energy balance on a per-cell basis. (B) Three hypothetical control paradigms of E during growth and

degrowth (columns), which make specific predictions regarding the size-dependence of J/N, E/N and P/N (rows). Prediction traces and scale exponents
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J: animal energy influx (feeding)

j: cell energy influx
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de/dt= j - p - dN/dt.e
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changes in the physiological energy content E result from a change in the net energy influx J (feeding) and/or heat loss P (metabolic rate). Dividing E, J

and P by the total cell number N approximates the energy balance on a per-cell basis. (B) Three hypothetical control paradigms of E during growth and

degrowth (columns), which make specific predictions regarding the size-dependence of J/N, E/N and P/N (rows). Prediction traces and scale exponents
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• Size independence of cell metabolic rate (P/N)
• Therefore, the size dependence of P/M
   (which scales as M     based on Kleiber’s law)
    most likely reflects dependence of cell mass
    M/N on body mass

• In the WBE model, the size dependence of 
    P/M reflects size dependence of P/N 
    (which scales as M-¼). 

-¼

• A (modified) theory of allometric scaling:  planarians
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Figure 4. Size-dependence of lipid and glycogen storage. (A) Lipid droplet (LD540, yellow) (Spandl et al., 2009) and nuclei (DAPI, blue) staining of pre-

pharyngeal transverse cross sections of a large (16 mm length, top left) and a small (4 mm, bottom left) planarian. Right, magnified view of the boxed

areas to the left. Scale bars, 100 mm. See Figure 4—source data 1 for raw images. (B) Mass spectrometry-based quantification of triglycerides in

animals of the indicated size (Figure 4—figure supplement 1A–B). All values were normalized to organismal cell numbers using the previously

established length versus area (Figure 2—figure supplement 1E) and N/A (Figure 2B) scaling laws. Bars mark mean ± SEM. n = 5 biological replicates

consisting of 40 pooled 4 mm, 20 8 mm and 6 16 mm long animals analysed in two technical replicates. Significance assessed by one-way ANOVA,

followed by Tukey’s post-hoc test (*padj ! 0.05, ****padj ! 0.0001). See Figure 4—source data 2 for numerical data and statistics. (C) Histological
glycogen staining (Best’s Carmine method) of pharyngeal transverse cross sections of a large (16 mm, top left) and a small (4 mm, bottom left)

planarian. White circles: outline of intestine branches. P: Pharynx. Right, magnified view of the boxed areas to the left (black rectangles).+AG, pre-

treatment with amyloglucosidase, which degrades glycogen; -AG, no pre-treatment of adjacent section. Arrow heads point to small, densely staining

glycogen granules. Scale bars, 100 mm. See Figure 4—source data 1 for raw images. (D) Quantification of organismal glycogen content using an

enzyme-based colorimetric assay in animals of the indicated length (Figure 4—figure supplement 1D–F). Bars mark mean ± SEM. n = 4 biological

replicates (independent experiments), 40 pooled 4 mm, 20 8 mm, 8 16 mm analysed in three technical replicates. Significance assessed by one-way

Figure 4 continued on next page
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Figure 5. Size-dependent energy storage explains Kleiber’s law scaling. (A) Cell number versus dry mass (circles) or wet mass (triangles) based on the

data from Figure 3—figure supplement 2A. Cell numbers were converted from area using the N/A scaling law (Figure 2B). Dry and wet mass

conversion is given by Figure 1B. Scaling exponents ± standard errors were derived from respective linear fits and represent the exponent b of the

power law y = axb (B) Cell number versus metabolic rate, derived from Figure 1C with scaling laws of Figure 2B and Figure 3—figure supplement 2A.

The scaling exponent ± standard error was derived from respective linear fits and represents the exponent b of the power law y = axb. (C) Mass

composition (coloured) and total dry mass (grey) per cell in animals of the indicated body length. Triglyceride and glycogen measurements are taken

from Figure 4B and D, respectively. Quantification of other (polar and non-polar) lipids is based on the mass-spectrometry data from Figure 4B (see

also Figure 4—figure supplement 1B) (n = 5 biological replicates; padj = 0.1720 (no significance) 8 vs. 4 mm, padj < 0.0001 16 vs. 4 mm, padj < 0.0001

16 vs. 8 mm; two technical replicates). Other carbohydrates represent total carbohydrate minus glycogen. n = 4 biological replicates (independent

experiments), 40 pooled 4 mm, 20 8 mm, 8 16 mm long animals; padj = 0.0047 8 vs. 4 mm, padj = 0.0005 16 vs. 4 mm, padj = 0.2790 16 vs. 8 mm; three

technical replicates. Protein content was measured colorimetrically. n = 4 biological replicates (independent experiments), 44 pooled 4 mm, 10 8 mm,

10 16 mm long animals; padj = 0.0020 8 vs. 4 mm, padj < 0.0001 16 vs. 4 mm, padj = 0.0007 16 vs. 8 mm) (see also Figure 5—figure supplement 1).

Significance was assessed by one-way ANOVA followed by Tukey’s post-hoc test. All values were normalised to the total cell number using the

previously established length-area (Figure 2—figure supplement 1E) and N/A (Figure 2B) scaling laws. Total dry mass was independently measured

(Figure 3—figure supplement 2A) and correlated with length using the length-area relationship (Figure 2—figure supplement 1E). All values are

shown as mean ± SEM. See Figure 5—source data 1 for numerical data and statistics.

DOI: https://doi.org/10.7554/eLife.38187.026

The following source data and figure supplement are available for figure 5:

Source data 1. Raw data and statistics tables for measurement of other lipids, carbohydrates and protein.

DOI: https://doi.org/10.7554/eLife.38187.028

Figure supplement 1. Validation of protein and total carbohydrate quantifications.

DOI: https://doi.org/10.7554/eLife.38187.027
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• Size-dependence of lipid and glycogen storage (suggesting size dependence of mass per cell)

Lipid droplet (LD540, yellow) 

glycogen staining (Best’s Carmine method) 

+ AG: pretreatment with amyloglucosidase size (mm)

• A (modified) theory of allometric scaling:  planarians
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Figure 5. Size-dependent energy storage explains Kleiber’s law scaling. (A) Cell number versus dry mass (circles) or wet mass (triangles) based on the

data from Figure 3—figure supplement 2A. Cell numbers were converted from area using the N/A scaling law (Figure 2B). Dry and wet mass

conversion is given by Figure 1B. Scaling exponents ± standard errors were derived from respective linear fits and represent the exponent b of the

power law y = axb (B) Cell number versus metabolic rate, derived from Figure 1C with scaling laws of Figure 2B and Figure 3—figure supplement 2A.

The scaling exponent ± standard error was derived from respective linear fits and represents the exponent b of the power law y = axb. (C) Mass

composition (coloured) and total dry mass (grey) per cell in animals of the indicated body length. Triglyceride and glycogen measurements are taken

from Figure 4B and D, respectively. Quantification of other (polar and non-polar) lipids is based on the mass-spectrometry data from Figure 4B (see

also Figure 4—figure supplement 1B) (n = 5 biological replicates; padj = 0.1720 (no significance) 8 vs. 4 mm, padj < 0.0001 16 vs. 4 mm, padj < 0.0001

16 vs. 8 mm; two technical replicates). Other carbohydrates represent total carbohydrate minus glycogen. n = 4 biological replicates (independent

experiments), 40 pooled 4 mm, 20 8 mm, 8 16 mm long animals; padj = 0.0047 8 vs. 4 mm, padj = 0.0005 16 vs. 4 mm, padj = 0.2790 16 vs. 8 mm; three

technical replicates. Protein content was measured colorimetrically. n = 4 biological replicates (independent experiments), 44 pooled 4 mm, 10 8 mm,

10 16 mm long animals; padj = 0.0020 8 vs. 4 mm, padj < 0.0001 16 vs. 4 mm, padj = 0.0007 16 vs. 8 mm) (see also Figure 5—figure supplement 1).

Significance was assessed by one-way ANOVA followed by Tukey’s post-hoc test. All values were normalised to the total cell number using the

previously established length-area (Figure 2—figure supplement 1E) and N/A (Figure 2B) scaling laws. Total dry mass was independently measured

(Figure 3—figure supplement 2A) and correlated with length using the length-area relationship (Figure 2—figure supplement 1E). All values are

shown as mean ± SEM. See Figure 5—source data 1 for numerical data and statistics.

DOI: https://doi.org/10.7554/eLife.38187.026

The following source data and figure supplement are available for figure 5:

Source data 1. Raw data and statistics tables for measurement of other lipids, carbohydrates and protein.

DOI: https://doi.org/10.7554/eLife.38187.028

Figure supplement 1. Validation of protein and total carbohydrate quantifications.

DOI: https://doi.org/10.7554/eLife.38187.027
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• Allometric scaling of cell number to animal size: N    M
¾µ 
µ 

• Isometric scaling of cell number to animal metabolic rate

(ie. size-dependence of mass per cell: M/N     M   )¼

(inferred from Kleiber’s law)

which reflects size-dependent energy storage

• A (modified) theory of allometric scaling:  planarians

• Validity for other organisms? In principle no as it contradicts a feature of the WBE model

• Humans: prediction of cell number based on metabolic power per cell:

    In the WBE model, the size dependence of 
    P/M reflects size dependence of P/N 
    (which scales as M-¼), which is size independent in planaria

constant and size-independent metabolic rate per cell, p=P/N (1pW), and Kleiber’s law P    M¾µ 
For 70 kg: 60-200W, hence 6-20 10   cells. 13 

Sender, Fuchs & Milo. PLOS Biology | DOI:10.1371/journal.pbio.1002533 data: 3.8 10   cells. 13 
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• Universality of ontogenic growth — WBE framework

G. West, J. Brown and B. Endquist. NATURE | VOL 413 | 11 OCTOBER 2001 Thomas LECUIT   2019-2020

• Metabolic energy is allocated to : 
—life-sustaining activities (maintenance of cell and tissue organisation, homeostasis)
—growth (formation of new cells)

• Incoming energy is distributed through a hierarchical branching network to all cells
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cell number

cell metabolic rate
energy required to 
produce a new cell

Total metabolic rate

power allocated to 
sustain organism

power allocated to 
growth

Nc, Ec and mc are constant and independent of  m
m = mc. Nc

cell mass
total mass
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with • Growth equation

and Kleiber’s law
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constant within taxon
(fish, bird, mammal etc)

• This imposes a natural limit to growth due to the imbalance between:
— energy supply, constrained by invariance of capillary termini, with scales as:  
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(see earlier)
— energy demand, which scales as 
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Otherwise (same exponent) growth would not stop: 
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• Universality of ontogenic growth — WBE framework
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with • Predicts an asymptotic limit to mass/size

asymptotic mass
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—within a taxon, a is approximately constant and variation in final mass between species
depends on variation in cellular metabolic rate Bc  , therefore b= a/M ¼

—between taxa, a varies as B0
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• Law of growth: has the following sigmoid solution: 
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m: mass at time t 
mo: mass at birth
M: final mass
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• Universality of ontogenic growth — WBE framework
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• Law of growth: 
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m: mass at time t 
mo: mass at birth
M: final mass
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• « Universal » growth
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Dimensionless mass

Dimensionless time 
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• Interpretation:   
fraction of metabolic power allotted to maintenancer

R fraction allotted to growth has a universal exponentially
decreasing behaviour as a function of 
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• Universality of ontogenic growth — WBE framework

• Interpretation:   
fraction of metabolic power allotted to maintenancer

R fraction allotted to growth
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R = 1 - r = 1- (m/M)¼

For all organisms: when m/M = 1/15, R      50% 
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m/M = 1/2,   R      16% 
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• Universality of Biological clock —WBE framework

Thomas LECUIT   2019-2020

• Question: How to relate whole organism metabolic rate to biochemical reaction within cells?

• The Kleiber law relates organism metabolic rate to mass and the WBE model explains
the ¾ exponent in terms of constraints from hierarchical branching network

tionally expressed as a Q10 , which quantifies
temperature dependence across a limited tem-
perature range (i.e., 10°C).

Size and temperature primarily affect met-
abolic rate through different mechanisms.
Recently, a general model has been shown to
explain the scaling of whole organism meta-
bolic rate B with body mass M, where B !
M3/4 so that mass-specific metabolic rate
B/M ! M"1/4. This quarter-power scaling is
based on the fractal-like design of exchange
surfaces and distribution networks in plants
(3 ) and animals (4 ). Temperature governs
metabolism through its effects on rates of
biochemical reactions. Reaction kinetics vary
with temperature according to the Boltz-
mann’s factor e"Ei/kT, where T is the absolute
temperature (in degrees K), Ei is the activa-
tion energy, and k is Boltzmann’s constant.

Metabolic rate is the consequence of
many different biological reactions. So

B ! !
i

Ri

where the Ri represents the rates of energy
production via the individual reactions (i) that
comprise metabolism. Each reaction rate de-
pends on three major variables: Ri ! (concen-
tration of reactants) (fluxes of reactants) (ki-
netic energy of the system). The first two
terms, which are constrained by the rates of
supply of substrates and removal of products,
contain the majority of the body mass depen-
dence. Because of allometric constraints on
exchange surfaces and distribution networks
(3 , 4 ), the product of these two terms scales
with body size as M3/4. The third term con-
tains the dominant temperature dependence,
which is governed by the Boltzmann factor,
e"Ei/kT. This is valid within the limited range
of “biologically relevant” temperatures be-
tween approximately 0° and 40°C. This is the
range that organisms commonly operate
within under natural conditions. Near 0°C,
metabolic reactions cease due to the phase
transition associated with freezing water, and
above approximately 40°C, metabolic reac-
tion rates are reduced by the increasing influ-
ence of catabolism. We do not consider hy-
perthermaphiles, specialized organisms that
live at temperatures substantially hotter than
40°C.

The combined effects of body size and
temperature on metabolic rate within the bi-
ologically relevant temperature range can
therefore be well approximated by

B " M 3/4e"Ei/kT (1)

Here Ei represents an average activation en-
ergy for the rate-limiting enzyme-catalyzed
biochemical reactions of metabolism. Be-
cause, for each taxon, B/M3/4 # B0 is approx-
imately independent of M, almost all of the
temperature variation is contained in the nor-
malization term, B0

B0 " e"Ei/kT (2)

Because the biochemistry of metabolism is
common to aerobic organisms, we predict
that plotting mass-normalized metabolic rates
[ln(B0)] as a function of 1/T for different
taxonomic or functional groups should yield
similar straight lines with slopes, a # –Ei/k.
Furthermore, we predict that the values of Ei

obtained from these plots will fall within the
range of measured activation energies for
metabolic reactions. Because these activation
energies vary between 0.2 and 1.2 eV with an
average of approximately 0.6 eV (5 , 6 ), the
slope of these lines should have a universal
value of approximately –7.40 K.

We evaluated these predictions using rest-
ing metabolic rates as a function of temper-
ature and body mass for a variety of organ-
isms: aerobic microbes, plants, multicellular
invertebrates, fishes, amphibians, reptiles,
birds, and mammals (Fig. 1) (7 ). Plots of
these data are well fit by straight lines, all
with similar slopes and intercepts. This sup-
ports the first prediction. Furthermore, the
average activation energies extracted from
the slopes give Ei # 0.41 – 0.74 eV with a
mean for all groups of 0.62 eV. This supports
the second prediction. Figure 1 suggests that
as a first approximation the metabolic rates of
all organisms are a single, general function of
body size and temperature. An expression for
the dependence of metabolic rate on body
size and temperature can be derived from Eq.

2 by noting that the value of B0 at some
temperature T can be related to its value at
some other temperature T0 by

B0$T % ! B0$T0%e
" Ei/k$1/T"1/T0%

! B0$T0%e
Ei$T"T0%/kTT0

Combined with Eq. 1 this leads to

B ! B0$T %M 3/4 ! B0$T0%M
3/4eEiTc/kTT0

(3)

where Tc # T " T0. The term e EiTc/kTT0 #
e EiTc/{kT0

2(1&Tc/T0)}, which describes the
“universal temperature dependence” (UTD)
of biological processes. Equation 3 allows
metabolic rates of different organisms to be
compared independently of body mass and
temperature by comparing their values of
B0(Tc) normalized with some standard tem-
perature, Tc (often 20°C).

Equation 3 also expresses the temperature
dependence in terms of degrees Celsius by
choosing T0 to be the freezing point of water
('273 K), in which case Tc # T – T0 defines
temperature in degrees Celsius. Biologists
would be better served by quantifying tem-
perature-dependence in terms of the UTD
rather than the traditional Q10 factor, which is
defined by the equation

B0$T %

B0$T0%
! (Q10)

$T"T0%/10 ! (Q10)
Tc/10

(4)

with Q10 considered a constant, which is
independent of temperature. From Eq. 3,
however, we see that Q10 must, in fact, have
a temperature dependence given by

Q10 ! e10Ei/kTT0 ! e10Ei/*kT02$1#Tc/T0%+

(5)

In other words, biological processes do not
generally depend purely exponentially on
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Fig. 1. Effect of temperature (1000/degrees K) on mass-
normalized resting metabolic rate (B0, in W/g

3/4) for unicells
(A), plants (B), multicellular invertebrates (C), fish (D), am-
phibians (E), reptiles (F), and birds and mammals (G). Birds
(gray symbols) and mammals (open symbols) are shown at
normal body temperatures (triangles) and during hibernation
or torpor (squares). Data sources listed on Science Online (7).
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organism metabolic rate                    , where Ri is the rate of energy production per chemical reaction i
                                                                associated with metabolism
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[reactants]x(flux of reactants) x (kinetic energy of system)
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Fig. 1. Effect of temperature (1000/degrees K) on mass-
normalized resting metabolic rate (B0, in W/g

3/4) for unicells
(A), plants (B), multicellular invertebrates (C), fish (D), am-
phibians (E), reptiles (F), and birds and mammals (G). Birds
(gray symbols) and mammals (open symbols) are shown at
normal body temperatures (triangles) and during hibernation
or torpor (squares). Data sources listed on Science Online (7).
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tionally expressed as a Q10 , which quantifies
temperature dependence across a limited tem-
perature range (i.e., 10°C).

Size and temperature primarily affect met-
abolic rate through different mechanisms.
Recently, a general model has been shown to
explain the scaling of whole organism meta-
bolic rate B with body mass M, where B !
M3/4 so that mass-specific metabolic rate
B/M ! M"1/4. This quarter-power scaling is
based on the fractal-like design of exchange
surfaces and distribution networks in plants
(3 ) and animals (4 ). Temperature governs
metabolism through its effects on rates of
biochemical reactions. Reaction kinetics vary
with temperature according to the Boltz-
mann’s factor e"Ei/kT, where T is the absolute
temperature (in degrees K), Ei is the activa-
tion energy, and k is Boltzmann’s constant.

Metabolic rate is the consequence of
many different biological reactions. So

B ! !
i

Ri

where the Ri represents the rates of energy
production via the individual reactions (i) that
comprise metabolism. Each reaction rate de-
pends on three major variables: Ri ! (concen-
tration of reactants) (fluxes of reactants) (ki-
netic energy of the system). The first two
terms, which are constrained by the rates of
supply of substrates and removal of products,
contain the majority of the body mass depen-
dence. Because of allometric constraints on
exchange surfaces and distribution networks
(3 , 4 ), the product of these two terms scales
with body size as M3/4. The third term con-
tains the dominant temperature dependence,
which is governed by the Boltzmann factor,
e"Ei/kT. This is valid within the limited range
of “biologically relevant” temperatures be-
tween approximately 0° and 40°C. This is the
range that organisms commonly operate
within under natural conditions. Near 0°C,
metabolic reactions cease due to the phase
transition associated with freezing water, and
above approximately 40°C, metabolic reac-
tion rates are reduced by the increasing influ-
ence of catabolism. We do not consider hy-
perthermaphiles, specialized organisms that
live at temperatures substantially hotter than
40°C.

The combined effects of body size and
temperature on metabolic rate within the bi-
ologically relevant temperature range can
therefore be well approximated by

B " M 3/4e"Ei/kT (1)

Here Ei represents an average activation en-
ergy for the rate-limiting enzyme-catalyzed
biochemical reactions of metabolism. Be-
cause, for each taxon, B/M3/4 # B0 is approx-
imately independent of M, almost all of the
temperature variation is contained in the nor-
malization term, B0

B0 " e"Ei/kT (2)

Because the biochemistry of metabolism is
common to aerobic organisms, we predict
that plotting mass-normalized metabolic rates
[ln(B0)] as a function of 1/T for different
taxonomic or functional groups should yield
similar straight lines with slopes, a # –Ei/k.
Furthermore, we predict that the values of Ei

obtained from these plots will fall within the
range of measured activation energies for
metabolic reactions. Because these activation
energies vary between 0.2 and 1.2 eV with an
average of approximately 0.6 eV (5 , 6 ), the
slope of these lines should have a universal
value of approximately –7.40 K.

We evaluated these predictions using rest-
ing metabolic rates as a function of temper-
ature and body mass for a variety of organ-
isms: aerobic microbes, plants, multicellular
invertebrates, fishes, amphibians, reptiles,
birds, and mammals (Fig. 1) (7 ). Plots of
these data are well fit by straight lines, all
with similar slopes and intercepts. This sup-
ports the first prediction. Furthermore, the
average activation energies extracted from
the slopes give Ei # 0.41 – 0.74 eV with a
mean for all groups of 0.62 eV. This supports
the second prediction. Figure 1 suggests that
as a first approximation the metabolic rates of
all organisms are a single, general function of
body size and temperature. An expression for
the dependence of metabolic rate on body
size and temperature can be derived from Eq.

2 by noting that the value of B0 at some
temperature T can be related to its value at
some other temperature T0 by

B0$T % ! B0$T0%e
" Ei/k$1/T"1/T0%

! B0$T0%e
Ei$T"T0%/kTT0

Combined with Eq. 1 this leads to

B ! B0$T %M 3/4 ! B0$T0%M
3/4eEiTc/kTT0

(3)

where Tc # T " T0. The term e EiTc/kTT0 #
e EiTc/{kT0

2(1&Tc/T0)}, which describes the
“universal temperature dependence” (UTD)
of biological processes. Equation 3 allows
metabolic rates of different organisms to be
compared independently of body mass and
temperature by comparing their values of
B0(Tc) normalized with some standard tem-
perature, Tc (often 20°C).

Equation 3 also expresses the temperature
dependence in terms of degrees Celsius by
choosing T0 to be the freezing point of water
('273 K), in which case Tc # T – T0 defines
temperature in degrees Celsius. Biologists
would be better served by quantifying tem-
perature-dependence in terms of the UTD
rather than the traditional Q10 factor, which is
defined by the equation

B0$T %

B0$T0%
! (Q10)

$T"T0%/10 ! (Q10)
Tc/10

(4)

with Q10 considered a constant, which is
independent of temperature. From Eq. 3,
however, we see that Q10 must, in fact, have
a temperature dependence given by

Q10 ! e10Ei/kTT0 ! e10Ei/*kT02$1#Tc/T0%+

(5)

In other words, biological processes do not
generally depend purely exponentially on
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3/4) for unicells
(A), plants (B), multicellular invertebrates (C), fish (D), am-
phibians (E), reptiles (F), and birds and mammals (G). Birds
(gray symbols) and mammals (open symbols) are shown at
normal body temperatures (triangles) and during hibernation
or torpor (squares). Data sources listed on Science Online (7).
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B/M ! M"1/4. This quarter-power scaling is
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metabolism through its effects on rates of
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temperature (in degrees K), Ei is the activa-
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within under natural conditions. Near 0°C,
metabolic reactions cease due to the phase
transition associated with freezing water, and
above approximately 40°C, metabolic reac-
tion rates are reduced by the increasing influ-
ence of catabolism. We do not consider hy-
perthermaphiles, specialized organisms that
live at temperatures substantially hotter than
40°C.

The combined effects of body size and
temperature on metabolic rate within the bi-
ologically relevant temperature range can
therefore be well approximated by
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Here Ei represents an average activation en-
ergy for the rate-limiting enzyme-catalyzed
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cause, for each taxon, B/M3/4 # B0 is approx-
imately independent of M, almost all of the
temperature variation is contained in the nor-
malization term, B0
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Because the biochemistry of metabolism is
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that plotting mass-normalized metabolic rates
[ln(B0)] as a function of 1/T for different
taxonomic or functional groups should yield
similar straight lines with slopes, a # –Ei/k.
Furthermore, we predict that the values of Ei

obtained from these plots will fall within the
range of measured activation energies for
metabolic reactions. Because these activation
energies vary between 0.2 and 1.2 eV with an
average of approximately 0.6 eV (5 , 6 ), the
slope of these lines should have a universal
value of approximately –7.40 K.

We evaluated these predictions using rest-
ing metabolic rates as a function of temper-
ature and body mass for a variety of organ-
isms: aerobic microbes, plants, multicellular
invertebrates, fishes, amphibians, reptiles,
birds, and mammals (Fig. 1) (7 ). Plots of
these data are well fit by straight lines, all
with similar slopes and intercepts. This sup-
ports the first prediction. Furthermore, the
average activation energies extracted from
the slopes give Ei # 0.41 – 0.74 eV with a
mean for all groups of 0.62 eV. This supports
the second prediction. Figure 1 suggests that
as a first approximation the metabolic rates of
all organisms are a single, general function of
body size and temperature. An expression for
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size and temperature can be derived from Eq.

2 by noting that the value of B0 at some
temperature T can be related to its value at
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Combined with Eq. 1 this leads to
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(3)

where Tc # T " T0. The term e EiTc/kTT0 #
e EiTc/{kT0

2(1&Tc/T0)}, which describes the
“universal temperature dependence” (UTD)
of biological processes. Equation 3 allows
metabolic rates of different organisms to be
compared independently of body mass and
temperature by comparing their values of
B0(Tc) normalized with some standard tem-
perature, Tc (often 20°C).

Equation 3 also expresses the temperature
dependence in terms of degrees Celsius by
choosing T0 to be the freezing point of water
('273 K), in which case Tc # T – T0 defines
temperature in degrees Celsius. Biologists
would be better served by quantifying tem-
perature-dependence in terms of the UTD
rather than the traditional Q10 factor, which is
defined by the equation

B0$T %

B0$T0%
! (Q10)

$T"T0%/10 ! (Q10)
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(4)

with Q10 considered a constant, which is
independent of temperature. From Eq. 3,
however, we see that Q10 must, in fact, have
a temperature dependence given by

Q10 ! e10Ei/kTT0 ! e10Ei/*kT02$1#Tc/T0%+

(5)

In other words, biological processes do not
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Fig. 1. Effect of temperature (1000/degrees K) on mass-
normalized resting metabolic rate (B0, in W/g

3/4) for unicells
(A), plants (B), multicellular invertebrates (C), fish (D), am-
phibians (E), reptiles (F), and birds and mammals (G). Birds
(gray symbols) and mammals (open symbols) are shown at
normal body temperatures (triangles) and during hibernation
or torpor (squares). Data sources listed on Science Online (7).
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prediction:  ln(B.M    )  should be linearly related to 1/T with slope a=-Ei/k    -7500 K-¾
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closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.

Temperature and universal biological clocks
Temperature has a powerful effect on all biological systems

because of the exponential sensitivity of the Boltzmann factor,
e–E/kT, which controls the temperature dependence of
biochemical reaction rates; here, E is a chemical activation
energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
with metabolism, including growth, embryonic development,

longevity and DNA nucleotide substitution in genomes. All
such rates are predicted to scale as:

R ! Mb
–1/4e–E/kT ·, (8)

and all times as:

t ! Mb
1/4eE/kT ·. (9)

The critical points here are the separable multiplicative nature
of the mass and temperature dependences and the relatively
invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).

Metabolic scaling in plants: independent evolution of M3/4

One of the most challenging facts about quarter-power
scaling relations is that they are observed in both animals and
plants. Our theory offers an explanation: both use fractal-like
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body temperature (triangles) and during hibernation or torpor (squares). Figure
taken from Gillooly et al. (2001) with permission.
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closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.

Temperature and universal biological clocks
Temperature has a powerful effect on all biological systems

because of the exponential sensitivity of the Boltzmann factor,
e–E/kT, which controls the temperature dependence of
biochemical reaction rates; here, E is a chemical activation
energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
with metabolism, including growth, embryonic development,

longevity and DNA nucleotide substitution in genomes. All
such rates are predicted to scale as:

R ! Mb
–1/4e–E/kT ·, (8)

and all times as:

t ! Mb
1/4eE/kT ·. (9)

The critical points here are the separable multiplicative nature
of the mass and temperature dependences and the relatively
invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).

Metabolic scaling in plants: independent evolution of M3/4

One of the most challenging facts about quarter-power
scaling relations is that they are observed in both animals and
plants. Our theory offers an explanation: both use fractal-like
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closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.

Temperature and universal biological clocks
Temperature has a powerful effect on all biological systems

because of the exponential sensitivity of the Boltzmann factor,
e–E/kT, which controls the temperature dependence of
biochemical reaction rates; here, E is a chemical activation
energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
with metabolism, including growth, embryonic development,

longevity and DNA nucleotide substitution in genomes. All
such rates are predicted to scale as:

R ! Mb
–1/4e–E/kT ·, (8)

and all times as:

t ! Mb
1/4eE/kT ·. (9)

The critical points here are the separable multiplicative nature
of the mass and temperature dependences and the relatively
invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).

Metabolic scaling in plants: independent evolution of M3/4

One of the most challenging facts about quarter-power
scaling relations is that they are observed in both animals and
plants. Our theory offers an explanation: both use fractal-like
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closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.

Temperature and universal biological clocks
Temperature has a powerful effect on all biological systems

because of the exponential sensitivity of the Boltzmann factor,
e–E/kT, which controls the temperature dependence of
biochemical reaction rates; here, E is a chemical activation
energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
with metabolism, including growth, embryonic development,

longevity and DNA nucleotide substitution in genomes. All
such rates are predicted to scale as:

R ! Mb
–1/4e–E/kT ·, (8)

and all times as:

t ! Mb
1/4eE/kT ·. (9)

The critical points here are the separable multiplicative nature
of the mass and temperature dependences and the relatively
invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).

Metabolic scaling in plants: independent evolution of M3/4
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closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.

Temperature and universal biological clocks
Temperature has a powerful effect on all biological systems

because of the exponential sensitivity of the Boltzmann factor,
e–E/kT, which controls the temperature dependence of
biochemical reaction rates; here, E is a chemical activation
energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
with metabolism, including growth, embryonic development,

longevity and DNA nucleotide substitution in genomes. All
such rates are predicted to scale as:

R ! Mb
–1/4e–E/kT ·, (8)

and all times as:

t ! Mb
1/4eE/kT ·. (9)

The critical points here are the separable multiplicative nature
of the mass and temperature dependences and the relatively
invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).
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scaling relations is that they are observed in both animals and
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humans. They showed that the growth curve derived from
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e–E/kT, which controls the temperature dependence of
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energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
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2001). Data covering a broad range of organisms (fish,
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predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).
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taken from Gillooly et al. (2001) with permission.
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closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.
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e–E/kT, which controls the temperature dependence of
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energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
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invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).
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scaling relations is that they are observed in both animals and
plants. Our theory offers an explanation: both use fractal-like
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• A new definition of biological rates and times. 

temperature (in degrees Celsius). Calculating
temperature dependence using Eq. 4 with a
constant value of Q10 introduces an error that
can be as much as 15% over the “biologically
relevant” temperature range. Using the UTD
not only avoids this error, but also expresses
temperature dependence in terms of the acti-
vation energy Ei and Boltzmann’s constant k,
thereby linking whole-organism metabolism
directly to the kinetics of the underlying bio-
chemical reactions.

Because biological times are the recipro-
cals of biological rates per unit mass, Eq. 1
can be rewritten to give a general expression
for biological time (tb) in terms of body size
and temperature

tb ! M1/4 eEi/kT (6)

Eq. 6 should apply to all biological times,
from times of biochemical reactions and
cell cycles to developmental times and life-
spans. Thus, we predict that plots of ln (tb
M"1/4) as a function of 1000/T should yield
straight lines with slopes identical in magni-
tude but opposite in sign to the plots of ln(B0)
as a function of 1000/T for each group (Fig.
1). Plots of life-spans (LS) of fish and aquatic
invertebrates of varying body sizes measured
at different constant temperatures support this
prediction (Fig. 2) (7). The slopes for life-
span are 6.37 and 6.50 for fish and aquatic
invertebrates, respectively, compared with
slopes of –5.02 and –9.15 for metabolic rate.
The approximately opposite slopes mean
that over the lifetime of these animals a unit
of mass uses approximately the same quan-
tity of energy, regardless of body size and
temperature.

This is not meant to imply that Eq. 1 can
account for all variation in biological rates
and times. There is residual variation about
the lines in Fig. 1 that reflects differences
among species. Moreover, the data that we
compiled are for resting metabolic rates.
Rates of metabolism for endotherms during
maximal aerobic activity can be as much as
8- to 10-fold greater than those at rest (8).

Furthermore, in response to stressful environ-
mental conditions, some organisms have met-
abolic rates below normal resting levels (e.g.,
diapause, anhydrobiosis) (9). We regard Eq.
1 as the zeroeth-order model that describes
the effects of size and temperature as prima-
ry. Other, secondary factors are required to
explain the remaining variation within and
between groups.

The general application of Eq. 1 is dem-
onstrated by the diversity of organisms de-
picted in Fig. 1. The unicells include protists,
algae, and bacteria. The data for plants in-
clude not only whole plants, but also fruits,
storage organs (tubers, bulbs), and hydrated
seeds. Botanists rarely measure rates of
whole-plant photosynthesis or respiration as a
function of “body” size and temperature [but
see (10)]. These results suggest that metabol-
ic rates of plants are similar to those of
unicellular organisms and invertebrate ani-
mals. The data for birds and mammals in-
clude not only resting individuals of many
species at normal body temperatures, but also
individuals in hibernation or torpor at lower
body temperatures. These last data imply that
the lower metabolic rates of torpid endo-
therms can be attributed to temperature, as

long as body temperatures approximate am-
bient temperatures; there is no need to invoke
other mechanisms to reduce metabolic rate
during torpor (11).

The primary effects of size and tempera-
ture and the residual variation due to other
factors can be shown by comparing metabolic
rates as a function of temperature and body
mass (Fig. 3). Three results are apparent.
First, the slopes are similar (Fig. 3A) for all
groups except fish and amphibians, which
appear to have slopes which are slightly less
negative, and consequently also have lower
intercepts. Second, the average relations for
the different groups are offset somewhat (Fig.
3A). The maximum difference separating any
of the groups, unicells and plants from birds
and mammals, is approximately e3 or 20-fold.
Third, these differences are small compared
with variation in measured values within the
groups (Fig. 3B). The data points for each
group in Fig. 1 overlap broadly across
groups, calling attention to the similarity in
metabolic rates of all organisms.

This similarity is perhaps best depicted
by plotting whole-organism metabolic
rates, corrected to a common temperature
of 20°C, as a function of body mass (12).

Fig. 2. Effects of body mass (M, in g) and
temperature (1000/K) on life-span (LS, in days)
for aquatic invertebrates and fish held at dif-
ferent constant temperatures in the laboratory.
Data sources listed at Science Online (7).

Fig. 3. A summary of the effect of temperature (1000/K) on mass-normalized resting metabolic
rate (B0, in W/g

3/4) for organisms from Fig. 1. (A) The regression lines are fit to the data in Fig. 1.
Dashed and solid lines represent those groups listed on the right and left sides of the figure,
respectively. (B) The envelopes are drawn around the data points for groups in Fig. 1.
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and evolution in:
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—Effects of size and temperature on developmental time. 
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• Law of growth: 

biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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where                        is not a constant

• We just saw that                                        , so  -¾B.M      = B0

1583Allometric scaling laws

closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.

Temperature and universal biological clocks
Temperature has a powerful effect on all biological systems

because of the exponential sensitivity of the Boltzmann factor,
e–E/kT, which controls the temperature dependence of
biochemical reaction rates; here, E is a chemical activation
energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
with metabolism, including growth, embryonic development,

longevity and DNA nucleotide substitution in genomes. All
such rates are predicted to scale as:

R ! Mb
–1/4e–E/kT ·, (8)

and all times as:

t ! Mb
1/4eE/kT ·. (9)

The critical points here are the separable multiplicative nature
of the mass and temperature dependences and the relatively
invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).

Metabolic scaling in plants: independent evolution of M3/4

One of the most challenging facts about quarter-power
scaling relations is that they are observed in both animals and
plants. Our theory offers an explanation: both use fractal-like
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Fig.·7. Plot of mass-corrected resting metabolic rate, ln(B Mb
–3/4) vs inverse

absolute temperature (1000/°K) for unicells (A), plants (B), multicellular
invertebrates (C), fish (D), amphibians (E), reptiles (F), and birds and mammals
(G). Birds (filled symbols) and mammals (open symbols) are shown at normal
body temperature (triangles) and during hibernation or torpor (squares). Figure
taken from Gillooly et al. (2001) with permission.

tionally expressed as a Q10 , which quantifies
temperature dependence across a limited tem-
perature range (i.e., 10°C).

Size and temperature primarily affect met-
abolic rate through different mechanisms.
Recently, a general model has been shown to
explain the scaling of whole organism meta-
bolic rate B with body mass M, where B !
M3/4 so that mass-specific metabolic rate
B/M ! M"1/4. This quarter-power scaling is
based on the fractal-like design of exchange
surfaces and distribution networks in plants
(3 ) and animals (4 ). Temperature governs
metabolism through its effects on rates of
biochemical reactions. Reaction kinetics vary
with temperature according to the Boltz-
mann’s factor e"Ei/kT, where T is the absolute
temperature (in degrees K), Ei is the activa-
tion energy, and k is Boltzmann’s constant.

Metabolic rate is the consequence of
many different biological reactions. So

B ! !
i

Ri

where the Ri represents the rates of energy
production via the individual reactions (i) that
comprise metabolism. Each reaction rate de-
pends on three major variables: Ri ! (concen-
tration of reactants) (fluxes of reactants) (ki-
netic energy of the system). The first two
terms, which are constrained by the rates of
supply of substrates and removal of products,
contain the majority of the body mass depen-
dence. Because of allometric constraints on
exchange surfaces and distribution networks
(3 , 4 ), the product of these two terms scales
with body size as M3/4. The third term con-
tains the dominant temperature dependence,
which is governed by the Boltzmann factor,
e"Ei/kT. This is valid within the limited range
of “biologically relevant” temperatures be-
tween approximately 0° and 40°C. This is the
range that organisms commonly operate
within under natural conditions. Near 0°C,
metabolic reactions cease due to the phase
transition associated with freezing water, and
above approximately 40°C, metabolic reac-
tion rates are reduced by the increasing influ-
ence of catabolism. We do not consider hy-
perthermaphiles, specialized organisms that
live at temperatures substantially hotter than
40°C.

The combined effects of body size and
temperature on metabolic rate within the bi-
ologically relevant temperature range can
therefore be well approximated by

B " M 3/4e"Ei/kT (1)

Here Ei represents an average activation en-
ergy for the rate-limiting enzyme-catalyzed
biochemical reactions of metabolism. Be-
cause, for each taxon, B/M3/4 # B0 is approx-
imately independent of M, almost all of the
temperature variation is contained in the nor-
malization term, B0

B0 " e"Ei/kT (2)

Because the biochemistry of metabolism is
common to aerobic organisms, we predict
that plotting mass-normalized metabolic rates
[ln(B0)] as a function of 1/T for different
taxonomic or functional groups should yield
similar straight lines with slopes, a # –Ei/k.
Furthermore, we predict that the values of Ei

obtained from these plots will fall within the
range of measured activation energies for
metabolic reactions. Because these activation
energies vary between 0.2 and 1.2 eV with an
average of approximately 0.6 eV (5 , 6 ), the
slope of these lines should have a universal
value of approximately –7.40 K.

We evaluated these predictions using rest-
ing metabolic rates as a function of temper-
ature and body mass for a variety of organ-
isms: aerobic microbes, plants, multicellular
invertebrates, fishes, amphibians, reptiles,
birds, and mammals (Fig. 1) (7 ). Plots of
these data are well fit by straight lines, all
with similar slopes and intercepts. This sup-
ports the first prediction. Furthermore, the
average activation energies extracted from
the slopes give Ei # 0.41 – 0.74 eV with a
mean for all groups of 0.62 eV. This supports
the second prediction. Figure 1 suggests that
as a first approximation the metabolic rates of
all organisms are a single, general function of
body size and temperature. An expression for
the dependence of metabolic rate on body
size and temperature can be derived from Eq.

2 by noting that the value of B0 at some
temperature T can be related to its value at
some other temperature T0 by

B0$T % ! B0$T0%e
" Ei/k$1/T"1/T0%

! B0$T0%e
Ei$T"T0%/kTT0

Combined with Eq. 1 this leads to

B ! B0$T %M 3/4 ! B0$T0%M
3/4eEiTc/kTT0

(3)

where Tc # T " T0. The term e EiTc/kTT0 #
e EiTc/{kT0

2(1&Tc/T0)}, which describes the
“universal temperature dependence” (UTD)
of biological processes. Equation 3 allows
metabolic rates of different organisms to be
compared independently of body mass and
temperature by comparing their values of
B0(Tc) normalized with some standard tem-
perature, Tc (often 20°C).

Equation 3 also expresses the temperature
dependence in terms of degrees Celsius by
choosing T0 to be the freezing point of water
('273 K), in which case Tc # T – T0 defines
temperature in degrees Celsius. Biologists
would be better served by quantifying tem-
perature-dependence in terms of the UTD
rather than the traditional Q10 factor, which is
defined by the equation

B0$T %

B0$T0%
! (Q10)

$T"T0%/10 ! (Q10)
Tc/10

(4)

with Q10 considered a constant, which is
independent of temperature. From Eq. 3,
however, we see that Q10 must, in fact, have
a temperature dependence given by

Q10 ! e10Ei/kTT0 ! e10Ei/*kT02$1#Tc/T0%+

(5)

In other words, biological processes do not
generally depend purely exponentially on

1Department of Biology, The University of New Mex-
ico, Albuquerque, NM 87131, USA. 2Santa Fe Insti-
tute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
3Theoretical Division, MS B285, Los Alamos National
Laboratory, Los Alamos, NM 87545, USA.

*To whom correspondence should be addressed. E-
mail: gillooly@unm.edu

Fig. 1. Effect of temperature (1000/degrees K) on mass-
normalized resting metabolic rate (B0, in W/g

3/4) for unicells
(A), plants (B), multicellular invertebrates (C), fish (D), am-
phibians (E), reptiles (F), and birds and mammals (G). Birds
(gray symbols) and mammals (open symbols) are shown at
normal body temperatures (triangles) and during hibernation
or torpor (squares). Data sources listed on Science Online (7).
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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tionally expressed as a Q10 , which quantifies
temperature dependence across a limited tem-
perature range (i.e., 10°C).

Size and temperature primarily affect met-
abolic rate through different mechanisms.
Recently, a general model has been shown to
explain the scaling of whole organism meta-
bolic rate B with body mass M, where B !
M3/4 so that mass-specific metabolic rate
B/M ! M"1/4. This quarter-power scaling is
based on the fractal-like design of exchange
surfaces and distribution networks in plants
(3 ) and animals (4 ). Temperature governs
metabolism through its effects on rates of
biochemical reactions. Reaction kinetics vary
with temperature according to the Boltz-
mann’s factor e"Ei/kT, where T is the absolute
temperature (in degrees K), Ei is the activa-
tion energy, and k is Boltzmann’s constant.

Metabolic rate is the consequence of
many different biological reactions. So

B ! !
i

Ri

where the Ri represents the rates of energy
production via the individual reactions (i) that
comprise metabolism. Each reaction rate de-
pends on three major variables: Ri ! (concen-
tration of reactants) (fluxes of reactants) (ki-
netic energy of the system). The first two
terms, which are constrained by the rates of
supply of substrates and removal of products,
contain the majority of the body mass depen-
dence. Because of allometric constraints on
exchange surfaces and distribution networks
(3 , 4 ), the product of these two terms scales
with body size as M3/4. The third term con-
tains the dominant temperature dependence,
which is governed by the Boltzmann factor,
e"Ei/kT. This is valid within the limited range
of “biologically relevant” temperatures be-
tween approximately 0° and 40°C. This is the
range that organisms commonly operate
within under natural conditions. Near 0°C,
metabolic reactions cease due to the phase
transition associated with freezing water, and
above approximately 40°C, metabolic reac-
tion rates are reduced by the increasing influ-
ence of catabolism. We do not consider hy-
perthermaphiles, specialized organisms that
live at temperatures substantially hotter than
40°C.

The combined effects of body size and
temperature on metabolic rate within the bi-
ologically relevant temperature range can
therefore be well approximated by

B " M 3/4e"Ei/kT (1)

Here Ei represents an average activation en-
ergy for the rate-limiting enzyme-catalyzed
biochemical reactions of metabolism. Be-
cause, for each taxon, B/M3/4 # B0 is approx-
imately independent of M, almost all of the
temperature variation is contained in the nor-
malization term, B0

B0 " e"Ei/kT (2)

Because the biochemistry of metabolism is
common to aerobic organisms, we predict
that plotting mass-normalized metabolic rates
[ln(B0)] as a function of 1/T for different
taxonomic or functional groups should yield
similar straight lines with slopes, a # –Ei/k.
Furthermore, we predict that the values of Ei

obtained from these plots will fall within the
range of measured activation energies for
metabolic reactions. Because these activation
energies vary between 0.2 and 1.2 eV with an
average of approximately 0.6 eV (5 , 6 ), the
slope of these lines should have a universal
value of approximately –7.40 K.

We evaluated these predictions using rest-
ing metabolic rates as a function of temper-
ature and body mass for a variety of organ-
isms: aerobic microbes, plants, multicellular
invertebrates, fishes, amphibians, reptiles,
birds, and mammals (Fig. 1) (7 ). Plots of
these data are well fit by straight lines, all
with similar slopes and intercepts. This sup-
ports the first prediction. Furthermore, the
average activation energies extracted from
the slopes give Ei # 0.41 – 0.74 eV with a
mean for all groups of 0.62 eV. This supports
the second prediction. Figure 1 suggests that
as a first approximation the metabolic rates of
all organisms are a single, general function of
body size and temperature. An expression for
the dependence of metabolic rate on body
size and temperature can be derived from Eq.

2 by noting that the value of B0 at some
temperature T can be related to its value at
some other temperature T0 by

B0$T % ! B0$T0%e
" Ei/k$1/T"1/T0%

! B0$T0%e
Ei$T"T0%/kTT0

Combined with Eq. 1 this leads to

B ! B0$T %M 3/4 ! B0$T0%M
3/4eEiTc/kTT0

(3)

where Tc # T " T0. The term e EiTc/kTT0 #
e EiTc/{kT0

2(1&Tc/T0)}, which describes the
“universal temperature dependence” (UTD)
of biological processes. Equation 3 allows
metabolic rates of different organisms to be
compared independently of body mass and
temperature by comparing their values of
B0(Tc) normalized with some standard tem-
perature, Tc (often 20°C).

Equation 3 also expresses the temperature
dependence in terms of degrees Celsius by
choosing T0 to be the freezing point of water
('273 K), in which case Tc # T – T0 defines
temperature in degrees Celsius. Biologists
would be better served by quantifying tem-
perature-dependence in terms of the UTD
rather than the traditional Q10 factor, which is
defined by the equation

B0$T %

B0$T0%
! (Q10)

$T"T0%/10 ! (Q10)
Tc/10

(4)

with Q10 considered a constant, which is
independent of temperature. From Eq. 3,
however, we see that Q10 must, in fact, have
a temperature dependence given by

Q10 ! e10Ei/kTT0 ! e10Ei/*kT02$1#Tc/T0%+

(5)

In other words, biological processes do not
generally depend purely exponentially on
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Fig. 1. Effect of temperature (1000/degrees K) on mass-
normalized resting metabolic rate (B0, in W/g

3/4) for unicells
(A), plants (B), multicellular invertebrates (C), fish (D), am-
phibians (E), reptiles (F), and birds and mammals (G). Birds
(gray symbols) and mammals (open symbols) are shown at
normal body temperatures (triangles) and during hibernation
or torpor (squares). Data sources listed on Science Online (7).
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.

letters to nature

NATURE |VOL 417 | 2 MAY 2002 | www.nature.com 71© 2002 Macmillan Magazines Ltd

therefore

temperature  in Celcius

biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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• During development: m<<M

biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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so

biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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or

mately universal straight line with slope, a ¼ 2 !E=kT2
0, and inter-

cept, yint ¼ ln½4=aðT0Þ%. As Ē and aðT0Þ ¼ B0mc=Ec depend on
fundamental cellular properties, they, as well as the normalization
factor B0, do not vary significantly across taxa15. Therefore, the
slope (a) and intercept (y int) should be approximately invariant
quantities. We test this prediction using data from the simplest
natural ‘system’ for growth: development time (zygote to hatchling)
of eggs. Development of eggs is particularly well suited for assessing
equation (5) because the embryo grows in mass as it incorporates
the food stores in the egg. Furthermore, development occurs over a
wide range of temperatures, from about 5 to 40 8C.
Using laboratory data on embryonic development time from

four different groups of aquatic ectotherms (fish, amphibians,
aquatic insects and zooplankton), plots of ln(t/m1/4) versusTc=ð1þ
ðTc=273ÞÞ are indeed well fitted by straight lines with similar slopes
and intercepts (Fig. 1a–d; see Methods)8,9. Similar plots also fit field
data on development time for marine fish eggs with a slope and
intercept similar to the laboratory studies (Fig. 2) (see Methods)10.
Furthermore, birds’ eggs, which are incubated at much higher
temperatures, are also fitted by such plots; pooled data for birds
(13 orders, 172 species)11, using a mean incubation temperature of
36 8C (ref. 8), fall on the same line as the pooled data for aquatic
ectotherms (Fig. 3).
The success of the model in describing how size and temperature

affect embryonic development time led us to consider whether it
might also apply to development at different life stages. As shown in
Box 2, the model makes similar predictions for post-embryonic
development time (hatch to maturity). Nearly 75% of the variation

in post-embryonic development times in zooplankton can be
explained by the model. This suggests that equation (5) applies to
both embryonic and post-embryonic growth (Fig. 4) (see
Methods)12.

The regression lines for the mass-corrected relationships of devel-
opment time to temperature (Figs 1–4) also provide an independent
means of estimating the parameter a. The temperature dependence
of a may be expressed in terms of the slope and intercept using
equation (3): aðTcÞ ¼ 4 exp½2ðaTc=ð1þ Tc=T0Þ þ yintÞ%. Taking
average values of a ¼ 20:12 per 8C and yint ¼ 6 lnðd g21=4Þ from
Fig. 3, this equation predicts a ¼ 0:65 g1=4 d21 for post-embryonic
growth of birds at 40 8C, and a ¼ 0:018 g1=4 d21 for post-embryonic
growth of cod at 5 8C (ref. 16). These values compare favourably
with independent estimates of a derived from fitting empirically
measured growth curves14. These estimates give nearly the same
value of a ¼ 0:017 g1=4 d21 for the cod, and three values that bracket
0.65 for birds (0.47, 1.56, 1.90 g1/4 d21)14. The fact that these two
independentmethods give similar values is further evidence that the
model captures the effects of body size and temperature on growth.

Moreover, the activation energy for metabolic reactions can
be used to predict the slope of the relationships in Figs 1–4. Using
the equation a ¼ 2 !E=kT2

0 (that is, equation (5)), and an average
activation energy for metabolic reactions of 0.6 eV (range between
approximately 0.2 and 1.2 eV)15,17–19, we predict a ¼ 20:09 per 8C.
The closeness of this value to the observed average value of a ¼
20:12 per 8Cprovides support for thismodel (that is, equation (5)).

We have therefore shown that body size and temperature account
for much, but by no means all, of the variation in biological rates
and times. Our model, based on first principles of allometry and
kinetics, can help to isolate the causes of this still unexplained
variation. For example, during post-embryonic growth, unlike
embryonic growth, individuals must forage to obtain resources
from environments where the availability of nutrients varies. In
particular, it is suggested that organisms with higher mass-specific
post-embryonic growth rates ((1/m)(dm/dt)) acquire more phos-
phorus (P) relative to other elements such as carbon (C) to produce
the phosphorus-rich nucleic acids required for more frequent cell
divisions and faster growth (that is, the ‘stoichiometric growth
hypothesis’)20–22. Thus, faster-growing organisms would be pre-
dicted to have lower C:P ratios. In Box 3, we relate this stoichio-
metric growth hypothesis to our size/temperature model. Figure 5
shows that C:P ratios explainmuch of the residual variation in Fig. 4.

Many biological times, including cardiac cycle, blood circulation
time, and development time (that is, t), increase as the 1/4 power of

Box 3
The relationship to biological stoichiometry

To incorporate the “stoichiometric growth hypothesis”20–22 we
propose that a(T) also depends on the C:P ratio so that
aðTÞ/ expð2 !E=kTÞlðC : PÞ, where l(C:P) is a decreasing function
of the C:P ratio. This can be used in equation (5) to predict that
growth rates decrease with C:P across species (see Methods). To
assess if C:P ratios do in fact decrease with growth rates across
species, we plot C:P ratios against the corresponding residuals for
zooplankton in Fig. 4 (Fig. 5). Species in Fig. 5 represent all major
groups of zooplankton shown in Fig. 4 (cladocerans, calanoid and
cyclopoid copepods), except rotifers for which stoichiometric data
were not available. We predict an inverse relationship such that
species that lie above the fitted line (that is, lower average growth
rates) would have high C:P ratios, and vice versa. And, the plot
does indeed show that considerable variation about the line in
Fig. 4 is explained by differences in the C:P ratios among species.
This supports our prediction and suggests that the relationship
between size, temperature and biological stoichiometry proposed
above may be correct.

Box 2
Extension to post-embryonic growth

The general solution to equation (1) valid for all times is given by

m

M

! "1=4

¼ 12 12
m0

M

! "1=4
# $

e2at=4M1=4

where m0 is the initial larval mass (m ¼ m0 at t ¼ 0). Most
zooplankton have determinate growth, and the onset of adulthood
is assumed to be at m ¼ dM; at this size growth ceases and the
available energy is diverted to reproduction. We assume
d < 0:50–0:90, and is similar across species (see below). The time
taken, tm, to reach m ¼ dM is given by

tm
m1=4

¼ 4

a

% &
1

d1=4

% &
ln

ð12ðm0=MÞ1=4Þ
ð12 d1=4Þ

# $

Apart from the d1/4 term and the slowly varying logarithmic factor,
this equation for post-embryonic growth (that is, hatch to maturity),
is identical in structure to equation (5), which describes embryonic
growth. Proceeding as before and using equation (3) for the
temperature dependence of a implies that plots of ln(tm/m

1/4)
versus Tc/(1þ (Tc/T0)) will yield straight lines whose slopes are the
same as those derived from equation (5) for embryonic growth:
both should have slopes given by a ¼ 2 !E=kT2

0. Their intercepts, on
the other hand, should be slightly different: for post-embryonic
growth the intercept is given by ln [4/a(T0)]þ ln ln[(1 2 (m0/M)1/4)/
(1 2 d1/4)] 2 1/4 ln d rather than simply ln[4/a(T0)]. The difference
between these is rather small; if m0=M ! 1, d in the range of 0.50–
0.90 yields a correction in the range of approximately 0.50–1.3, a
10–22% increase in the intercept above the value of approximately
6 shown in Fig. 1. The correction depends very little on d, so d need
not be strictly constant across species. Data for post-embryonic
growth for a variety of zooplankton (rotifers, copepods and
cladocerans) are plotted in this way in Fig. 4. As can be seen, a
straight line is obtained with a slope of20.11 per 8C and an
intercept of 7.2 ln(g1/4d21). Because the latter is 17% greater than
6, there is excellent agreement with corresponding values derived
from embryonic growth data in Figs 1–3.
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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mately universal straight line with slope, a ¼ 2 !E=kT2
0, and inter-

cept, yint ¼ ln½4=aðT0Þ%. As Ē and aðT0Þ ¼ B0mc=Ec depend on
fundamental cellular properties, they, as well as the normalization
factor B0, do not vary significantly across taxa15. Therefore, the
slope (a) and intercept (y int) should be approximately invariant
quantities. We test this prediction using data from the simplest
natural ‘system’ for growth: development time (zygote to hatchling)
of eggs. Development of eggs is particularly well suited for assessing
equation (5) because the embryo grows in mass as it incorporates
the food stores in the egg. Furthermore, development occurs over a
wide range of temperatures, from about 5 to 40 8C.
Using laboratory data on embryonic development time from

four different groups of aquatic ectotherms (fish, amphibians,
aquatic insects and zooplankton), plots of ln(t/m1/4) versusTc=ð1þ
ðTc=273ÞÞ are indeed well fitted by straight lines with similar slopes
and intercepts (Fig. 1a–d; see Methods)8,9. Similar plots also fit field
data on development time for marine fish eggs with a slope and
intercept similar to the laboratory studies (Fig. 2) (see Methods)10.
Furthermore, birds’ eggs, which are incubated at much higher
temperatures, are also fitted by such plots; pooled data for birds
(13 orders, 172 species)11, using a mean incubation temperature of
36 8C (ref. 8), fall on the same line as the pooled data for aquatic
ectotherms (Fig. 3).
The success of the model in describing how size and temperature

affect embryonic development time led us to consider whether it
might also apply to development at different life stages. As shown in
Box 2, the model makes similar predictions for post-embryonic
development time (hatch to maturity). Nearly 75% of the variation

in post-embryonic development times in zooplankton can be
explained by the model. This suggests that equation (5) applies to
both embryonic and post-embryonic growth (Fig. 4) (see
Methods)12.

The regression lines for the mass-corrected relationships of devel-
opment time to temperature (Figs 1–4) also provide an independent
means of estimating the parameter a. The temperature dependence
of a may be expressed in terms of the slope and intercept using
equation (3): aðTcÞ ¼ 4 exp½2ðaTc=ð1þ Tc=T0Þ þ yintÞ%. Taking
average values of a ¼ 20:12 per 8C and yint ¼ 6 lnðd g21=4Þ from
Fig. 3, this equation predicts a ¼ 0:65 g1=4 d21 for post-embryonic
growth of birds at 40 8C, and a ¼ 0:018 g1=4 d21 for post-embryonic
growth of cod at 5 8C (ref. 16). These values compare favourably
with independent estimates of a derived from fitting empirically
measured growth curves14. These estimates give nearly the same
value of a ¼ 0:017 g1=4 d21 for the cod, and three values that bracket
0.65 for birds (0.47, 1.56, 1.90 g1/4 d21)14. The fact that these two
independentmethods give similar values is further evidence that the
model captures the effects of body size and temperature on growth.

Moreover, the activation energy for metabolic reactions can
be used to predict the slope of the relationships in Figs 1–4. Using
the equation a ¼ 2 !E=kT2

0 (that is, equation (5)), and an average
activation energy for metabolic reactions of 0.6 eV (range between
approximately 0.2 and 1.2 eV)15,17–19, we predict a ¼ 20:09 per 8C.
The closeness of this value to the observed average value of a ¼
20:12 per 8Cprovides support for thismodel (that is, equation (5)).

We have therefore shown that body size and temperature account
for much, but by no means all, of the variation in biological rates
and times. Our model, based on first principles of allometry and
kinetics, can help to isolate the causes of this still unexplained
variation. For example, during post-embryonic growth, unlike
embryonic growth, individuals must forage to obtain resources
from environments where the availability of nutrients varies. In
particular, it is suggested that organisms with higher mass-specific
post-embryonic growth rates ((1/m)(dm/dt)) acquire more phos-
phorus (P) relative to other elements such as carbon (C) to produce
the phosphorus-rich nucleic acids required for more frequent cell
divisions and faster growth (that is, the ‘stoichiometric growth
hypothesis’)20–22. Thus, faster-growing organisms would be pre-
dicted to have lower C:P ratios. In Box 3, we relate this stoichio-
metric growth hypothesis to our size/temperature model. Figure 5
shows that C:P ratios explainmuch of the residual variation in Fig. 4.

Many biological times, including cardiac cycle, blood circulation
time, and development time (that is, t), increase as the 1/4 power of

Box 3
The relationship to biological stoichiometry

To incorporate the “stoichiometric growth hypothesis”20–22 we
propose that a(T) also depends on the C:P ratio so that
aðTÞ/ expð2 !E=kTÞlðC : PÞ, where l(C:P) is a decreasing function
of the C:P ratio. This can be used in equation (5) to predict that
growth rates decrease with C:P across species (see Methods). To
assess if C:P ratios do in fact decrease with growth rates across
species, we plot C:P ratios against the corresponding residuals for
zooplankton in Fig. 4 (Fig. 5). Species in Fig. 5 represent all major
groups of zooplankton shown in Fig. 4 (cladocerans, calanoid and
cyclopoid copepods), except rotifers for which stoichiometric data
were not available. We predict an inverse relationship such that
species that lie above the fitted line (that is, lower average growth
rates) would have high C:P ratios, and vice versa. And, the plot
does indeed show that considerable variation about the line in
Fig. 4 is explained by differences in the C:P ratios among species.
This supports our prediction and suggests that the relationship
between size, temperature and biological stoichiometry proposed
above may be correct.

Box 2
Extension to post-embryonic growth

The general solution to equation (1) valid for all times is given by
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! "1=4
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where m0 is the initial larval mass (m ¼ m0 at t ¼ 0). Most
zooplankton have determinate growth, and the onset of adulthood
is assumed to be at m ¼ dM; at this size growth ceases and the
available energy is diverted to reproduction. We assume
d < 0:50–0:90, and is similar across species (see below). The time
taken, tm, to reach m ¼ dM is given by

tm
m1=4

¼ 4

a

% &
1

d1=4

% &
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ð12ðm0=MÞ1=4Þ
ð12 d1=4Þ
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Apart from the d1/4 term and the slowly varying logarithmic factor,
this equation for post-embryonic growth (that is, hatch to maturity),
is identical in structure to equation (5), which describes embryonic
growth. Proceeding as before and using equation (3) for the
temperature dependence of a implies that plots of ln(tm/m

1/4)
versus Tc/(1þ (Tc/T0)) will yield straight lines whose slopes are the
same as those derived from equation (5) for embryonic growth:
both should have slopes given by a ¼ 2 !E=kT2

0. Their intercepts, on
the other hand, should be slightly different: for post-embryonic
growth the intercept is given by ln [4/a(T0)]þ ln ln[(1 2 (m0/M)1/4)/
(1 2 d1/4)] 2 1/4 ln d rather than simply ln[4/a(T0)]. The difference
between these is rather small; if m0=M ! 1, d in the range of 0.50–
0.90 yields a correction in the range of approximately 0.50–1.3, a
10–22% increase in the intercept above the value of approximately
6 shown in Fig. 1. The correction depends very little on d, so d need
not be strictly constant across species. Data for post-embryonic
growth for a variety of zooplankton (rotifers, copepods and
cladocerans) are plotted in this way in Fig. 4. As can be seen, a
straight line is obtained with a slope of20.11 per 8C and an
intercept of 7.2 ln(g1/4d21). Because the latter is 17% greater than
6, there is excellent agreement with corresponding values derived
from embryonic growth data in Figs 1–3.
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary
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Therefore,
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Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:
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which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:
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¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary
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Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:
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which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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average amount of energy needed to create the cell, and B0 is the
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ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that
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Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant
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Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 # ðm=MÞ1=4& ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ/ expð# !E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T0, by aðTÞ=aðT0Þ ¼ ½expð# !E=kTÞ&=½expð# !E=kT0Þ&.
Therefore,

aðTÞ ¼ aðT0Þe2ð !E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þeð !E=kT0ÞððT2T0Þ=TÞ ð2Þ
Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þeð !E=kT
2
0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass,M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼ aðTÞt
4

! "4

or
t

m1=4
¼ 4

aðTÞ ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼ 4

½aðT0Þeð !E=kT2
0ÞðTc=ð1þTc=T0ÞÞ&

ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.
Taking the logarithm of both sides of equation (5) predicts that

plots of ln(t/m1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for
zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic
development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and
zooplankton (d) incubated at different constant temperature. Incubation temperature is
given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.
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Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation
temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.

letters to nature

NATURE |VOL 417 | 2 MAY 2002 | www.nature.com 71© 2002 Macmillan Magazines Ltd

mately universal straight line with slope, a ¼ 2 !E=kT2
0, and inter-

cept, yint ¼ ln½4=aðT0Þ%. As Ē and aðT0Þ ¼ B0mc=Ec depend on
fundamental cellular properties, they, as well as the normalization
factor B0, do not vary significantly across taxa15. Therefore, the
slope (a) and intercept (y int) should be approximately invariant
quantities. We test this prediction using data from the simplest
natural ‘system’ for growth: development time (zygote to hatchling)
of eggs. Development of eggs is particularly well suited for assessing
equation (5) because the embryo grows in mass as it incorporates
the food stores in the egg. Furthermore, development occurs over a
wide range of temperatures, from about 5 to 40 8C.
Using laboratory data on embryonic development time from

four different groups of aquatic ectotherms (fish, amphibians,
aquatic insects and zooplankton), plots of ln(t/m1/4) versusTc=ð1þ
ðTc=273ÞÞ are indeed well fitted by straight lines with similar slopes
and intercepts (Fig. 1a–d; see Methods)8,9. Similar plots also fit field
data on development time for marine fish eggs with a slope and
intercept similar to the laboratory studies (Fig. 2) (see Methods)10.
Furthermore, birds’ eggs, which are incubated at much higher
temperatures, are also fitted by such plots; pooled data for birds
(13 orders, 172 species)11, using a mean incubation temperature of
36 8C (ref. 8), fall on the same line as the pooled data for aquatic
ectotherms (Fig. 3).
The success of the model in describing how size and temperature

affect embryonic development time led us to consider whether it
might also apply to development at different life stages. As shown in
Box 2, the model makes similar predictions for post-embryonic
development time (hatch to maturity). Nearly 75% of the variation

in post-embryonic development times in zooplankton can be
explained by the model. This suggests that equation (5) applies to
both embryonic and post-embryonic growth (Fig. 4) (see
Methods)12.

The regression lines for the mass-corrected relationships of devel-
opment time to temperature (Figs 1–4) also provide an independent
means of estimating the parameter a. The temperature dependence
of a may be expressed in terms of the slope and intercept using
equation (3): aðTcÞ ¼ 4 exp½2ðaTc=ð1þ Tc=T0Þ þ yintÞ%. Taking
average values of a ¼ 20:12 per 8C and yint ¼ 6 lnðd g21=4Þ from
Fig. 3, this equation predicts a ¼ 0:65 g1=4 d21 for post-embryonic
growth of birds at 40 8C, and a ¼ 0:018 g1=4 d21 for post-embryonic
growth of cod at 5 8C (ref. 16). These values compare favourably
with independent estimates of a derived from fitting empirically
measured growth curves14. These estimates give nearly the same
value of a ¼ 0:017 g1=4 d21 for the cod, and three values that bracket
0.65 for birds (0.47, 1.56, 1.90 g1/4 d21)14. The fact that these two
independentmethods give similar values is further evidence that the
model captures the effects of body size and temperature on growth.

Moreover, the activation energy for metabolic reactions can
be used to predict the slope of the relationships in Figs 1–4. Using
the equation a ¼ 2 !E=kT2

0 (that is, equation (5)), and an average
activation energy for metabolic reactions of 0.6 eV (range between
approximately 0.2 and 1.2 eV)15,17–19, we predict a ¼ 20:09 per 8C.
The closeness of this value to the observed average value of a ¼
20:12 per 8Cprovides support for thismodel (that is, equation (5)).

We have therefore shown that body size and temperature account
for much, but by no means all, of the variation in biological rates
and times. Our model, based on first principles of allometry and
kinetics, can help to isolate the causes of this still unexplained
variation. For example, during post-embryonic growth, unlike
embryonic growth, individuals must forage to obtain resources
from environments where the availability of nutrients varies. In
particular, it is suggested that organisms with higher mass-specific
post-embryonic growth rates ((1/m)(dm/dt)) acquire more phos-
phorus (P) relative to other elements such as carbon (C) to produce
the phosphorus-rich nucleic acids required for more frequent cell
divisions and faster growth (that is, the ‘stoichiometric growth
hypothesis’)20–22. Thus, faster-growing organisms would be pre-
dicted to have lower C:P ratios. In Box 3, we relate this stoichio-
metric growth hypothesis to our size/temperature model. Figure 5
shows that C:P ratios explainmuch of the residual variation in Fig. 4.

Many biological times, including cardiac cycle, blood circulation
time, and development time (that is, t), increase as the 1/4 power of

Box 3
The relationship to biological stoichiometry

To incorporate the “stoichiometric growth hypothesis”20–22 we
propose that a(T) also depends on the C:P ratio so that
aðTÞ/ expð2 !E=kTÞlðC : PÞ, where l(C:P) is a decreasing function
of the C:P ratio. This can be used in equation (5) to predict that
growth rates decrease with C:P across species (see Methods). To
assess if C:P ratios do in fact decrease with growth rates across
species, we plot C:P ratios against the corresponding residuals for
zooplankton in Fig. 4 (Fig. 5). Species in Fig. 5 represent all major
groups of zooplankton shown in Fig. 4 (cladocerans, calanoid and
cyclopoid copepods), except rotifers for which stoichiometric data
were not available. We predict an inverse relationship such that
species that lie above the fitted line (that is, lower average growth
rates) would have high C:P ratios, and vice versa. And, the plot
does indeed show that considerable variation about the line in
Fig. 4 is explained by differences in the C:P ratios among species.
This supports our prediction and suggests that the relationship
between size, temperature and biological stoichiometry proposed
above may be correct.

Box 2
Extension to post-embryonic growth

The general solution to equation (1) valid for all times is given by

m

M

! "1=4

¼ 12 12
m0

M

! "1=4
# $

e2at=4M1=4

where m0 is the initial larval mass (m ¼ m0 at t ¼ 0). Most
zooplankton have determinate growth, and the onset of adulthood
is assumed to be at m ¼ dM; at this size growth ceases and the
available energy is diverted to reproduction. We assume
d < 0:50–0:90, and is similar across species (see below). The time
taken, tm, to reach m ¼ dM is given by

tm
m1=4

¼ 4

a

% &
1

d1=4

% &
ln

ð12ðm0=MÞ1=4Þ
ð12 d1=4Þ

# $

Apart from the d1/4 term and the slowly varying logarithmic factor,
this equation for post-embryonic growth (that is, hatch to maturity),
is identical in structure to equation (5), which describes embryonic
growth. Proceeding as before and using equation (3) for the
temperature dependence of a implies that plots of ln(tm/m

1/4)
versus Tc/(1þ (Tc/T0)) will yield straight lines whose slopes are the
same as those derived from equation (5) for embryonic growth:
both should have slopes given by a ¼ 2 !E=kT2

0. Their intercepts, on
the other hand, should be slightly different: for post-embryonic
growth the intercept is given by ln [4/a(T0)]þ ln ln[(1 2 (m0/M)1/4)/
(1 2 d1/4)] 2 1/4 ln d rather than simply ln[4/a(T0)]. The difference
between these is rather small; if m0=M ! 1, d in the range of 0.50–
0.90 yields a correction in the range of approximately 0.50–1.3, a
10–22% increase in the intercept above the value of approximately
6 shown in Fig. 1. The correction depends very little on d, so d need
not be strictly constant across species. Data for post-embryonic
growth for a variety of zooplankton (rotifers, copepods and
cladocerans) are plotted in this way in Fig. 4. As can be seen, a
straight line is obtained with a slope of20.11 per 8C and an
intercept of 7.2 ln(g1/4d21). Because the latter is 17% greater than
6, there is excellent agreement with corresponding values derived
from embryonic growth data in Figs 1–3.
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mately universal straight line with slope, a ¼ 2 !E=kT2
0, and inter-

cept, yint ¼ ln½4=aðT0Þ%. As Ē and aðT0Þ ¼ B0mc=Ec depend on
fundamental cellular properties, they, as well as the normalization
factor B0, do not vary significantly across taxa15. Therefore, the
slope (a) and intercept (y int) should be approximately invariant
quantities. We test this prediction using data from the simplest
natural ‘system’ for growth: development time (zygote to hatchling)
of eggs. Development of eggs is particularly well suited for assessing
equation (5) because the embryo grows in mass as it incorporates
the food stores in the egg. Furthermore, development occurs over a
wide range of temperatures, from about 5 to 40 8C.
Using laboratory data on embryonic development time from

four different groups of aquatic ectotherms (fish, amphibians,
aquatic insects and zooplankton), plots of ln(t/m1/4) versusTc=ð1þ
ðTc=273ÞÞ are indeed well fitted by straight lines with similar slopes
and intercepts (Fig. 1a–d; see Methods)8,9. Similar plots also fit field
data on development time for marine fish eggs with a slope and
intercept similar to the laboratory studies (Fig. 2) (see Methods)10.
Furthermore, birds’ eggs, which are incubated at much higher
temperatures, are also fitted by such plots; pooled data for birds
(13 orders, 172 species)11, using a mean incubation temperature of
36 8C (ref. 8), fall on the same line as the pooled data for aquatic
ectotherms (Fig. 3).
The success of the model in describing how size and temperature

affect embryonic development time led us to consider whether it
might also apply to development at different life stages. As shown in
Box 2, the model makes similar predictions for post-embryonic
development time (hatch to maturity). Nearly 75% of the variation

in post-embryonic development times in zooplankton can be
explained by the model. This suggests that equation (5) applies to
both embryonic and post-embryonic growth (Fig. 4) (see
Methods)12.

The regression lines for the mass-corrected relationships of devel-
opment time to temperature (Figs 1–4) also provide an independent
means of estimating the parameter a. The temperature dependence
of a may be expressed in terms of the slope and intercept using
equation (3): aðTcÞ ¼ 4 exp½2ðaTc=ð1þ Tc=T0Þ þ yintÞ%. Taking
average values of a ¼ 20:12 per 8C and yint ¼ 6 lnðd g21=4Þ from
Fig. 3, this equation predicts a ¼ 0:65 g1=4 d21 for post-embryonic
growth of birds at 40 8C, and a ¼ 0:018 g1=4 d21 for post-embryonic
growth of cod at 5 8C (ref. 16). These values compare favourably
with independent estimates of a derived from fitting empirically
measured growth curves14. These estimates give nearly the same
value of a ¼ 0:017 g1=4 d21 for the cod, and three values that bracket
0.65 for birds (0.47, 1.56, 1.90 g1/4 d21)14. The fact that these two
independentmethods give similar values is further evidence that the
model captures the effects of body size and temperature on growth.

Moreover, the activation energy for metabolic reactions can
be used to predict the slope of the relationships in Figs 1–4. Using
the equation a ¼ 2 !E=kT2

0 (that is, equation (5)), and an average
activation energy for metabolic reactions of 0.6 eV (range between
approximately 0.2 and 1.2 eV)15,17–19, we predict a ¼ 20:09 per 8C.
The closeness of this value to the observed average value of a ¼
20:12 per 8Cprovides support for thismodel (that is, equation (5)).

We have therefore shown that body size and temperature account
for much, but by no means all, of the variation in biological rates
and times. Our model, based on first principles of allometry and
kinetics, can help to isolate the causes of this still unexplained
variation. For example, during post-embryonic growth, unlike
embryonic growth, individuals must forage to obtain resources
from environments where the availability of nutrients varies. In
particular, it is suggested that organisms with higher mass-specific
post-embryonic growth rates ((1/m)(dm/dt)) acquire more phos-
phorus (P) relative to other elements such as carbon (C) to produce
the phosphorus-rich nucleic acids required for more frequent cell
divisions and faster growth (that is, the ‘stoichiometric growth
hypothesis’)20–22. Thus, faster-growing organisms would be pre-
dicted to have lower C:P ratios. In Box 3, we relate this stoichio-
metric growth hypothesis to our size/temperature model. Figure 5
shows that C:P ratios explainmuch of the residual variation in Fig. 4.

Many biological times, including cardiac cycle, blood circulation
time, and development time (that is, t), increase as the 1/4 power of

Box 3
The relationship to biological stoichiometry

To incorporate the “stoichiometric growth hypothesis”20–22 we
propose that a(T) also depends on the C:P ratio so that
aðTÞ/ expð2 !E=kTÞlðC : PÞ, where l(C:P) is a decreasing function
of the C:P ratio. This can be used in equation (5) to predict that
growth rates decrease with C:P across species (see Methods). To
assess if C:P ratios do in fact decrease with growth rates across
species, we plot C:P ratios against the corresponding residuals for
zooplankton in Fig. 4 (Fig. 5). Species in Fig. 5 represent all major
groups of zooplankton shown in Fig. 4 (cladocerans, calanoid and
cyclopoid copepods), except rotifers for which stoichiometric data
were not available. We predict an inverse relationship such that
species that lie above the fitted line (that is, lower average growth
rates) would have high C:P ratios, and vice versa. And, the plot
does indeed show that considerable variation about the line in
Fig. 4 is explained by differences in the C:P ratios among species.
This supports our prediction and suggests that the relationship
between size, temperature and biological stoichiometry proposed
above may be correct.

Box 2
Extension to post-embryonic growth

The general solution to equation (1) valid for all times is given by
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where m0 is the initial larval mass (m ¼ m0 at t ¼ 0). Most
zooplankton have determinate growth, and the onset of adulthood
is assumed to be at m ¼ dM; at this size growth ceases and the
available energy is diverted to reproduction. We assume
d < 0:50–0:90, and is similar across species (see below). The time
taken, tm, to reach m ¼ dM is given by

tm
m1=4

¼ 4

a

% &
1

d1=4

% &
ln

ð12ðm0=MÞ1=4Þ
ð12 d1=4Þ

# $

Apart from the d1/4 term and the slowly varying logarithmic factor,
this equation for post-embryonic growth (that is, hatch to maturity),
is identical in structure to equation (5), which describes embryonic
growth. Proceeding as before and using equation (3) for the
temperature dependence of a implies that plots of ln(tm/m

1/4)
versus Tc/(1þ (Tc/T0)) will yield straight lines whose slopes are the
same as those derived from equation (5) for embryonic growth:
both should have slopes given by a ¼ 2 !E=kT2

0. Their intercepts, on
the other hand, should be slightly different: for post-embryonic
growth the intercept is given by ln [4/a(T0)]þ ln ln[(1 2 (m0/M)1/4)/
(1 2 d1/4)] 2 1/4 ln d rather than simply ln[4/a(T0)]. The difference
between these is rather small; if m0=M ! 1, d in the range of 0.50–
0.90 yields a correction in the range of approximately 0.50–1.3, a
10–22% increase in the intercept above the value of approximately
6 shown in Fig. 1. The correction depends very little on d, so d need
not be strictly constant across species. Data for post-embryonic
growth for a variety of zooplankton (rotifers, copepods and
cladocerans) are plotted in this way in Fig. 4. As can be seen, a
straight line is obtained with a slope of20.11 per 8C and an
intercept of 7.2 ln(g1/4d21). Because the latter is 17% greater than
6, there is excellent agreement with corresponding values derived
from embryonic growth data in Figs 1–3.
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• Temperature and Mass determine much 
of developmental time

• The new biological clock

body mass2,3. Because all of these times are ultimately related to
biochemical reaction rates, they are expected to decrease with
temperature via the same Boltzmann factor, exp(2Ē/kT). Com-
bined, the effects of mass and temperature therefore yield a general
definition of biological time:

tB ¼ tðm=m0Þ21=4eð2
!E=kð1=T$1=T0ÞÞ

¼ tðm=m0Þ21=4e2aTc=ð1þTc=T0Þ ð6Þ
where m0 normalizes mass to some arbitrary value (for example,
1 g) and T0 normalizes temperature to some arbitrary value (for
example, 20 8C). This is the biological time clock. A

Methods
Embryonic development time
Embryonic development times of aquatic ectotherms were collected from compilations of
laboratory studies where eggs were incubated at different constant temperatures ranging
from 5 to 25 8C (refs 8 and 9). These includemostly freshwater, but somemarine, species of
both vertebrates and invertebrates (zooplankton: 2 phyla, 7 orders, 29 species; fishes: 7
orders, 21 species; amphibians: 2 orders, 10 species; multivoltine aquatic insects: 3 orders,
10 species). For each species, we included only data from the ‘biologically relevant’
temperature range required for normal development. Egg sizes were obtained from
reference texts and used as an approximation for the mass of species at hatching,m, as the
mass at hatch is not oftenmeasured. This introduces amaximum possible error of,5% so
long as m $ 0:8 times the egg mass. Methods are detailed in refs 8 and 9.

Field data on embryonic development times of marine fish are comparable to the
laboratory data, except that T c was taken as the “prevailing temperature at incubation”10.
Egg masses were calculated from egg diameters assuming a density of 1 gml21 (ref. 8).

Post-embryonic development time and biological stoichiometry
Most post-embryonic development times and adult body masses were obtained from a
compilation of published data12, though some additional data were acquired for genera
under-represented in this compilation. These include cladocerans (Daphnia23,24,
Diaphanosoma 24, Ceriodaphnia25, Bosmina26), and species of cyclopoid27,28 and calanoid
copepods29. Adult body masses for these species were estimated in the same manner as in
the compilation. For Box 3, whole-body C:P ratios were obtained for asmany of the species
shown in Fig. 4 as possible. The stoichiometric ratios were published values for adults of
those species, or adults of species from the same genus and similar body size21,30.
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Figure 5 The relationship between deviations for the fitted line in Fig. 4 (that is, T c/(1þ (T c/273)) versus t/m
1/4) and whole-body carbon to phosphorus ratios (C:P) for adults of these

species. Data sources listed in Methods.
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body mass2,3. Because all of these times are ultimately related to
biochemical reaction rates, they are expected to decrease with
temperature via the same Boltzmann factor, exp(2Ē/kT). Com-
bined, the effects of mass and temperature therefore yield a general
definition of biological time:

tB ¼ tðm=m0Þ21=4eð2
!E=kð1=T$1=T0ÞÞ

¼ tðm=m0Þ21=4e2aTc=ð1þTc=T0Þ ð6Þ
where m0 normalizes mass to some arbitrary value (for example,
1 g) and T0 normalizes temperature to some arbitrary value (for
example, 20 8C). This is the biological time clock. A

Methods
Embryonic development time
Embryonic development times of aquatic ectotherms were collected from compilations of
laboratory studies where eggs were incubated at different constant temperatures ranging
from 5 to 25 8C (refs 8 and 9). These includemostly freshwater, but somemarine, species of
both vertebrates and invertebrates (zooplankton: 2 phyla, 7 orders, 29 species; fishes: 7
orders, 21 species; amphibians: 2 orders, 10 species; multivoltine aquatic insects: 3 orders,
10 species). For each species, we included only data from the ‘biologically relevant’
temperature range required for normal development. Egg sizes were obtained from
reference texts and used as an approximation for the mass of species at hatching,m, as the
mass at hatch is not oftenmeasured. This introduces amaximum possible error of,5% so
long as m $ 0:8 times the egg mass. Methods are detailed in refs 8 and 9.

Field data on embryonic development times of marine fish are comparable to the
laboratory data, except that T c was taken as the “prevailing temperature at incubation”10.
Egg masses were calculated from egg diameters assuming a density of 1 gml21 (ref. 8).

Post-embryonic development time and biological stoichiometry
Most post-embryonic development times and adult body masses were obtained from a
compilation of published data12, though some additional data were acquired for genera
under-represented in this compilation. These include cladocerans (Daphnia23,24,
Diaphanosoma 24, Ceriodaphnia25, Bosmina26), and species of cyclopoid27,28 and calanoid
copepods29. Adult body masses for these species were estimated in the same manner as in
the compilation. For Box 3, whole-body C:P ratios were obtained for asmany of the species
shown in Fig. 4 as possible. The stoichiometric ratios were published values for adults of
those species, or adults of species from the same genus and similar body size21,30.
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where m0  and T0 are normalised values
(eg. 1 g at 20°C)
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• Universality of Biological clock —WBE framework
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4. The number of heart beat 
per lifespan is nearly 
invariant (   1.5 billions)~ 

Thomas LECUIT   2019-2020

1583Allometric scaling laws

closely fit a single universal curve (Fig.·6). Ontogenetic growth
is therefore a universal phenomenon determined by the
interaction of basic metabolic properties at cellular and whole-
organism levels. Furthermore, this model leads to scaling laws
for other growth characteristics, such as doubling times for
body mass and cell number, and the relative energy devoted to
production vs maintenance. Recently, Guiot et al. (2003)
applied this model to growth of solid tumors in rats and
humans. They showed that the growth curve derived from
Eq.·7 gave very good fits, even though the parameters they
used were derived from statistical fitting rather than determined
from first principles, as in ontogenetic growth. This is just one
example of the exciting potential applications of metabolic
scaling theory to important biomedical problems.

Temperature and universal biological clocks
Temperature has a powerful effect on all biological systems

because of the exponential sensitivity of the Boltzmann factor,
e–E/kT, which controls the temperature dependence of
biochemical reaction rates; here, E is a chemical activation
energy, T absolute temperature, and k Boltzmann’s constant.
Combined with network constraints that govern the fluxes of
energy and materials, this predicts a joint universal mass and
temperature scaling law for all rates and times connected
with metabolism, including growth, embryonic development,

longevity and DNA nucleotide substitution in genomes. All
such rates are predicted to scale as:

R ! Mb
–1/4e–E/kT ·, (8)

and all times as:

t ! Mb
1/4eE/kT ·. (9)

The critical points here are the separable multiplicative nature
of the mass and temperature dependences and the relatively
invariant value of E, reflecting the average activation energy
for the rate-limiting biochemical reactions (Gillooly et al.,
2001). Data covering a broad range of organisms (fish,
amphibians, aquatic insects and zooplankton) confirm these
predictions with E~0.65·eV (Fig.·7). These results suggest a
general definition of biological time that is approximately
invariant and common to all organisms: when adjusted for size
and temperature, determined by just two numbers (1/4 and
E~0.65·eV), all organisms to a good approximation run by the
same universal clock with similar metabolic, growth, and
evolutionary rates! (Gillooly et al., 2005).

Metabolic scaling in plants: independent evolution of M3/4

One of the most challenging facts about quarter-power
scaling relations is that they are observed in both animals and
plants. Our theory offers an explanation: both use fractal-like
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Fig.·7. Plot of mass-corrected resting metabolic rate, ln(B Mb
–3/4) vs inverse

absolute temperature (1000/°K) for unicells (A), plants (B), multicellular
invertebrates (C), fish (D), amphibians (E), reptiles (F), and birds and mammals
(G). Birds (filled symbols) and mammals (open symbols) are shown at normal
body temperature (triangles) and during hibernation or torpor (squares). Figure
taken from Gillooly et al. (2001) with permission.
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Allometric scaling of metabolic rate from molecules
and mitochondria to cells and mammals
Geoffrey B. West* †‡, William H. Woodruff* § , and James H. Brown†¶!
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The fact that metabolic rate scales as the three-quarter power of
body mass (M) in unicellular, as well as multicellular, organisms
suggests that the same principles of biological design operate at
multiple levels of organization. We use the framework of a general
model of fractal-like distribution networks together with data on
energy transformation in mammals to analyze and predict allo-
metric scaling of aerobic metabolism over a remarkable 27 orders
of magnitude in mass encompassing four levels of organization:
individual organisms, single cells, intact mitochondria, and enzyme
molecules. We show that, whereas rates of cellular metabolism in
vivo scale as M!1/4, rates for cells in culture converge to a single
predicted value for all mammals regardless of size. Furthermore, a
single three-quarter power allometric scaling law characterizes the
basal metabolic rates of isolated mammalian cells, mitochondria,
and molecules of the respiratory complex; this overlaps with and
is indistinguishable from the scaling relationship for unicellular
organisms. This observation suggests that aerobic energy trans-
formation at all levels of biological organization is limited by the
transport of materials through hierarchical fractal-like networks
with the properties specified by the model. We show how the mass
of the smallest mammal can be calculated (!1 g), and the observed
numbers and densities of mitochondria and respiratory complexes
in mammalian cells can be understood. Extending theoretical and
empirical analyses of scaling to suborganismal levels potentially
has important implications for cellular structure and function as
well as for the metabolic basis of aging.

The classic allometric scaling relationship relating metabolic
rate (B) to body mass (M),

B ! B0M
3⁄4 [1]

(with B0 being a normalization coefficient), was formulated first
for mammals and birds by Kleiber in the 1930s (1–4). It has since
been extended to a wide range of organisms from the smallest
microbes (!10"13 g) to the largest vertebrates and plants (!108

g; refs. 4 and 5). Although the value of B0 varies among broad
taxonomic or functional groups (endotherms, ectotherms, pro-
tists, and vascular plants; ref. 4), the value of the scaling exponent
(b) is invariably close to 3⁄4. Furthermore, many other physio-
logical variables such as lifespan, heart-rate, radius of aorta,
respiratory rate, and so on scale with exponents that are typically
simple multiples of 1⁄4 (2). The origin of the universal quarter
power and, in particular, of the 3⁄4 exponent in Eq. 1 rather than
a linear relationship (b # 1) or a simple Euclidean surface-to-
volume relationship (b # 2⁄3) has been sought for decades. A
quantitative theoretical model (6) has been developed that
accounts for quarter-power scaling on the basis of the assump-
tion that metabolic rates are constrained by the rate of resource
supply. Accordingly, allometric exponents are determined from
generic universal properties of hierarchical transport networks
such as the vascular systems of mammals and plants, which occur
naturally in biological systems. More generally, it has been shown

that quarter powers reflect the effective four-dimensional frac-
tal-like character of biological networks (7).

In this paper we apply the general ideas underlying the model to
show how the scaling of metabolism can be extended down through
all levels of organization from the intact organism to the cell,
mitochondrion, respiratory complex, and ultimately to an individual
molecule of cytochrome oxidase, the terminal enzyme of cellular
respiration. Accordingly, a relatively simple variant of Eq. 1 con-
nects complex biological phenomena spanning an astounding 27
orders of magnitude in mass from a single molecule to the largest
mammal. We know of no precedent for this observation nor any
previous theory that could explain it. Its universal character clearly
reflects something fundamental about the general principles of
biological design and function. The extension of scaling phenomena
down to the molecular level offers potentially important insights
into the organization of metabolic pathways within cells and
organelles as well as into how these fundamental units are inte-
grated functionally at higher levels of organization. In addition to
showing how the general principles of the network model account
for these phenomena, we show how the turnover rate of the enzyme
molecules of the respiratory complex propagates through the
hierarchy to limit the maximum aerobic metabolic capacity of whole
organisms. Furthermore, the allometric scaling of metabolism at
cellular and molecular levels focuses attention on processes asso-
ciated with aging and mortality.

The origin of b # 3⁄4 for both animals and plants follows from
three key properties of their branching transport systems (6): (i)
networks are space-filling (thus, for example, they must reach
every cell in the organism), (ii) their terminal branch units such
as capillaries in the circulatory system or mitochondria within
cells are the same size, respectively, for all organisms or cells of
the same class, and (iii) natural selection has acted to minimize
energy expenditure in the networks. More generally, the uni-
versal quarter power can be derived by assuming that the number
of terminal units (such as capillaries or mitochondria) in the
hierarchical network is maximized when scaled (7). Because this
latter argument does not invoke any specific structural design or
dynamical mechanism, it can be expected to hold at all levels of
biological organization. Because this model works so well for
plants and animals with macroscopic vascular systems, it is
natural to speculate that similar geometric constraints affect
transport processes at the cellular, organelle, and molecular
levels. The observation that b # 3⁄4 for unicellular (4) as well as
multicellular organisms suggests that the distribution networks
within single cells obey the same design principles. Furthermore,
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1. Size of animals and plants varies over many orders of magnitude including within a 
given taxon or families (eg. wasps)

2. Animals and plants show characteristic allometric relationships: relative growth and 
self-similarity

3. Allometry reflects internal and external constraints in organisation, namely:

4. The West-Brown-Enquist model provides a quantitative framework that explains the 
ubiquity of ¼ exponents in allometry, in particular Kleiber’s law

5. The WBE model yields a universal ontogenetic bounded growth curve
6. The WBE model redefines a universal biological clock adjusted for mass and 

temperature, where the clock ticks slower as size increases. 

7. There are obvious limits to this model and some features are incorrect (eg. planarian)
      but it provides a compelling 0th order model to explain organismal growth and size. 

— Mechanical constraints (elastic similarity)
— Energy delivery

—Key feature: Hierarchical self-similar, space-filling branching network with 
invariant terminal units and minimisation of energy dissipation
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