Cellular Motility

Course 1: Introduction - Principles of motility

Thomas Lecuit
chaire: Dynamiques du vivant

COLIE GE

DE FRANCE

Historical perspective

Movement is a defining feature of living organisms:

- movement of parts or of whole organism
- what is different between movement of living and inert matter?

Aristotle: 4 types of movement:
б́v́auıs (Physics, III, 1)

- quantitative: growth/shrinkage
- qualitative: aspect (shape, color etc)
$\mu \varepsilon \tau \alpha$ @o $\lambda \dot{\eta}$,
- displacement: in geometrical space.
«เทท́бะ८ऽ
- genesis/corruption Yє́vยбıऽ

XVIIth: Local movement only: Descartes, Galileo, Newton

Causes of movement:

- Mechanical view: Galileo, Descartes, etc.
- Geometric representation. Organisms respond passively to external source of movement (eg. heat) as in a machine
- Leibnitz:
-Cause of movement is internal. Living matter is active
COIIDGC
UETTHNCE

Organism and cell motility

Ubiquity of cell movement:
Fonction

- source of energy/nutrition:
phototaxis (eg. Volvox, Euglena), glucose (E. coli), anaerobic conditions (e.g. magnetotactic bacteria)
- reproduction: sperm cells
- escape from predators/toxins
- patrolling: immune defense (eg. dendritic cells)
- embryonic development
- regeneration-repair

Tissue shape changes and cell movement

Zebrafish Embryo

Mouse cell embryo
McDoleK and Guignard L. et al., Cell 175, 859-876 (2018)

Cell tracking in Zebrafish
F; Amat et al . And P. Keller. Nat Methods. 11(9):951-8 (2014).
P. Keller et al. Science 322(5904):1065-9.(2008)

The nervous system illustrates the magnitude of cell motility

Wiring the human brain requires the laying down of about I million km of neurites, all proceeding through the crawling motility of growth cones.

Pollard and Borisy Cell, Vol. 112, 453-465 (2003)

Discovery of cell motility

coiltge
UE TTRANCE

Discovery of cell motility

First observation of bacteria and movement

«I then most always saw, with great wonder, that in the said matter there were many very little living animalcules, very prettily a moving. The biggest sort. . . had a very strong and swift motion, and shot through the water (or spittle) like a pike does through the water. The second sort. . . oft-times spun round like a top. . . and these were far more in number. »
«The biggest sort. . . bent their body into curves in going forwards. . Moreover, the other animalcules were in such enormous numbers, that all the water. . . seemed to be alive. »

September 17, 1683
Letter to Royal Society

Antoni van Leeuwenhoek (1632-1723)

https://pixels.com/featured/leeuwenhoek-microscope-granger.html

A) is a motile bacillus. B) Selenomonas buccalis \& the track of its movement (C to D). E) Micrococci. F) Leptothrix buccalis. G) A spirochaete,

Discovery of cell motility

Ilyia Metchnikoff (1845-1905)
Metchnikoff observed in Sicily (Messina) starfish larvae, noticed motile cells and hypothesized that this might underly response to external agents.

Used rose thorns under larval skin and observed leukocyte chemotaxis and phagocytosis

Metchnikoff's drawing of phagocytes at a site of inflammation (induced by silver nitrate) in the caudal fin of a Triton embryo.

Metchnikoff, E. Lectures on the Comparative Pathology of Inflammation. (Reprinted by Dover, New York, 1968).
Cited in: G. A. Dunn and G. E. Jones Nature Reviews Mol. Cell Biol. 5:667-672 (2004)

Organism motility across scales

- All organisms except plants and fungi are motile: swimming, flying, walking, crawling, creeping etc m
- Variation in size:
(6 orders of magnitude in Metazoa)

Bacillus subtilis

Sperm whale

Organism motility across scales

- All organisms except plants and fungi are motile: swimming, flying, walking, crawling and more
- Variation in size: (6 orders of magnitude in Metazoa)

Discoba
Metamonads

Plants

SAR

Haptophytes
Apusozoa
Opisthokonts

Animals

Fungi

Dikarya

Amoebozoa

Cell motility across scales

- Motility in aequous (viscous) or visco-elastic environments (host, mud etc)
- Bacteria $1 \mu \mathrm{~m}$ - few 10 of $\mu \mathrm{m}$

(A) Stella strain IFAM1312 (380); (B) Microcyclus (a genus since renamed Ancylobacter) flavus (367); (C) Bifidobacterium bifidum; (D) Clostridium cocleatum; (E)
Aquaspirillum autotrophicum; (F) Pyroditium abyssi (380); (G) Escherichia coli; (H) Bifidobacterium
 Nocardia opaca; (L) Chain of ratoon stunt-associated bacteria; (M) Caulobacter sp. (380); (N) Spirochaeta halophila: (O) Prosthecobacter fusiformis: (P) Methanogenium cariaci (Q) Spirochaeta halophila; (O) Prosthecobacter fusiformis; (P) Methanogenium cariaci; (Q) sponges (240); (S) Ancalomicrobium sp. (380); (T) Nevskia ramosa (133); (U) Rhodomicrobium sponges (240); (S) Ancalomicrobium sp. (380); (T) Nevskia ramosa (133); (U) Rhodomicrobium vanniellii; (V) Streptomyces sp.; (W) Caryophanon latum; (X) Calothrix sp. (Y) A schematic of part
of the giant bacterium Thiomargarita namibiensis (290). All images are drawn to the same scale. (Adapted from K. D. Young, Microbiology \& Molecular Bio. Rev., 70:660, 2006.)
- Protozoans 0.2-2 mm long

Scale range among motile single cells: X 2000

Cell motility across scales

Prokaryotes

Escherichia coli motility

http://www.rowland.harvard.edu/labs/bacteria/movies/ecoli.php Howard Berg

Spirochetes motility (Lyme, disease, siphylis, leptospirosis etc)

$$
10 \mu \mathrm{~m}
$$

Cell motility across scales

Eukaryotes

- Giant cell motility >Imm

Amoeba proteus (phylum: Amoebozoa)

Cell motility across scales

- swimming speed ranges from $5-1000 \mu \mathrm{~m} / \mathrm{s}$ (200 fold range)
- gliding/twitching speed ranges from $2-20 \mu \mathrm{~m} / \mathrm{min}$ (10 fold range)
- swimming about 1000 fold faster than gliding/twitching

Cell motility across scales

Velocities

Cell Biology by the numbers. Ron Milo, Rob Phillips, illustrated by Nigel Orme. Garland Science 2012

Finals of the World Cell Race (Théry \& Piel et al)

Race track: $4 \mu \mathrm{~m}$ - and $12 \mu \mathrm{~m}$-wide fibronectin lines

- swimming speed ranges from $50-1000 \mu \mathrm{~m} / \mathrm{s}$ (20 fold range)
- crawling speed ranges from $16-3000 \mu \mathrm{~m} / \mathrm{hour}$ (200 fold range)
- swimming about 1000 fold faster than crawling

Physical constraints on cell motility

— Newton's second Law: F = m.a

- inertia: movement at constant speed $(a=0)$ without applied force (e.g. force is not necessary at all time: eg. swimming)
- This is not true for cells and small objects: force needs to be constantly applied for motion.
- Life operates at so called low Reynolds number

Osborne Reynolds (I842-I912)

- Fluid mechanics: studied the impact of flow speed on nature of flow and conditions in which flow remains laminar
- This depends on ratio of inertial forces and viscous forces.
- Reynolds the number is a dimensionless parameter that compares the effect of inertial and viscous forces

U length scale of system
L velocity scale of system

$$
\operatorname{Re}=\frac{U L \rho}{\eta}
$$

ρ density

η viscosity
$\eta_{/ \rho}$ kinematic viscosity

Thomas LECUIT 2021-2022

Low Reynolds number world

FORCE BALANCE

CONSTITUTIVE LAW FOR NEWTONIAN FLUID
relates shear stress and strain in fluid
plate moved at
uniform speed v_{0}

strain rate tensor:
$D_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)$.

Navier stokes equation

$$
\begin{array}{cc}
\rho\left(\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}\right) & =-\nabla p+\eta \nabla^{2} \mathbf{v} \\
\text { inertial term } & \text { viscous term }
\end{array}
$$

Dimensionless version: $\quad\left(\frac{\partial \mathbf{v}^{*}}{\partial t^{*}}+\mathbf{v}^{*} \cdot \nabla_{*} \mathbf{v}^{*}\right)=-\frac{1}{R e} \nabla_{*} p^{*}+\frac{1}{R e} \nabla_{*}^{2} \mathbf{v}^{*}$.

$$
v^{*}=\frac{v}{U} \quad x_{i}^{*}=\frac{x_{i}}{L}, \quad p^{*}=\frac{p}{(\eta U / L)} \quad t^{*}=\frac{t}{(L / U)} .
$$

When $R e \ll l$, the right hand term dominates the inertial term on the left

Low Reynolds number world

Analysis of the swimming of microscopic organisms

By Sir Gbofyrex Taylor, F.R.S.

Proc. R. Soc. Lond. A 209:447-461 (1951) doi: 10.1098/rspa.1951.0218

Life at low Reynolds number

E. M. Purcell

C.yman Laboratory. Honvard Ulinersity, Cambindge, Motsachtixelits 02138 (Received 12 Iune 1976)

American Jemat of Plysies, Yolt 4K, No. I, Hanewry 1977

American Journal of Physics 45, 3 (1977); http://doi.org/10.1119/1.10903
water: density $\rho \mathrm{Ig} / \mathrm{cm} 3$

$$
\operatorname{Re}=\frac{U L \rho}{\eta}
$$

$$
\text { viscosity } \eta 10^{-2} \mathrm{~g} / \mathrm{cm} . \mathrm{s} \text { (=ImPa.s or IcP) }
$$

Fish: 1 cm and: $U=10 \mathrm{~cm} / \mathrm{s} \quad \operatorname{Re}=10^{3}$
Human (max): $2 \mathrm{~m}, 2 \mathrm{~m} / \mathrm{s} . \quad \operatorname{Re}=4.10^{6}$
dominated by inertia
Whale: up to 30 m and $\max 45 \mathrm{~km} / \mathrm{h}(12.5 \mathrm{~m} / \mathrm{s}) \quad \mathrm{Re}=3.10^{8}$
but for a Bacterium: $1 \mu \mathrm{~m}$ and $10 \mu \mathrm{~m} / \mathrm{s} \quad \operatorname{Re}=10^{-5}$

Low Reynolds number world

Stokes law:

http://www.rowland.harvard.edu/labs/bacteria/movies/ecoli.php

Motion of a bacterium (modeled as a sphere): $m(-d v / d t)=6 \pi \eta a v$

$$
v(t)=v(0) e^{-t / \tau}, \quad \text { and } \quad \tau=\frac{m}{6 \pi \eta a}=\frac{2 a^{2} \rho_{s}}{9 \eta} \text {. }
$$

With $\mathrm{a}=\mathrm{I} \mu \mathrm{m}$, this is $0.2 \mu \mathrm{~s}$. So a bacterium stops in about $I \mu \mathrm{~s}$ Starting at $20 \mu \mathrm{~m} / \mathrm{s}$, a bacterium coasts 0.004 nm

Physical constraints on cell motility

- Consequences of Low Reynolds number (no inertia) for motion in a fluid:

$$
\nabla p-\eta \nabla^{2} \mathbf{v}=\mathbf{F}, \quad \text { The Scallop Theorem }
$$

There is no explicit consideration of time:

E.M. Purcell American Journal of Physics 45, 3 (1977)

- Reciprocal movement is time symmetric.

Corresponds to I degree of freedom in configuration space

National Committee for Fluid Mechanics: G.I. Taylor

Physical constraints on cell motility

- However: Non-reciproqual movement leads to net forward movement at low Reynolds number

- Beating of flexible filament (e.g. cilia)

The f/exible oar

- Rotation of helical structure (e.g. flagellum)

The Tree of cell motility

- 5 Systems based on motor system:

Bacterial flagella, Actin polymerization and Motor proteins (Myosin, Kinesin, Dynein)

- I8 classes based on force/movementproducing protein architectures
- Movement requires coupling between motor output and the cell envelope to propel the cell via interactions with environment.
- Evidence of widespread evolution of motility mechanisms: extensive in Bacteria (envelope), not in Archea (no envelope)
- Evidence of convergent evolution:
- flagella in Bacteria (la) and archaella
in Archea (7), flagella in Eukarya sperm
_ helix rotation at cell periphery $(3,4)$
Myxococcus xanthus (ProteoB), and
Flavobacterium johnsoniae (Bacteroidetes)

Miyata M, Robinson RC, Uyeda TQP, et al. Tree of motility - A proposed history of motility systems in the tree of life. Genes Cells. 2020;25:6-21. https://doi.org/10.1111/ gtc. 12737

Convergent evolution

Case study I: swimming

— flagella in Bacteria and archaella in Archea
Propeller: helical structure powered by a rotary motor anchored to cell periphery

Archaea - Halobacteriaceae

Alam et al. EMBO Journal, 1984, 3:2899-2903
Archaea - Sulfolobaceae

Sulfolobus acidocaldarius

https://www.youtube.com/watch?v=PDRJA1yB5Jo

Rotates clockwise and counterclockwise

https://en.wikipedia.org/wiki/Bacteria after: Zhu et al Nat. Com. 2019 doi:10.1038/s41467-019-13443-4

Convergent evolution

Case study I: swimming

— flagella in Bacteria and archaella in Archea
Propeller: helical structure powered by a rotary motor anchored to cell periphery

Rotates clockwise and counterclockwise

https://en.wikipedia.org/wiki/Bacteria after: Zhu et al Nat. Com. 2019 doi:10.1038/s41467-019-13443-4

http://www.rowland.harvard.edu/labs/bacteria/movies/ecoli.php

Convergent evolution

Case study I: swimming

— flagella in Bacteria and archaella in Archea

Propeller: helical structure powered by a rotary motor anchored to cell periphery archaella use the free energy of ATP to rotate.

Halobacterium salinarum

Right-handed helical structure of archaella with a rotation speed of $23 \pm 5 \mathrm{~Hz}$ Estimated torque of $50 \mathrm{pN} . \mathrm{nm}$

Direct observation of rotation

Convergent evolution

Case study I: swimming

— flagella in Bacteria and archaella in Archea
Propeller: helical structure powered by a rotary motor anchored to cell periphery Flagella use the free energy of $\mathrm{H}+$ gradient to rotate
Rotation speed: 100 Hz or more

Convergent evolution

Case study I: swimming

— flagella in Bacteria and archaella in Archea
Propeller: helical structure powered by a rotary motor anchored to cell periphery

- The archaellum comprises a rigid helical filament that is attached to the cell membrane by a molecular motor
- Archaea do not code for any of the proteins that are part of the flagellum
- Archaella are evolutionarily and structurally related to type IV filament systems (TFF)
- TFF diversified into archaella,Type IV Pili etc.

K. Jarrell and S-V. Albers. Frontiers in Microbiology, 2015, 6:23.

COlItGE

Convergent evolution

Case study 2: Rotary gliding on a substrate

- helix rotation at periphery of cell resisted by adhesion on cell surface Myxococcus xanthus (ProteoB), and Flavobacterium johnsoniae (Bacteroidetes),

Flavobacterium johnsoniae (Bacteroidetes)

Moves at $2 \mu \mathrm{~m} / \mathrm{s}$

https://en.wikipedia.org/wiki/Bacteria after: Zhu et al Nat. Com. 2019
doi:10.1038/s41467-019-13443-4

Myxococcus xanthus (ProteoB),

cells secrete components that enhance adhesion: stigmergy

Convergent evolution

Case study 2: Rotary gliding on a substrate

— Flavobacterium johnsoniae (Fj, Bacteroidetes)

Fj is covered with 150 nm SprB filaments at the cell surface.

SprB moves along helical path on cell surface in both directions

In substrate referential, movement of SprB is asymmetric if the cell moves (at $2 \mu \mathrm{~m} / \mathrm{s}$):
Forward movement in substrate referential at average $4 \mu \mathrm{~m} / \mathrm{s}$ or $0 \mu \mathrm{~m} / \mathrm{s}$:
Retrograde movement in cell is immobile in substrate referential

Convergent evolution

Case study 2: Rotary gliding on a substrate
 — Flavobacterium johnsoniae (Fj, Bacteroidetes)

Model: screw-like mechanism

A nontranslocating cell. Adhesin SprB moves along the left-handed helical loop with a speed of $v 0$.

In a translocating cell, SprB moving toward the rear of the cell adheres to B the surface, generating left-handed rotation and right-directed translocation of the cell. SprB moving toward the front of the cell apparently runs twice as fast with respect to the glass surface than SprB on a nontranslocating cell.

D. Nakane et al, and K. Nakayama. 2013 PNAS, 110: 11145-11150

Experimental test:

Cells roll on substrate
Gold nanoparticles coated with SprB antibody rotate right-handedly on cell surface

So if cell adhered to substrate instead of nanoparticle, it would rotate in opposite direction as particle

Convergent evolution

Case study 2: Rotary gliding on a substrate

— Flavobacterium johnsoniae (Fj, Bacteroidetes)

Energy source: Surface helicoidal movement of SprB
requires proton gradient
D. Nakane et al, and K.

Nakayama. 2013 PNAS, 110:
11145-11150

Motor: A cell attached to a single motor GIdL rotates and exerts torque

Shrivastava et al. and H. Berg, 2015, Current Biology 25, 338-341

Model: Rack and pinion
Motor and track are fixed. The motor works as a pinion engaged in mobile tread on fixed track

GldL localizes within 90nm of SprB helicoidal tracks

COILG
UC PTENNCE

Convergent evolution

Case study 2: Rotary gliding on a substrate
 - Myxococcus xanthus (Mx, Deltaproteobacteria)

- Existence of Motility complex
- Components of Motility Complex move along right-handed helical tracks on cell
- Movement of the complex requires a proton gradient

B. Nan et al. and G. Oster and D. Zusman. 2011. PNAS 108:2498-2503 M. Sun et al and T. Mignot 2011. PNAS 108: 7559-7564
- Motile complex is immobile in substrate referential when the cell is moving
- Formation or Focal adhesion sites are required for cell movement

AglZ

collegr
UC PTENET
Thomas LECUIT 2021-2022
Fixed cluster has positive correlation with cell movement ($\beta=1$) Dynamic cluster is weakly negatively correlated
L. Faure et al, and T. Mignot Nature 2016, 539:530-535

Convergent evolution

Case study 2: Rotary gliding on a substrate

- Myxococcus xanthus (Mx, Deltaproteobacteria)
- Cells rotate and cell rotation is coupled to cell motility

Propulsion is linked to the counterclockwise movement of the motility complex (AgIZ-YFP), because a fiducial marker at the cell surface rotates along a helical path of opposite handedness to cells

Convergent evolution

Case study 2: Rotary gliding on a substrate
 - Myxococcus xanthus (Mx, Deltaproteobacteria)

- Inner membrane components of motility complex and Motor co-localize in dynamic and static clusters
Only static such clusters correlate with cell movement
- Periplasmic and Outer membrane components co-localize with Motor in static clusters only, and this correlates with cell movement

- Model: Contact and Mechanical coupling between inner and outer-membrane components is required for cell propulsion

Convergent evolution

Case study 2: More on «screwing motility »

Trypanosoma vs Spirochetes: corkscrew spiraling motility

Bacteria: Spirochetes motility: Syphilis, Lyme disease, etc Motility on viscous substrates in vivo and in vitro

Intracellular bundle of flagella form a helical bundle that applies torque to cell body
Cell body stiffness exerts opposite torque

Trypanosoma brucei

Gull Lab courtesy of Sue Vaughan, Wellcome Images

https://www.youtube.com/watch?v=my58lrHqGWY

This gives rise to planar wave of cell body that rotates
M. Harman et al. C. Wolgemuth. (2013) Biophysical Journal 105(10) 2273-2280

Thomas LECUIT 2021-2022

Eukaryotic cilia and flagella bending and beating

- Flagella - Sperm cell (sea Urchin)

https://www.youtube.com/watch?v=4vsYNPwSZks
- Cilia - swimming protists

Pharyngomonas kirbyi
Protist, 162, 691-709 (2011)
$10 \mu \mathrm{~m}$

Eukaryotic cilia and flagella bending and beating

- Ultrastructure

cilium

H Ishikawa and WF Marshall Nature Reviews Mol Cell Biol 12: 222-234 (2011)

Eukaryotic cilia and flagella bending and beating

- Bending models

sTEDIES ON CILIA
11. Examination of the Distul Region of the Ciliary'

Glouft and the Rtole of the Filmments in Mintility

FKTEL ShTIN

- Sliding model

- Contraction model

Filaments shorten on one side to bend cilium

以 工 L UE FTEANCE

Eukaryotic cilia and flagella bending and beating

- Motor driven sliding forces

- Cilia bend in response to Dynein motor activity
- Dynein induce sliding forces at doublets interfaces

Dynein motors convert the chemical energy of $\sim 10^{5}$ ATP per beat into a relative sliding motion among the nine microtubule doublets of the axonemal sheath. This causes a tension of $\sim 10 \mathrm{nN}$ to build up between neighbouring doublets.

isolated isolated
doublet microtubules
(A) DYNEIN PRODUCES MICROTUBULE SLIDING
normal
flagellum
(B) DYNEIN CAUSES MICROTUBULE TO BEND
due to crosslinks and constraints at the base of axoneme

Eukaryotic cilia and flagella beating

- Beating models: Mechanical Feedbacks

- Bending and beating require spatial and temporal coordination of motor activity on both sides of axoneme
- Bending induces stresses that feedback on and regulate motor activity
- Dynein motor activity needs to alternate between the 2 sides of axoneme. If forces are equal, then they cancel each other and no bending occurs
- Motor switching is rapid ($2 x$ per cycle @ 100Hz in Chlamydomonas):
- Mechanical feedback model

Physical constraints on cell motility

Convergent evolution

- Consequences of Low Reynolds number (no inertia) for motion in a fluid or visco-elastic medium

Motility: 3 general problems

I. Decoding the environment: What is the nature of cues?

- Cells don't move randomly but sense an external cue
- What is the nature of external cues? Diversity of cues
(chemical, mechanical, electric, light)
- Temporal vs spatial decoding

2. Processing the cue: Cell polarisation

- Symmetry breaking: converting external gradient into vectorial cell organisation
- Deterministic vs Stochastic processing
- Polarisation of a cell or a trajectory

3. Mechanical response: Principles of movement

- Depends on environment
- Force generation: Active processes: actin pushing forces, actin flow, actomyosin contractility
- Force transmission: Passive resistance: friction/adhesion, viscous resistance of medium.

Mechanics of cell motility

- Adhesion dependent motility: on 2D substrates
-Force generation: actin polymerization (front), contractility (rear)
-Force transmission: adhesion

Mechanics of cell motility

- Adhesion independent motility: induced by 3D confinement -Force generation: actin retrograde flow (induced by contractility) -Force transmission: friction and/or topography of environment

Guidance of cell motility

- Neutrophile chasing a bacterium (Staphilococcus aureus)

David Rogers at Vanderbilt University.
https://www.youtube.com/watch?v=I_xh-bkiv_c

Deterministic vs Stochastic Guidance

Deterministic:

- Spatial mechanism: comparison of chemoattractant concentration along cell length
- Temporal mechanism: comparison of chemoattractant at different positions

Stochastic:

- Statistical mechanism: biased random walk.
- probability of changing direction is a function of chemoattractant concentration: Asymmetric runs up and down a gradient of chemoattractant (temporal comparison)

Stochastic Guidance

-runs and tumbles: biased random walk in Bacteria

Chemotaxis in Escherichia coll analysed by Three-dimensional Tracking

> Chemotaxis toward amino-acids results trom the suppression of difectronal changes which occur spontaneously in isotropic solutions.

Stochastic Guidance

-runs and tumbles and polarity switches

- orientation of motor rotation

Y. Chang et al ... and J Liu. Nature Structural \& Molecular Biology 27, 1041-1047 (2020)

Deterministic vs Stochastic Guidance

-Informed choice model

compass choice model

Dictyostelium discoideum

- Cells make many pseudopods are regular intervals and select the better ones up the gradient
- The pseudopod that are better aligned with gradient have an increased survival (bias for survival)

Informed choice model
Reinforcement of most up gradient protrusion

Stochastic Guidance

-runs and tumbles: biased random walk in Eukaryotes

- Cells exhibit different persistence during motility
- Faster cells are more persistent
- Universal coupling between speed and persistence
- This stems from feedback between polarity and retrograde actin flow

Nature of guidance cues

- Chemotaxis

Migration mode	Cue	Signal generation
Chemotaxis	Diffusible chemical released from cells or deposited extracellular vesicles	Simple diffusion Regulated removal by degradation of the chemoattractant or decoy receptors Release of extracellular vesicles

Dictyostelium discoideum

Nature of guidance cues

- Mechanical guidance:

- Substrate stiffness gradient
— Durotaxis
- Adhesion gradient
— Haptotaxis

S. SenGupta, C. A. Parent and J. E. Bear, Nature Rev Mol. Cell Biol. 2021 https://doi.org/10.1038/ s41580-021-00366-6

Nature of guidance cues

- Mechanical guidance:

\author{

- Barotaxis
}

- Cells « read » their environment ahead of time and take the path of least hydraulic resistance: shortest path and avoidance of dead-end
- Cell migration is resisted by the pressure associated with fluid in front of a cell in a confined environment
- Guidance by hydraulic resistance arises from small force imbalance which is amplified by actomyosin contractility

Confined impermeable cell

Hélène Moreau and Ana-Maria Lennon-Duménil. Current Opinion in Cell Biology 2021, 72:131-136

H. Moreau et al. and Raphael Voituriez, Matthieu Piel,

Ana-Maria Lennon-Duménil, 2019, Developmental Cell 49, 171-188

Nature of guidance cues

- Mechanical guidance:

-Topotaxis

Topotaxis

Confined tunnel

Tracks of aligned fibres

Tracks generated by proteolytic remodelling

Migration mode	Cue	Signal generation
Topotaxis	Geometric properties of the migration substrate irrespective of mechanical or chemical properties	Preformed tunnels created by other cells
Trails created by proteolytic ECM remodelling Topological features created by non-lytic ECM deformation		
		1D fibrils such as bundles of collagen
		Topology of natural tissue elements

Nature of guidance cues

- Galvanotaxis

Migration mode	Cue
Galvanotaxis	Electric fields
lonic differences generated by transepithelial barriers such as in the skin, disrupted by wounding	

Nature of guidance cues

- Magneto-aerotaxis

Maymetonaxtic Bacterta

Magnetosome: curboctahedral magnetite crystals Magnetospirillum gryphiswaldense

Richand Es.an feore

Hoondr Hotr Oceodishrapitar firstionsht.

24 OCTOHEN 199

R. Blackmore. Science 190:377-379 (1975)
R. Uebe and D. Schüler. Nature Rev MicroBiology 14, 621-637 (2016)

Deterministic vs Self-organised Guidance

How do cells navigate over long range in situ (development, immune system, cancer)?
>> Interaction between cells and environment:
cells generate/modify their own guidance cue through such interactions
The structure of the environment matters (eg. confinement)

Self-organised guidance

Reinforcement of guidance landscape by cells: spatial memory akin to stigmergia

- Conditioned substrate enhances cell motility
- Oscillatory migration in ID channels

Conditioned substrate

Self-organised chemotaxis

- Cells produce an activity that degrades the chemoattractant
- A gradient of attractant is formed at the edge of cell cluster, that steers cells forward leaving behind no attractant where cells have random motility.
- A front wave emerges that self-propagates
- Self-reinforcing process: if a few cells go pass the front, they will adopt random motility because they can't produce a new gradient of chemoattractant. If attractant diffuses behind the front, it will attract ${ }_{B}$ more cells

Self-organised mechanical guidance

Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model

By ALBERT K, HARRIS' DAVID STOPAK ${ }^{2}$ AND PATRICIA WARNER'
${ }^{1}$ Department of Biotogy, Witson Hall (046A). L'riversiny of Norsh Carobita an Chapel Hifr, Chmpel Hett, Norsh Garotina 27514, U.5.A.
${ }^{2}$ Department of Brologicat Sclencex, Shanford Universtry. Stanford, Carotina 94305.2499 , U.S.A.

 comakere. The vale bar equ事 100 mm.
collegr UC TTEANCE

Self-organised mechanical guidance

- Feedback mechanism between cells and the matrix: traction forces due to cell motility causes matrix deformation which steers cell motility

See lecture 27 Nov 2018
Mechanochemical instabilities
https://www.college-de-france.fr/site/thomas-lecuit/course-20I8-II-27-IOh00.htm

Self-organised mechanical guidance

time $=5$ days

$\tau=$ traction force

Self-organised mechanical guidance

- Emergence of cellular patterns during development

Conclusions

I. Phenomenology across scales: diversity and convergence
2. Mechanics

- Physical constraints
- Invariant modalities

3. Guidance

- Deterministic and
- self-organised

Plan du cours

Cours

Les mardis, de 10h à 11h30
Amphithéâtre Guillaume Budé
Conformément aux consignes gouvernementales, l'accès au Collège de France est soumis au contrôle d'un passe sanitaire ainsi qu'au respect des gestes barrières.
Le port du masque est obligatoire dans les amphithéâtres.

09 novembre 2021
Introduction : principes généraux de la motilité cellulaire
16 novembre 2021
Mécanique de la motilité I - (sur substrats)

23 novembre 2021

Mécanique de la motilité II - (confinement)

30 novembre 2021
Mécanique de la motilité III - (nage)

07 décembre 2021
Guidage chimique

14 décembre 2021
Guidage mécanique

