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Biological organisation in space and time

• Two modalities of information flow during morphogenesis

• hierarchical, indirect interactions
• modular
• long and short range interactions
• high-wired 
• multiple parameters

Self-organization 

• local and direct interactions
• few rules and parameters
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Mechano-chemical information

•   diffusion:     =(D.  )
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•   transport: l = v.  
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v: velocity of motor + processivity 
D: diffusion coefficient

•  propagation of deformation:  
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•  hydrodynamic length:  l
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E: stiffness
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: viscosity
: friction
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Biochemistry Mechanics
• Sets mechanical parameters
    (stiffness: actin crosslinkers,
     viscosity: turnover)
• Regulates stresses
    (eg. activation of motors) 

• affects transport of molecules: advection by flow
• elicits mechanotransduction: stress/strain 

dependent effect
• affects geometry of environment: polarity

Information
(genetics/biochemistry)

Mechanics

Information
(mechano-chemistry)

Time scale
Length scale
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Self-organisation with mechano-chemical information

Information
(genetics/biochemistry)

Mechanics

Information
(mechano-chemistry)
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W. Bement et al Nature Cell Biology 2015

Calcium imaging
• Image by Nicholas Davenport, Graduate Student, 
Cellular and Molecular Biology | Confocal Microscope

What underlies the spatial and temporal
organisation of cellular activity ?

Sea Urchin/Starfish

Xenopus



Thomas LECUIT   2018-2019

What underlies the spatial and temporal
organisation of cellular activity ?

JL Maître, R. Niwayama, H. Turlier F. Nédélec and T. 
Hiragii. Nature Cell Biology (2015) 17:849-855

 B. Dehapiot and T. Lecuit, unpublished

HY. Kim and LA. Davidson, Journal of Cell Science (2011) 124:635-646

Drosophila 
Mouse

Xenopus
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Chemistry

self-organization in 
nonequilibrium chemical 
systems 

Chemistry Mechanics

Chemistry Mechanics

self-organization in 
nonequilibrium 
mechano-chemical 
systems 

Space: Turing instabilities

Time: spikes, oscillations

Self-organisation of biological patterns: Time and Space 

Chemical and Mechanical Information

29 
 

 
 
 

Figure 6: An order of magnitude census of the major components 
of the three model cells we employ often in the lab and in this 
book. A bacterial cell (E. coli), a unicellular eukaryote (the budding 
yeast S. cerevisiae, and a mammalian cell line (such as an 
adherent HeLa cell).  

73 
 

How big are biochemical nuts and bolts?  
 
 
 
 
The textbook picture of the molecules of life is dominated by nucleic acids 
and proteins, in no small measure because of their fascinating linkage 
through the processes of the central dogma. On the other hand, this 
picture is terribly distorted biochemically because many of the key 
reactions even in the central dogma would not happen at all were it not 
for a host of biochemical allies such as water and the many ions that are 
needed as cofactors for the enzymes that make these reactions go. 
Further, we cannot forget the substrates themselves, namely, the 
nucleotides and amino acids from which the famed nucleic acids and 
proteins are constructed. Energizing all of this busy activity are small 
sugar molecules, energy carriers such as ATP and other metabolites. In 
this vignette, we take stock of the sizes of the many biochemical “nuts and 
bolts” that provide the molecular backdrop for the lives of cells as shown 
in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Probably the single most important biochemical nut and bolt of them all 
is water. It is no accident that the search for life beyond Earth often begins 
with the question: is there water? Though part of the reason for this might 
be a lack of imagination about what other life-supporting chemistries 
might look like, the simplest reason for this obsession with water is that 
without it, life as we know it could not exist. One of the easiest ways for us 
to characterize the size of a water molecule which is a convenient 
standard molecular ruler for biology is by reference to the roughly 0.1 nm 
bonds (BNID 106548) between its hydrogen and oxygen atoms. Since 
water molecules are not spherically symmetric it is hard to assign an 
effective radius to such a molecule. As another estimate for the size of a 

Figure 1:     A structural view of some of the basic constituents of a cell.  
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Self-organisation of biological patterns: chemistry and mechanics. 
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THE CHEMICAL BASIS OF MOKPHOGENESIS 

BY A. M. TURING, F.R.S. University qf Manchester 

(Received 9 November 195 1-Revised 15 March 1952) 

It  is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. 
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biolo:~irall, unusual system. 
The investigation is chiefly concerned with the onset of instability. It  is faund that there are six 
essentially different forms which this may take. In the most interesting form stationary waves 
appear on the ring. It  is suggested that this might account, for instance, for the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con- 
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. It  is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis. 

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe- 
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading. 

I n  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t  is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge. 

The model takes two slightly different forms. In one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In  the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter. 

With either of the models one proceeds as with a physical theory and defines an entity 
called 'the state of the system'. One then describes how that state is to be determined from 
the state at  a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and the forces 
between them. I n  the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells rnust also 

VOL.237. B. 641. (Price 8s.) 5 14August I 952[P~~btished 

Alan Turing
(1912-1954)

38 A. M. TURING O N  THE 

be given. In  the continuous form of the theory the concentrations and diffusibilities of 
each substance have to be given at  each point. In determining the changes of state one 
should take into account 

(i) The changes of position and velocity as given by Newton's laws of motion. 
(ii) The stresses as given by the elasticities and motions, also taking into account the 

osmotic pressures as given from the chemical data. 
(iii) The chemical reactions. 
(iv) The diffusion of the chemical substances. The region in which this diffusion is 

possible is given from the mechanical data. 
This account of the problem omits many features, e.g. electrical properties and the 

internal structure of the cell. But even so it is a problem of formidable mathematical com- 
plexity. One cannot at  present hope to make any progress with the understanding of such 
systems except in very simplified cases. The interdependence of the chemical and mechanical 
data adds enormously to the difficulty, and attention will therefore be confined, so far as is 
possible, to cases where these can be separated. The mathematics of elastic solids is a well- 
developed subject, and has often been applied to biological systems. In  this paper it is 
proposed to give attention rather to cases where the mechanical aspect can be ignored and 
the chemical aspect is the most significant. These cases promise greater interest, for the 
characteristic action of the genes themselves is presumably chemical. The systems actually 
to be considered consist therefore of masses of tissues which are not growing, but within 
which certain substances are reacting chemically, and through which they are diffusing. 
These substances will be called morphogens, the word being intended to convey the idea 
of a form producer. I t  is not intended to have any very exact meaning, but is simply the 
kind of substance concerned in this theory. The evocators of Waddington provide a good 
example of morphogens (Waddington 1940).These evocators diffusing into a tissue somehow 
persuade it to develop along different lines from those which would have been followed in 
its absence. The genes themselves may also be considered to be morphogens. But they 
certainly form rather a special class. They are quite indiffusible. Moreover, it is only by 
courtesy that genes can be regarded as separate molecules. I t  would be more accurate 
(at any rate at mitosis) to regard them as radicals of the giant molecules known as chromo- 
somes. But presumably these radicals act almost independently, so that it is unlikely that 
serious errors will arise through regarding the genes as molecules. Hormones may also be 
regarded as quite typical morphogens. Skin pigments may be regarded as morphogens if 
desired. But those whose action is to be considered here do not come squarely within any 
of these categories. 

The function of genes is presumed to be purely catalytic. They catalyze the production 
of other morphogens, which in turn may only be catalysts. Eventually, presumably, the 
chain leads to some morphogens whose duties are not purely catalytic. For instance, a 
substance might break down into a number of smaller molecules, thereby increasing the 
osmotic pressure in a cell and promoting its growth. The genes might thus be said to in- 
fluence the anatomical form of the organism by determining the rates of those reactions 
which they catalyze. If the rates are assumed to be those determined by the genes, and if 
a comparison of organisms is not in question, the genes themselves may be eliminated from 
the discussion. Likewise any other catalysts obtained secondarily through the agency of 
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self-organization in 
nonequilibrium chemical 
systems 

Reaction–diffusion system

Reaction–diffusion systems are mathematical models which correspond to several
physical phenomena: the most common is the change in space and time of the
concentration of one or more chemical substances: local chemical reactions in which
the substances are transformed into each other, and diffusion which causes the
substances to spread out over a surface in space.

Reaction–diffusion systems are naturally applied in chemistry. However, the system
can also describe dynamical processes of non-chemical nature. Examples are found
in biology, geology and physics (neutron diffusion theory) and ecology.
Mathematically, reaction–diffusion systems take the form of semi-linear parabolic
partial differential equations. They can be represented in the general form

where q(x, t) represents the unknown vector function, D is a diagonal matrix of diffusion coefficients, and R accounts for all local
reactions. The solutions of reaction–diffusion equations display a wide range of behaviours, including the formation of travelling
waves and wave-like phenomena as well as other self-organized patterns like stripes, hexagons or more intricate structure like
dissipative solitons. Such patterns have been dubbed "Turing patterns".[1] Each function, for which a reaction diffusion differential
equation holds, represents in fact a concentration variable.

One-component reaction–diffusion equations

Two-component reaction–diffusion equations

Three- and more-component reaction–diffusion equations

Applications and universality

Experiments

Numerical treatments

See also

Some examples of reaction-diffusion equations

References

External links

The simplest reaction–diffusion equation is in one spatial dimension in plane geometry,

is also referred to as the Kolmogorov–Petrovsky–Piskunov equation.[2] If the reaction term vanishes, then the equation represents a
pure diffusion process. The corresponding equation is Fick's second law. The choice R(u) = u(1 − u) yields Fisher's equation that
was originally used to describe the spreading of biological populations,[3] the Newell–Whitehead-Segel equation with R(u) = u(1 − 

u2) R(u) = u(1 − u)(u − α)

A simulation of two virtual chemicals
reacting and diffusing on a Torus
using the Gray-Scott model

Contents

One-component reaction–diffusion equations

Two-component systems allow for a much larger range of possible phenomena than their one-component counterparts. An important
idea that was first proposed by Alan Turing is that a state that is stable in the local system can become unstable in the presence of
diffusion.[10]

A linear stability analysis however shows that when linearizing the general two-component system

a plane wave perturbation

of the stationary homogeneous solution will satisfy

Turing's idea can only be realized in four equivalence classes of systems characterized by the signs of the Jacobian R′ of the reaction
function. In particular, if a finite wave vector k is supposed to be the most unstable one, the Jacobian must have the signs

This class of systems is named activator-inhibitor system after its first representative: close to the ground state, one component
stimulates the production of both components while the other one inhibits their growth. Its most prominent representative is the
FitzHugh–Nagumo equation

with  f (u) = λu − u3 − κ which describes how an action potential travels through a nerve.[11][12] Here, du, dv, τ, σ and λ are
positive constants.

When an activator-inhibitor system undergoes a change of parameters, one may pass from conditions under which a homogeneous
ground state is stable to conditions under which it is linearly unstable. The corresponding bifurcation may be either a Hopf
bifurcation to a globally oscillating homogeneous state with a dominant wave number k = 0 or a Turing bifurcation to a globally
patterned state with a dominant finite wave number. The latter in two spatial dimensions typically leads to stripe or hexagonal
patterns.

Subcritical Turing bifurcation: formation of a hexagonal pattern from noisy initial conditions in the above two-

component reaction-diffusion system of Fitzhugh-Nagumo type.

Two-component reaction–diffusion equations

Diffusion Reaction

1-component

2-components

Diffusion Reaction

THE CHEMICAL BASIS OF MOKPHOGENESIS 

BY A. M. TURING, F.R.S. University qf Manchester 

(Received 9 November 195 1-Revised 15 March 1952) 

It  is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. 
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biolo:~irall, unusual system. 
The investigation is chiefly concerned with the onset of instability. It  is faund that there are six 
essentially different forms which this may take. In the most interesting form stationary waves 
appear on the ring. It  is suggested that this might account, for instance, for the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con- 
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. It  is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis. 

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe- 
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading. 

I n  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t  is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge. 

The model takes two slightly different forms. In one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In  the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter. 

With either of the models one proceeds as with a physical theory and defines an entity 
called 'the state of the system'. One then describes how that state is to be determined from 
the state at  a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and the forces 
between them. I n  the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells rnust also 
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1. Reaction — Diffusion systems
      Self-organisation of spatial and temporal patterns

self-organization in 
nonequilibrium chemical 
systems:

• activator auto-activation

• inhibitor induction

1342CHAPTER 20. BIOLOGICAL PATTERNS: ORDER IN SPACE AND TIME
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Figure 20.17: Local excitation and global inhibition in cell polarization. (A)
Lattice model of local activation and global inhibition. Two interacting molec-
ular species, shown here in red (activator) and blue (inhibitor) start o↵ nearly
uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)

space, x

x

Diffusion

time, t

Reaction speedW. Bement, et al  and George von 
Dassow. Nature Cell Biology. 2015

II. Chemical Instabilities
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self-organization in 
nonequilibrium chemical 
systems 

Two-component systems allow for a much larger range of possible phenomena than their one-component counterparts. An important
idea that was first proposed by Alan Turing is that a state that is stable in the local system can become unstable in the presence of
diffusion.[10]

A linear stability analysis however shows that when linearizing the general two-component system

a plane wave perturbation

of the stationary homogeneous solution will satisfy

Turing's idea can only be realized in four equivalence classes of systems characterized by the signs of the Jacobian R′ of the reaction
function. In particular, if a finite wave vector k is supposed to be the most unstable one, the Jacobian must have the signs

This class of systems is named activator-inhibitor system after its first representative: close to the ground state, one component
stimulates the production of both components while the other one inhibits their growth. Its most prominent representative is the
FitzHugh–Nagumo equation

with  f (u) = λu − u3 − κ which describes how an action potential travels through a nerve.[11][12] Here, du, dv, τ, σ and λ are
positive constants.

When an activator-inhibitor system undergoes a change of parameters, one may pass from conditions under which a homogeneous
ground state is stable to conditions under which it is linearly unstable. The corresponding bifurcation may be either a Hopf
bifurcation to a globally oscillating homogeneous state with a dominant wave number k = 0 or a Turing bifurcation to a globally
patterned state with a dominant finite wave number. The latter in two spatial dimensions typically leads to stripe or hexagonal
patterns.

Subcritical Turing bifurcation: formation of a hexagonal pattern from noisy initial conditions in the above two-

component reaction-diffusion system of Fitzhugh-Nagumo type.

Two-component reaction–diffusion equations

2-component

Diffusion Reaction

21. Spatial patterns: Turing instabilities 
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Figure 20.17: Local excitation and global inhibition in cell polarization. (A)
Lattice model of local activation and global inhibition. Two interacting molec-
ular species, shown here in red (activator) and blue (inhibitor) start o↵ nearly
uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
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It  is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. 
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biolo:~irall, unusual system. 
The investigation is chiefly concerned with the onset of instability. It  is faund that there are six 
essentially different forms which this may take. In the most interesting form stationary waves 
appear on the ring. It  is suggested that this might account, for instance, for the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con- 
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. It  is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis. 

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe- 
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading. 

I n  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t  is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge. 

The model takes two slightly different forms. In one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In  the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter. 

With either of the models one proceeds as with a physical theory and defines an entity 
called 'the state of the system'. One then describes how that state is to be determined from 
the state at  a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and the forces 
between them. I n  the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells rnust also 
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1326CHAPTER 20. BIOLOGICAL PATTERNS: ORDER IN SPACE AND TIME

20.3.1 Putting Chemistry and Di↵usion Together: Turing
Patterns

One of the first theoretical attempts at answering this question was provided in
the 1950s by the famed British mathematician and computer scientist Alan Tur-
ing who described a mechanism of pattern formation that relied only on chemical
reactions between di↵using molecules. Turing also used the word “morphogen”
to refer to the molecules in his model, because they are able to generate patterns
and shapes. Turing’s proposal has in the intervening years served as an inspira-
tion for generations of models and experiments centering on pattern formation
in biology. Interestingly, while the details of the pattern forming systems in
development, once worked out, have so far revealed mechanisms di↵erent from
that imagined by Turing, this is a powerful example of a “wrong” model that
has played an important role in guiding experiments. Even though the model is
often dismissed as “wrong”, its basic premise, that patterns of gene expression
could be driven by di↵usion and reactions between molecules (often the di↵us-
ing species are transcription factors that bind to DNA) has been proven correct
over and over again.

To obtain intuition about the Turing mechanism of pattern formation we
make use of a toy model suggested by Turing himself in his seminal paper.
The model has two cells each of which can be thought of as its own chemical
reactor with two molecular species, or “morphogens”, X and Y . The chemistry
performed by these morphogens is described by chemical reactions

dX

dt
= 5X � 6Y + 1 (20.33)

dY

dt
= 6X � 7Y + 1

where all the integers appearing in the equations are reaction rates in units of
inverse time. The important feature of these equations, which do not represent
any particular reaction and are introduced simply to illustrate the Turing in-
stability, is that the production of both morphogens is stimulated by X, while
their decay is proportional to the number of Y molecules. In this sense we refer
to the morphogen X as the activator, while Y is the inhibitor.

As can be demonstrated instantly by substitution, the system of rate equa-
tions has a unique steady state, given by X = Y = 1. The stability of this
state can be assessed in exactly the way we did in Chapter 19 for the genetic
switch, by considering a small deviation away from the steady state and asking
whether this perturbation grows or diminishes with time. Mathematically this
corresponds to introducing variables x and y that measure the deviation from
the steady state, namely: X = 1 + x and Y = 1 + y. The time evolution of x
and y can be written in matrix form as

d

dt

✓
x
y

◆
=

✓
5 �6
6 �7

◆✓
x
y

◆
. (20.34)

The question of stability is explored by imagining a time-dependent solution of
the form x(t) = x0e�t and y(t) = y0e�t and examining whether these solutions
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The question of stability is explored by imagining a time-dependent solution of
the form x(t) = x0e�t and y(t) = y0e�t and examining whether these solutions
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grow or decay in time. More precisely, if we substitute this trial solution into
eqn 20.34, we find that the parameter � is determined as an eigenvalue of the
matrix appearing on the right side. In order for the initial perturbation away
from the steady state to decay back to zero, the eigenvalues of the matrix have
to both be negative. The eigenvalues are obtained from the quadratic equation

det

✓
5� � �6
6 �7� �

◆
= �2 + 2�+ 1 = 0 (20.35)

from which we conclude that the two eigenvalues are degenerate and both equal
to �1. This guarantees the stability of the steady state. In other words, if we
start the system in any state, defined by the abundance of X and Y molecules,
it will quickly decay into the steady state X = Y = 1.

A qualitatively new and seemingly counterintuitive situation develops when
we go on to the system consisting of two cells, as shown in Figure 20.11(A),
each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
twist to the story is that we allow the morphogens to freely di↵use between the
two cells. Since di↵usion tends to even out di↵erences in concentration and the
chemistry in each cell is such that X = Y = 1 is a stable steady state, one might
expect that the uniform state in which both cells have this amount of morphogen
would also be a stable steady state in the presence of di↵usion. What Turing
discovered was that this is not necessarily so! In particular, if the inhibitor, in
this case morphogen Y , di↵uses faster than the activator (morphogen X) the
homogeneous steady state can become unstable toward a state with di↵erent
concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
a mechanism by which a spatially non-uniform distribution of morphogens can
develop. Turing suggested this as a mechanism by which nominally identical
cells might su↵er very di↵erent fates in the development process.

To explore how the Turing instability develops in mathematical detail in the
toy model introduced above, we begin by writing down the rate equations for
the two cells in the presence of di↵usion, namely,

dX1

dt
= 5X1 � 6Y1 + 1 +DX(X2 �X1) (20.36)

dY1

dt
= 6X1 � 7Y1 + 1 +DY (Y2 � Y1)

dX2

dt
= 5X2 � 6Y2 + 1 +DX(X1 �X2)

dY2

dt
= 6X2 � 7Y2 + 1 +DY (Y1 � Y2) ,

(20.37)

where the state of cell 1 is given by (X1, Y1) while the state of cell 2 is specified
by (X2, Y2). DX and DY are the (dimensionless) di↵usion constants for the
two morphogens. The chemical parts of the rate equations for both morphogens
are the same as in eqn 20.33. However, the presence of di↵usion results in an
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each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
twist to the story is that we allow the morphogens to freely di↵use between the
two cells. Since di↵usion tends to even out di↵erences in concentration and the
chemistry in each cell is such that X = Y = 1 is a stable steady state, one might
expect that the uniform state in which both cells have this amount of morphogen
would also be a stable steady state in the presence of di↵usion. What Turing
discovered was that this is not necessarily so! In particular, if the inhibitor, in
this case morphogen Y , di↵uses faster than the activator (morphogen X) the
homogeneous steady state can become unstable toward a state with di↵erent
concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
a mechanism by which a spatially non-uniform distribution of morphogens can
develop. Turing suggested this as a mechanism by which nominally identical
cells might su↵er very di↵erent fates in the development process.

To explore how the Turing instability develops in mathematical detail in the
toy model introduced above, we begin by writing down the rate equations for
the two cells in the presence of di↵usion, namely,

dX1
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= 5X1 � 6Y1 + 1 +DX(X2 �X1) (20.36)
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(20.37)

where the state of cell 1 is given by (X1, Y1) while the state of cell 2 is specified
by (X2, Y2). DX and DY are the (dimensionless) di↵usion constants for the
two morphogens. The chemical parts of the rate equations for both morphogens
are the same as in eqn 20.33. However, the presence of di↵usion results in an
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grow or decay in time. More precisely, if we substitute this trial solution into
eqn 20.34, we find that the parameter � is determined as an eigenvalue of the
matrix appearing on the right side. In order for the initial perturbation away
from the steady state to decay back to zero, the eigenvalues of the matrix have
to both be negative. The eigenvalues are obtained from the quadratic equation

det

✓
5� � �6
6 �7� �

◆
= �2 + 2�+ 1 = 0 (20.35)

from which we conclude that the two eigenvalues are degenerate and both equal
to �1. This guarantees the stability of the steady state. In other words, if we
start the system in any state, defined by the abundance of X and Y molecules,
it will quickly decay into the steady state X = Y = 1.

A qualitatively new and seemingly counterintuitive situation develops when
we go on to the system consisting of two cells, as shown in Figure 20.11(A),
each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
twist to the story is that we allow the morphogens to freely di↵use between the
two cells. Since di↵usion tends to even out di↵erences in concentration and the
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homogeneous steady state can become unstable toward a state with di↵erent
concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
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develop. Turing suggested this as a mechanism by which nominally identical
cells might su↵er very di↵erent fates in the development process.
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where the state of cell 1 is given by (X1, Y1) while the state of cell 2 is specified
by (X2, Y2). DX and DY are the (dimensionless) di↵usion constants for the
two morphogens. The chemical parts of the rate equations for both morphogens
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we go on to the system consisting of two cells, as shown in Figure 20.11(A),
each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
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develop. Turing suggested this as a mechanism by which nominally identical
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To explore how the Turing instability develops in mathematical detail in the
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to �1. This guarantees the stability of the steady state. In other words, if we
start the system in any state, defined by the abundance of X and Y molecules,
it will quickly decay into the steady state X = Y = 1.

A qualitatively new and seemingly counterintuitive situation develops when
we go on to the system consisting of two cells, as shown in Figure 20.11(A),
each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
twist to the story is that we allow the morphogens to freely di↵use between the
two cells. Since di↵usion tends to even out di↵erences in concentration and the
chemistry in each cell is such that X = Y = 1 is a stable steady state, one might
expect that the uniform state in which both cells have this amount of morphogen
would also be a stable steady state in the presence of di↵usion. What Turing
discovered was that this is not necessarily so! In particular, if the inhibitor, in
this case morphogen Y , di↵uses faster than the activator (morphogen X) the
homogeneous steady state can become unstable toward a state with di↵erent
concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
a mechanism by which a spatially non-uniform distribution of morphogens can
develop. Turing suggested this as a mechanism by which nominally identical
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where the state of cell 1 is given by (X1, Y1) while the state of cell 2 is specified
by (X2, Y2). DX and DY are the (dimensionless) di↵usion constants for the
two morphogens. The chemical parts of the rate equations for both morphogens
are the same as in eqn 20.33. However, the presence of di↵usion results in an
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this case morphogen Y , di↵uses faster than the activator (morphogen X) the
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concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
a mechanism by which a spatially non-uniform distribution of morphogens can
develop. Turing suggested this as a mechanism by which nominally identical
cells might su↵er very di↵erent fates in the development process.

To explore how the Turing instability develops in mathematical detail in the
toy model introduced above, we begin by writing down the rate equations for
the two cells in the presence of di↵usion, namely,
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where the state of cell 1 is given by (X1, Y1) while the state of cell 2 is specified
by (X2, Y2). DX and DY are the (dimensionless) di↵usion constants for the
two morphogens. The chemical parts of the rate equations for both morphogens
are the same as in eqn 20.33. However, the presence of di↵usion results in an
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Figure 20.11: A two-cell model of the Turing instability. (A) Two cells, each
containing two species of morphogen are in di↵usive contact. The morphogens
in each cell participate in a chemical reaction that leads to a stable steady state
in the absence of di↵usion. (B) Increasing the di↵usion constant (DY ) of the
morphogen that acts as an inhibitor eventually leads to an instability. This is
signaled by the largest eigenvalue of the rate equation matrix becoming positive.
For this example DX = 0.5.

1 Cell - 2 species (activator and inhibitor)

X stimulates X and Y
Y inhibits both
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It  is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. 
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biolo:~irall, unusual system. 
The investigation is chiefly concerned with the onset of instability. It  is faund that there are six 
essentially different forms which this may take. In the most interesting form stationary waves 
appear on the ring. It  is suggested that this might account, for instance, for the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con- 
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. It  is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis. 

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe- 
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading. 

I n  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t  is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge. 

The model takes two slightly different forms. In one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In  the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter. 

With either of the models one proceeds as with a physical theory and defines an entity 
called 'the state of the system'. One then describes how that state is to be determined from 
the state at  a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and the forces 
between them. I n  the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells rnust also 
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Figure 20.11: A two-cell model of the Turing instability. (A) Two cells, each
containing two species of morphogen are in di↵usive contact. The morphogens
in each cell participate in a chemical reaction that leads to a stable steady state
in the absence of di↵usion. (B) Increasing the di↵usion constant (DY ) of the
morphogen that acts as an inhibitor eventually leads to an instability. This is
signaled by the largest eigenvalue of the rate equation matrix becoming positive.
For this example DX = 0.5.

Diffusion makes the system
potentially UNSTABLE

if Dy >> Dx

but:
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grow or decay in time. More precisely, if we substitute this trial solution into
eqn 20.34, we find that the parameter � is determined as an eigenvalue of the
matrix appearing on the right side. In order for the initial perturbation away
from the steady state to decay back to zero, the eigenvalues of the matrix have
to both be negative. The eigenvalues are obtained from the quadratic equation
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from which we conclude that the two eigenvalues are degenerate and both equal
to �1. This guarantees the stability of the steady state. In other words, if we
start the system in any state, defined by the abundance of X and Y molecules,
it will quickly decay into the steady state X = Y = 1.

A qualitatively new and seemingly counterintuitive situation develops when
we go on to the system consisting of two cells, as shown in Figure 20.11(A),
each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
twist to the story is that we allow the morphogens to freely di↵use between the
two cells. Since di↵usion tends to even out di↵erences in concentration and the
chemistry in each cell is such that X = Y = 1 is a stable steady state, one might
expect that the uniform state in which both cells have this amount of morphogen
would also be a stable steady state in the presence of di↵usion. What Turing
discovered was that this is not necessarily so! In particular, if the inhibitor, in
this case morphogen Y , di↵uses faster than the activator (morphogen X) the
homogeneous steady state can become unstable toward a state with di↵erent
concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
a mechanism by which a spatially non-uniform distribution of morphogens can
develop. Turing suggested this as a mechanism by which nominally identical
cells might su↵er very di↵erent fates in the development process.

To explore how the Turing instability develops in mathematical detail in the
toy model introduced above, we begin by writing down the rate equations for
the two cells in the presence of di↵usion, namely,

dX1

dt
= 5X1 � 6Y1 + 1 +DX(X2 �X1) (20.36)

dY1

dt
= 6X1 � 7Y1 + 1 +DY (Y2 � Y1)

dX2

dt
= 5X2 � 6Y2 + 1 +DX(X1 �X2)

dY2

dt
= 6X2 � 7Y2 + 1 +DY (Y1 � Y2) ,

(20.37)

where the state of cell 1 is given by (X1, Y1) while the state of cell 2 is specified
by (X2, Y2). DX and DY are the (dimensionless) di↵usion constants for the
two morphogens. The chemical parts of the rate equations for both morphogens
are the same as in eqn 20.33. However, the presence of di↵usion results in an
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additional term that describes the di↵usion current from one cell to the other;
the discrete version of Fick’s law tells us that this current is proportional to
the di↵erence in the morphogen content of the two cells and is in the direction
of decreasing morphogen concentration. The previously identified steady state
X1 = Y1 = X2 = Y2 = 1 remains so for the two-cell system but as we show
below, its stability depends upon the values of the di↵usion constants DX and
DY . To illustrate this we compute the four eigenvalues of the rate equation
matrix that governs the time evolution of the perturbation (x1, y1, x2, y2) from
the steady state. Following precisely the same strategy as used for the case in
the absence of di↵usion, we find that the linearized rate equations are given by

d
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(20.38)
If we follow Turing in setting DX = 0.5 and then vary the di↵usion constant
of the inhibitor between 0.5 and 5, we see that an instability arises. In Fig-
ure 20.11(B) we plot the largest eigenvalue (the real part of it) as a function
of DY . A positive eigenvalue indicates an instability and it is clear from the
figure that an instability emerges for DY > 1. For example, for DY = 4.5, the
largest eigenvalue is 2 and the perturbation (x1, y1, x2, y2) = (3⇠, ⇠,�3⇠,�⇠)
is unstable in the sense that ⇠ grows exponentially with time according to the
formula ⇠(t) = ⇠0 exp(2t). This means that the amount of morphogen X and Y
in cell 1 grows over time, while in cell 2 they both diminish. If we think of the
two morphogens as being transcription factors we see how this instability can
drive a di↵erent genetic program to be executed in the two cells. If we allow
the dynamics to unfold according to the linearized dynamics worked out above,
in the long time limit we find the unphysical outcome that the amount of mor-
phogen in cell 2 actually becomes negative. However, this unphysical situation
is typically remedied by nonlinearities in the underlying rate equations. Recall
that in this case the linear equations in eqn 20.38 arise by linearizing the rate
equations in the vicinity of a steady state.

The Turing model with two cells described above showed that an instability
leading to a di↵erent concentration of morphogens in the two cells can develop
as a result of fast di↵usion of the inhibitor. Similarly, and once again following
Turing, we can study the emergence of spatially periodic patterns of morphogens
by considering a one-dimensional lattice of cells, as shown in Figure 20.12. The
morphogens engage in chemical reactions in each cell leading to a homogeneous
(equal in all cells) steady state that is stable. As in the two-cell example, fast
di↵usion of the morphogen acting as an inhibitor can destabilize the steady state
towards a spatially periodic pattern of morphogen concentrations.

We now generalize the highly simplified chemical reactions described earlier
to allow for nonlinear interactions between the di↵erent species. In this case,
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Figure 20.11: A two-cell model of the Turing instability. (A) Two cells, each
containing two species of morphogen are in di↵usive contact. The morphogens
in each cell participate in a chemical reaction that leads to a stable steady state
in the absence of di↵usion. (B) Increasing the di↵usion constant (DY ) of the
morphogen that acts as an inhibitor eventually leads to an instability. This is
signaled by the largest eigenvalue of the rate equation matrix becoming positive.
For this example DX = 0.5.

linear stability analysis: 
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Figure 20.11: A two-cell model of the Turing instability. (A) Two cells, each
containing two species of morphogen are in di↵usive contact. The morphogens
in each cell participate in a chemical reaction that leads to a stable steady state
in the absence of di↵usion. (B) Increasing the di↵usion constant (DY ) of the
morphogen that acts as an inhibitor eventually leads to an instability. This is
signaled by the largest eigenvalue of the rate equation matrix becoming positive.
For this example DX = 0.5.
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additional term that describes the di↵usion current from one cell to the other;
the discrete version of Fick’s law tells us that this current is proportional to
the di↵erence in the morphogen content of the two cells and is in the direction
of decreasing morphogen concentration. The previously identified steady state
X1 = Y1 = X2 = Y2 = 1 remains so for the two-cell system but as we show
below, its stability depends upon the values of the di↵usion constants DX and
DY . To illustrate this we compute the four eigenvalues of the rate equation
matrix that governs the time evolution of the perturbation (x1, y1, x2, y2) from
the steady state. Following precisely the same strategy as used for the case in
the absence of di↵usion, we find that the linearized rate equations are given by
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If we follow Turing in setting DX = 0.5 and then vary the di↵usion constant
of the inhibitor between 0.5 and 5, we see that an instability arises. In Fig-
ure 20.11(B) we plot the largest eigenvalue (the real part of it) as a function
of DY . A positive eigenvalue indicates an instability and it is clear from the
figure that an instability emerges for DY > 1. For example, for DY = 4.5, the
largest eigenvalue is 2 and the perturbation (x1, y1, x2, y2) = (3⇠, ⇠,�3⇠,�⇠)
is unstable in the sense that ⇠ grows exponentially with time according to the
formula ⇠(t) = ⇠0 exp(2t). This means that the amount of morphogen X and Y
in cell 1 grows over time, while in cell 2 they both diminish. If we think of the
two morphogens as being transcription factors we see how this instability can
drive a di↵erent genetic program to be executed in the two cells. If we allow
the dynamics to unfold according to the linearized dynamics worked out above,
in the long time limit we find the unphysical outcome that the amount of mor-
phogen in cell 2 actually becomes negative. However, this unphysical situation
is typically remedied by nonlinearities in the underlying rate equations. Recall
that in this case the linear equations in eqn 20.38 arise by linearizing the rate
equations in the vicinity of a steady state.

The Turing model with two cells described above showed that an instability
leading to a di↵erent concentration of morphogens in the two cells can develop
as a result of fast di↵usion of the inhibitor. Similarly, and once again following
Turing, we can study the emergence of spatially periodic patterns of morphogens
by considering a one-dimensional lattice of cells, as shown in Figure 20.12. The
morphogens engage in chemical reactions in each cell leading to a homogeneous
(equal in all cells) steady state that is stable. As in the two-cell example, fast
di↵usion of the morphogen acting as an inhibitor can destabilize the steady state
towards a spatially periodic pattern of morphogen concentrations.

We now generalize the highly simplified chemical reactions described earlier
to allow for nonlinear interactions between the di↵erent species. In this case,
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20.3.1 Putting Chemistry and Di↵usion Together: Turing
Patterns

One of the first theoretical attempts at answering this question was provided in
the 1950s by the famed British mathematician and computer scientist Alan Tur-
ing who described a mechanism of pattern formation that relied only on chemical
reactions between di↵using molecules. Turing also used the word “morphogen”
to refer to the molecules in his model, because they are able to generate patterns
and shapes. Turing’s proposal has in the intervening years served as an inspira-
tion for generations of models and experiments centering on pattern formation
in biology. Interestingly, while the details of the pattern forming systems in
development, once worked out, have so far revealed mechanisms di↵erent from
that imagined by Turing, this is a powerful example of a “wrong” model that
has played an important role in guiding experiments. Even though the model is
often dismissed as “wrong”, its basic premise, that patterns of gene expression
could be driven by di↵usion and reactions between molecules (often the di↵us-
ing species are transcription factors that bind to DNA) has been proven correct
over and over again.

To obtain intuition about the Turing mechanism of pattern formation we
make use of a toy model suggested by Turing himself in his seminal paper.
The model has two cells each of which can be thought of as its own chemical
reactor with two molecular species, or “morphogens”, X and Y . The chemistry
performed by these morphogens is described by chemical reactions

dX

dt
= 5X � 6Y + 1 (20.33)

dY

dt
= 6X � 7Y + 1

where all the integers appearing in the equations are reaction rates in units of
inverse time. The important feature of these equations, which do not represent
any particular reaction and are introduced simply to illustrate the Turing in-
stability, is that the production of both morphogens is stimulated by X, while
their decay is proportional to the number of Y molecules. In this sense we refer
to the morphogen X as the activator, while Y is the inhibitor.

As can be demonstrated instantly by substitution, the system of rate equa-
tions has a unique steady state, given by X = Y = 1. The stability of this
state can be assessed in exactly the way we did in Chapter 19 for the genetic
switch, by considering a small deviation away from the steady state and asking
whether this perturbation grows or diminishes with time. Mathematically this
corresponds to introducing variables x and y that measure the deviation from
the steady state, namely: X = 1 + x and Y = 1 + y. The time evolution of x
and y can be written in matrix form as

d

dt

✓
x
y

◆
=

✓
5 �6
6 �7

◆✓
x
y

◆
. (20.34)

The question of stability is explored by imagining a time-dependent solution of
the form x(t) = x0e�t and y(t) = y0e�t and examining whether these solutions
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The question of stability is explored by imagining a time-dependent solution of
the form x(t) = x0e�t and y(t) = y0e�t and examining whether these solutions
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grow or decay in time. More precisely, if we substitute this trial solution into
eqn 20.34, we find that the parameter � is determined as an eigenvalue of the
matrix appearing on the right side. In order for the initial perturbation away
from the steady state to decay back to zero, the eigenvalues of the matrix have
to both be negative. The eigenvalues are obtained from the quadratic equation

det

✓
5� � �6
6 �7� �

◆
= �2 + 2�+ 1 = 0 (20.35)

from which we conclude that the two eigenvalues are degenerate and both equal
to �1. This guarantees the stability of the steady state. In other words, if we
start the system in any state, defined by the abundance of X and Y molecules,
it will quickly decay into the steady state X = Y = 1.

A qualitatively new and seemingly counterintuitive situation develops when
we go on to the system consisting of two cells, as shown in Figure 20.11(A),
each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
twist to the story is that we allow the morphogens to freely di↵use between the
two cells. Since di↵usion tends to even out di↵erences in concentration and the
chemistry in each cell is such that X = Y = 1 is a stable steady state, one might
expect that the uniform state in which both cells have this amount of morphogen
would also be a stable steady state in the presence of di↵usion. What Turing
discovered was that this is not necessarily so! In particular, if the inhibitor, in
this case morphogen Y , di↵uses faster than the activator (morphogen X) the
homogeneous steady state can become unstable toward a state with di↵erent
concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
a mechanism by which a spatially non-uniform distribution of morphogens can
develop. Turing suggested this as a mechanism by which nominally identical
cells might su↵er very di↵erent fates in the development process.

To explore how the Turing instability develops in mathematical detail in the
toy model introduced above, we begin by writing down the rate equations for
the two cells in the presence of di↵usion, namely,

dX1

dt
= 5X1 � 6Y1 + 1 +DX(X2 �X1) (20.36)

dY1

dt
= 6X1 � 7Y1 + 1 +DY (Y2 � Y1)

dX2

dt
= 5X2 � 6Y2 + 1 +DX(X1 �X2)

dY2

dt
= 6X2 � 7Y2 + 1 +DY (Y1 � Y2) ,

(20.37)

where the state of cell 1 is given by (X1, Y1) while the state of cell 2 is specified
by (X2, Y2). DX and DY are the (dimensionless) di↵usion constants for the
two morphogens. The chemical parts of the rate equations for both morphogens
are the same as in eqn 20.33. However, the presence of di↵usion results in an

is eigenvalue of rate matrixand

hence: stability depends on Dy relative to Dx

21. Spatial patterns: Turing instabilities  — Diffusion!

II. Chemical Instabilities
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It  is suggested that a system of chemical substances, called morphogens, reacting together and 
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. 
Such a system, although it may originally be quite homogeneous, may later develop a pattern 
or structure due to an instability of the homogeneous equilibrium, which is triggered off by 
random disturbances. Such reaction-diffusion systems are considered in some detail in the case 
of an isolated ring of cells, a mathematically convenient, though biolo:~irall, unusual system. 
The investigation is chiefly concerned with the onset of instability. It  is faund that there are six 
essentially different forms which this may take. In the most interesting form stationary waves 
appear on the ring. It  is suggested that this might account, for instance, for the tentacle patterns 
on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con- 
sidered. Such a system appears to account for gastrulation. Another reaction system in two 
dimensions gives rise to patterns reminiscent of dappling. It  is also suggested that stationary 
waves in two dimensions could account for the phenomena of phyllotaxis. 

The purpose of this paper is to discuss a possible mechanism by which the genes of a zygote 
may determine the anatomical structure of the resulting organism. The theory does not make any 
new hypotheses; it merely suggests that certain well-known physical laws are sufficient to account 
for many of the facts. The full understanding of the paper requires a good knowledge of mathe- 
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be 
experts in all of these subjects, a number of elementary facts are explained, which can be found in 
text-books, but whose omission would make the paper difficult reading. 

I n  this section a mathematical model of the growing embryo will be described. This model 
will be a simplification and an idealization, and consequently a falsification. I t  is to be 
hoped that the features retained for discussion are those of greatest importance in the 
present state of knowledge. 

The model takes two slightly different forms. In one of them the cell theory is recognized 
but the cells are idealized into geometrical points. In  the other the matter of the organism 
is imagined as continuously distributed. The cells are not, however, completely ignored, 
for various physical and physico-chemical characteristics of the matter as a whole are 
assumed to have values appropriate to the cellular matter. 

With either of the models one proceeds as with a physical theory and defines an entity 
called 'the state of the system'. One then describes how that state is to be determined from 
the state at  a moment very shortly before. With either model the description of the state 
consists of two parts, the mechanical and the chemical. The mechanical part of the state 
describes the positions, masses, velocities and elastic properties of the cells, and the forces 
between them. I n  the continuous form of the theory essentially the same information is 
given in the form of the stress, velocity, density and elasticity of the matter. The chemical 
part of the state is given (in the cell form of theory) as the chemical composition of each 
separate cell; the diffusibility of each substance between each two adjacent cells rnust also 
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yr leads to a set of linear di↵erential equations

dxr

dt
= A1xr +B1yr +DX(xr+1 + xr�1 � 2xr) (20.41)

dyr
dt

= A2xr +B2yr +DY (yr+1 + yr�1 � 2yr) .

The coe�cientsA1, B1, A2, andB2 are partial derivatives of f(X,Y ) and g(X,Y )
with respect toX and Y evaluated at (X,Y ) = (h, k). In order to investigate the
stability of the steady state with respect to a periodic perturbation we consider
the trial solution of eqn 20.41 in the form

xr(t) = x(t) exp

✓
i
2⇡r

�

◆
(20.42)

yr(t) = y(t) exp

✓
i
2⇡r

�

◆
,

where � is the wavelength of the perturbation in units of cell length. The
physical perturbation is the real part of the expressions appearing on the right
hand side of the above equations; the linearity of these equations makes this
trick possible.

Substituting eqn 20.42 into eqn 20.41 we arrive at the equations for the wave
amplitudes x(t) and y(t) of the form

dx

dt
=

h
A1 +DX

⇣
ei

2⇡
� + e�i 2⇡

� � 2
⌘i

x+B1y (20.43)

dy

dt
= A2x+

h
B2 +DY

⇣
ei

2⇡
� + e�i 2⇡

� � 2
⌘i

y .

Assuming that the wavelength � � 1 we can use the Taylor expansion ex =
1 + x+ x2/2 to simplify the above equations to

dx

dt
=

⇥
A1 �DX(2⇡/�)2

⇤
x+B1y (20.44)

dy

dt
= A2x+

⇥
B2 �DY (2⇡/�)

2
⇤
y .

As for the two-cell model, in order to determine the fate of the perturbation we
need to determine the eigenvalues of the rate matrix

R =

✓
A1 �DX(2⇡/�)2 B1

A2 B2 �DY (2⇡/�)2

◆
(20.45)

which in this case will depend on the wavelength �. The largest eigenvalue (the
real part of it) is plotted in Figure 20.12 as a function of � for a particular
choice of parameters, A1 = 1, B2 = �1, A2B1 = �1, DX = 1 and DY = 100,
which were chosen so that morphogen Y is an inhibitor and it di↵uses much
faster than morphogen X. It is clear from the plot of the largest eigenvalue
that there is a preferred wavelength �⇤ ⇡ 4 for which the eigenvalue of R
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Figure 20.12: Turing waves. (A) One-dimensional lattice of cells each containing
two reacting morphogen species, activators and inhibitors, which di↵use between
cells. (B) The largest eigenvalue of the rate equation matrix depends on the
wavelength of the perturbation from the homogeneous state. The perturbation
with the largest eigenvalue is the dominant instability and leads to a periodic
pattern of morphogen concentrations.

the chemistry taking place in each of the cells is described by the rate equations

dXr

dt
= f(Xr, Yr) (20.39)

dYr

dt
= g(Xr, Yr)

where Xr and Yr are the number of activator and inhibitor morphogens in cell
r. The functions f and g describe the reactions in each cell, and are in principle
non-linear functions of their arguments. Next we assume that (Xr, Yr) = (h, k)
is a stable steady state of the rate equations, just like (1, 1) was a steady state
for both cells in the two-cell example. We analyze the stability of the (Xr, Yr) =
(h, k) state when di↵usion between the cells is turned on. In this case the rate
equations become

dXr

dt
= f(Xr, Yr) +DX(Xr+1 +Xr�1 � 2Xr) (20.40)

dYr

dt
= g(Xr, Yr) +DY (Yr+1 + Yr�1 � 2Yr)

where the di↵usion term in each equation describes the sum of di↵usive currents
into cell r coming from the neighboring cells r � 1 and r + 1.

To assess the stability of the homogeneous steady state (Xr, Yr) = (h, k) we
perform a linear stability analysis of eqn 20.40. We introduce the quantities
(xr, yr) that describe the excursion of the morphogens away from the steady
state, i.e., (Xr, Yr) = (h+xr, k+ yr), and assume the perturbation to be small.
Expanding the reaction-di↵usion equations, eqn 20.40 to linear order in xr and
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the chemistry taking place in each of the cells is described by the rate equations

dXr

dt
= f(Xr, Yr) (20.39)

dYr

dt
= g(Xr, Yr)

where Xr and Yr are the number of activator and inhibitor morphogens in cell
r. The functions f and g describe the reactions in each cell, and are in principle
non-linear functions of their arguments. Next we assume that (Xr, Yr) = (h, k)
is a stable steady state of the rate equations, just like (1, 1) was a steady state
for both cells in the two-cell example. We analyze the stability of the (Xr, Yr) =
(h, k) state when di↵usion between the cells is turned on. In this case the rate
equations become

dXr

dt
= f(Xr, Yr) +DX(Xr+1 +Xr�1 � 2Xr) (20.40)

dYr

dt
= g(Xr, Yr) +DY (Yr+1 + Yr�1 � 2Yr)

where the di↵usion term in each equation describes the sum of di↵usive currents
into cell r coming from the neighboring cells r � 1 and r + 1.

To assess the stability of the homogeneous steady state (Xr, Yr) = (h, k) we
perform a linear stability analysis of eqn 20.40. We introduce the quantities
(xr, yr) that describe the excursion of the morphogens away from the steady
state, i.e., (Xr, Yr) = (h+xr, k+ yr), and assume the perturbation to be small.
Expanding the reaction-di↵usion equations, eqn 20.40 to linear order in xr and

linear stability analysis: 
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(equation of deviation from steady state) 4

20.3. REACTION-DIFFUSION AND SPATIAL PATTERNS 1331

yr leads to a set of linear di↵erential equations

dxr

dt
= A1xr +B1yr +DX(xr+1 + xr�1 � 2xr) (20.41)

dyr
dt

= A2xr +B2yr +DY (yr+1 + yr�1 � 2yr) .

The coe�cientsA1, B1, A2, andB2 are partial derivatives of f(X,Y ) and g(X,Y )
with respect toX and Y evaluated at (X,Y ) = (h, k). In order to investigate the
stability of the steady state with respect to a periodic perturbation we consider
the trial solution of eqn 20.41 in the form

xr(t) = x(t) exp

✓
i
2⇡r

�

◆
(20.42)

yr(t) = y(t) exp

✓
i
2⇡r

�

◆
,

where � is the wavelength of the perturbation in units of cell length. The
physical perturbation is the real part of the expressions appearing on the right
hand side of the above equations; the linearity of these equations makes this
trick possible.

Substituting eqn 20.42 into eqn 20.41 we arrive at the equations for the wave
amplitudes x(t) and y(t) of the form

dx

dt
=

h
A1 +DX

⇣
ei

2⇡
� + e�i 2⇡

� � 2
⌘i

x+B1y (20.43)

dy

dt
= A2x+

h
B2 +DY

⇣
ei

2⇡
� + e�i 2⇡

� � 2
⌘i

y .

Assuming that the wavelength � � 1 we can use the Taylor expansion ex =
1 + x+ x2/2 to simplify the above equations to

dx

dt
=

⇥
A1 �DX(2⇡/�)2

⇤
x+B1y (20.44)

dy

dt
= A2x+

⇥
B2 �DY (2⇡/�)

2
⇤
y .

As for the two-cell model, in order to determine the fate of the perturbation we
need to determine the eigenvalues of the rate matrix

R =

✓
A1 �DX(2⇡/�)2 B1

A2 B2 �DY (2⇡/�)2

◆
(20.45)

which in this case will depend on the wavelength �. The largest eigenvalue (the
real part of it) is plotted in Figure 20.12 as a function of � for a particular
choice of parameters, A1 = 1, B2 = �1, A2B1 = �1, DX = 1 and DY = 100,
which were chosen so that morphogen Y is an inhibitor and it di↵uses much
faster than morphogen X. It is clear from the plot of the largest eigenvalue
that there is a preferred wavelength �⇤ ⇡ 4 for which the eigenvalue of R

rate matrix (approximation with    >>1)
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where � is the wavelength of the perturbation in units of cell length. The
physical perturbation is the real part of the expressions appearing on the right
hand side of the above equations; the linearity of these equations makes this
trick possible.

Substituting eqn 20.42 into eqn 20.41 we arrive at the equations for the wave
amplitudes x(t) and y(t) of the form
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� � 2
⌘i
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dy

dt
= A2x+

h
B2 +DY

⇣
ei

2⇡
� + e�i 2⇡

� � 2
⌘i

y .

Assuming that the wavelength � � 1 we can use the Taylor expansion ex =
1 + x+ x2/2 to simplify the above equations to

dx

dt
=

⇥
A1 �DX(2⇡/�)2

⇤
x+B1y (20.44)

dy

dt
= A2x+

⇥
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2
⇤
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As for the two-cell model, in order to determine the fate of the perturbation we
need to determine the eigenvalues of the rate matrix

R =

✓
A1 �DX(2⇡/�)2 B1

A2 B2 �DY (2⇡/�)2

◆
(20.45)

which in this case will depend on the wavelength �. The largest eigenvalue (the
real part of it) is plotted in Figure 20.12 as a function of � for a particular
choice of parameters, A1 = 1, B2 = �1, A2B1 = �1, DX = 1 and DY = 100,
which were chosen so that morphogen Y is an inhibitor and it di↵uses much
faster than morphogen X. It is clear from the plot of the largest eigenvalue
that there is a preferred wavelength �⇤ ⇡ 4 for which the eigenvalue of R
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grow or decay in time. More precisely, if we substitute this trial solution into
eqn 20.34, we find that the parameter � is determined as an eigenvalue of the
matrix appearing on the right side. In order for the initial perturbation away
from the steady state to decay back to zero, the eigenvalues of the matrix have
to both be negative. The eigenvalues are obtained from the quadratic equation

det

✓
5� � �6
6 �7� �

◆
= �2 + 2�+ 1 = 0 (20.35)

from which we conclude that the two eigenvalues are degenerate and both equal
to �1. This guarantees the stability of the steady state. In other words, if we
start the system in any state, defined by the abundance of X and Y molecules,
it will quickly decay into the steady state X = Y = 1.

A qualitatively new and seemingly counterintuitive situation develops when
we go on to the system consisting of two cells, as shown in Figure 20.11(A),
each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
twist to the story is that we allow the morphogens to freely di↵use between the
two cells. Since di↵usion tends to even out di↵erences in concentration and the
chemistry in each cell is such that X = Y = 1 is a stable steady state, one might
expect that the uniform state in which both cells have this amount of morphogen
would also be a stable steady state in the presence of di↵usion. What Turing
discovered was that this is not necessarily so! In particular, if the inhibitor, in
this case morphogen Y , di↵uses faster than the activator (morphogen X) the
homogeneous steady state can become unstable toward a state with di↵erent
concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
a mechanism by which a spatially non-uniform distribution of morphogens can
develop. Turing suggested this as a mechanism by which nominally identical
cells might su↵er very di↵erent fates in the development process.

To explore how the Turing instability develops in mathematical detail in the
toy model introduced above, we begin by writing down the rate equations for
the two cells in the presence of di↵usion, namely,

dX1

dt
= 5X1 � 6Y1 + 1 +DX(X2 �X1) (20.36)

dY1

dt
= 6X1 � 7Y1 + 1 +DY (Y2 � Y1)

dX2

dt
= 5X2 � 6Y2 + 1 +DX(X1 �X2)

dY2

dt
= 6X2 � 7Y2 + 1 +DY (Y1 � Y2) ,

(20.37)

where the state of cell 1 is given by (X1, Y1) while the state of cell 2 is specified
by (X2, Y2). DX and DY are the (dimensionless) di↵usion constants for the
two morphogens. The chemical parts of the rate equations for both morphogens
are the same as in eqn 20.33. However, the presence of di↵usion results in an
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grow or decay in time. More precisely, if we substitute this trial solution into
eqn 20.34, we find that the parameter � is determined as an eigenvalue of the
matrix appearing on the right side. In order for the initial perturbation away
from the steady state to decay back to zero, the eigenvalues of the matrix have
to both be negative. The eigenvalues are obtained from the quadratic equation

det

✓
5� � �6
6 �7� �

◆
= �2 + 2�+ 1 = 0 (20.35)

from which we conclude that the two eigenvalues are degenerate and both equal
to �1. This guarantees the stability of the steady state. In other words, if we
start the system in any state, defined by the abundance of X and Y molecules,
it will quickly decay into the steady state X = Y = 1.

A qualitatively new and seemingly counterintuitive situation develops when
we go on to the system consisting of two cells, as shown in Figure 20.11(A),
each containing some amount of morphogen X and Y , subject to the same
chemistry as that described by the rate equations given in eqn 20.33. The new
twist to the story is that we allow the morphogens to freely di↵use between the
two cells. Since di↵usion tends to even out di↵erences in concentration and the
chemistry in each cell is such that X = Y = 1 is a stable steady state, one might
expect that the uniform state in which both cells have this amount of morphogen
would also be a stable steady state in the presence of di↵usion. What Turing
discovered was that this is not necessarily so! In particular, if the inhibitor, in
this case morphogen Y , di↵uses faster than the activator (morphogen X) the
homogeneous steady state can become unstable toward a state with di↵erent
concentrations of morphogens in the two cells. Intriguingly, di↵usion can provide
a mechanism by which a spatially non-uniform distribution of morphogens can
develop. Turing suggested this as a mechanism by which nominally identical
cells might su↵er very di↵erent fates in the development process.

To explore how the Turing instability develops in mathematical detail in the
toy model introduced above, we begin by writing down the rate equations for
the two cells in the presence of di↵usion, namely,

dX1

dt
= 5X1 � 6Y1 + 1 +DX(X2 �X1) (20.36)
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Figure 20.12: Turing waves. (A) One-dimensional lattice of cells each containing
two reacting morphogen species, activators and inhibitors, which di↵use between
cells. (B) The largest eigenvalue of the rate equation matrix depends on the
wavelength of the perturbation from the homogeneous state. The perturbation
with the largest eigenvalue is the dominant instability and leads to a periodic
pattern of morphogen concentrations.

the chemistry taking place in each of the cells is described by the rate equations

dXr

dt
= f(Xr, Yr) (20.39)

dYr

dt
= g(Xr, Yr)

where Xr and Yr are the number of activator and inhibitor morphogens in cell
r. The functions f and g describe the reactions in each cell, and are in principle
non-linear functions of their arguments. Next we assume that (Xr, Yr) = (h, k)
is a stable steady state of the rate equations, just like (1, 1) was a steady state
for both cells in the two-cell example. We analyze the stability of the (Xr, Yr) =
(h, k) state when di↵usion between the cells is turned on. In this case the rate
equations become

dXr

dt
= f(Xr, Yr) +DX(Xr+1 +Xr�1 � 2Xr) (20.40)

dYr

dt
= g(Xr, Yr) +DY (Yr+1 + Yr�1 � 2Yr)

where the di↵usion term in each equation describes the sum of di↵usive currents
into cell r coming from the neighboring cells r � 1 and r + 1.

To assess the stability of the homogeneous steady state (Xr, Yr) = (h, k) we
perform a linear stability analysis of eqn 20.40. We introduce the quantities
(xr, yr) that describe the excursion of the morphogens away from the steady
state, i.e., (Xr, Yr) = (h+xr, k+ yr), and assume the perturbation to be small.
Expanding the reaction-di↵usion equations, eqn 20.40 to linear order in xr and
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jaguar Panthera onca

leopard Panthera pardus

tiger Panthera tigris

snow leopard Panthera uncia

clouded leopard Neofelis nebulosa

serval Caracal serval

Geoffroy’s cat Leopardus guigna

Iberian Lynx Lynx pardinus

cheetah Acinonyx jubatus

photograph simulation

Figure 20.13: Coat patterns in a variety of felid species, and their approxima-
tions by reaction di↵usion simulations. For all pairs, the simulated pattern is
shown on the right, and a size-match photograph of animal skin is shown on the
left. (Adapted from W. L. Allen et al., Proc. Roy. Soc. B 278:1373, 2011.)

Why the leopard got its spots: relating
pattern development to ecology in felids
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A complete explanation of the diversity of animal colour patterns requires an understanding of both the
developmental mechanisms generating them and their adaptive value. However, only two previous
studies, which involved computer-generated evolving prey, have attempted to make this link. This
study examines variation in the camouflage patterns displayed on the flanks of many felids. After control-
ling for the effects of shared ancestry using a fully resolved molecular phylogeny, this study shows how
phenotypes from plausible felid coat pattern generation mechanisms relate to ecology. We found that like-
lihood of patterning and pattern attributes, such as complexity and irregularity, were related to felids’
habitats, arboreality and nocturnality. Our analysis also indicates that disruptive selection is a likely expla-
nation for the prevalence of melanistic forms in Felidae. Furthermore, we show that there is little
phylogenetic signal in the visual appearance of felid patterning, indicating that camouflage adapts to ecol-
ogy over relatively short time scales. Our method could be applied to any taxon with colour patterns that
can reasonably be matched to reaction–diffusion and similar models, where the kinetics of the reaction
between two or more initially randomly dispersed morphogens determines the outcome of pattern
development.

Keywords: camouflage; background matching; pattern formation; reaction–diffusion models;
melanism; disruptive selection

1. INTRODUCTION
The patterns displayed on the flanks of felids are intri-
guing in their variety. Previous studies of the adaptive
function of cat coat patterns have indicated that they are
likely to be for camouflage rather than communication
or physiological reasons [1,2]. The primary hunting
strategy of felids is to stalk prey until they are close
enough to capture them with a pounce or quick rush
[3,4]. As hunts are more successful when an attack is
initiated from shorter distances [5,6], cats benefit from
remaining undetected for as long as possible and camou-
flage helps achieve this. Many smaller cats are also likely
to be camouflaged for protection from predation [7].

Two studies have previously examined felid patterning
using the comparative method. Ortolani & Caro [1] used
a concentrated changes test [8] to find a significant
association in felids between losing spotted coats and
absence from forested environments. Across all carni-
vores, this association between spots and forested
habitats approached significance and spots were signifi-
cantly associated with arboreality. Similarly, Ortolani [2]
found support for dark spots on carnivores being associ-
ated with closed habitats, arboreal locomotion and
preying on ungulates. In the study of Ortolani & Caro
[1], there was no association between vertically striped
coats and utilization of grassland habitats in either felids
or all carnivores. There was some support for vertical

stripes emerging in species using grasslands and terrestrial
locomotion when examining all carnivores in the more
extensive dataset used by Ortolani [2], perhaps due to
greater statistical power, as well as for an association
between dark horizontal stripes and arboreal locomotion.
Overall, their results supported the hypothesis that felid
flank patterns evolve to match the visual appearance of
the background.

Ortolani & Caro [1] were aware that their method of
subjective classification of patterning as either uniform,
spotted, horizontally or vertically striped may have
masked important variety in felid patterning (so redu-
cing statistical power). Twenty-two of 32 felids were
classed as spotted, six as uniform, two as horizontally
striped and two as vertically striped. Classifying patterns
into broad categories was a necessity in an expansive
study that examined all carnivores. In this study, we
develop a parametric classification method that describes
detailed differences in the visual appearance of markings
displayed by, for example, jaguars Panthera onca, clouded
leopards Neofelis nebulosa and serval Caracal serval—
three species with very different appearances that were
all classed as spotted under previous classification
schemes [1,2].

Increasingly, studies of animal patterning have used
image processing techniques such as Fourier analysis
[9], wavelet analysis [10], edge detection [11], and com-
binations of these and similar techniques [12] to obtain
statistics that quantify aspects of patterning. However,
such methods rely on obtaining standardized and cali-
brated images [13]. With often rare, secretive and exotic
animals as our subject, we utilized the large corpus of
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Figure 20.17: Local excitation and global inhibition in cell polarization. (A)
Lattice model of local activation and global inhibition. Two interacting molec-
ular species, shown here in red (activator) and blue (inhibitor) start o↵ nearly
uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
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concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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Lattice model of local activation and global inhibition. Two interacting molec-
ular species, shown here in red (activator) and blue (inhibitor) start o↵ nearly
uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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Figure 20.17: Local excitation and global inhibition in cell polarization. (A)
Lattice model of local activation and global inhibition. Two interacting molec-
ular species, shown here in red (activator) and blue (inhibitor) start o↵ nearly
uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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21. Spatial patterns: Local self-enhancement - Global inhibition

• Example: Ant cemetery construction
Ants carry dead corpses and deposit them to forme piles
Local + Feedback (ants deposit on piles)
Global negative feedback: depletion of corpses that arrest growth of piles

mm (half the average size of a corpse). A pile is defined as a
cluster of at least five corpses. The individual behavior of ants
was studied with a separate set of experiments. The spontaneous
probabilities for an ant to drop a corpse or to make a U-turn
during walking were estimated by calculating the regression line
of the survivorship curves of these events. The probabilities of
picking up and dropping a corpse as a function of the size of the
pile encountered by an ant were estimated by a series of
experiments during which piles with predefined sizes were
created. The size of the piles was kept constant during these
experiments. Ants’ trajectories were digitized by using a GrafBar
GP-7 sonic digitizer (Science Accessories, Southport, CT). We
put a glass plate over the active area of the digitizer and placed
behind it a 13-inch video monitor. As an ant moved on the
screen, it was followed with the digitizer cursor, and its path was
input into a microcomputer as a series of X-Y Cartesian coor-
dinates at a rate of five points per second. Because the speed at
which the ants were moving on the screen was relatively slow,
ants could be followed with the videotapes played at normal
speed. Digitized trajectories were used to compute the running
velocity of ants, defined as the ratio of total trajectory length
over the time the animal spent moving during the trajectory.

Results
Clustering Behavior: Collective and Individual Levels. After having
reached the arena, workers pick up corpses and drop them to
form piles. After a few hours, several clusters are formed. Over
time, some clusters grow and others disappear, leading to an
apparent steady state with a stable number of clusters over the
duration of the experiment (Fig. 1 b–d). The sigmoidal growth
of surviving clusters, an illustration of which is given in Fig. 2,
suggests that cluster formation is autocatalytic. The number of
clusters initially grows to reach a maximum after about 3 hr and
then decreases and stabilizes.

The above results suggest a LALI mechanism: because the
addition of corpses to a cluster is more likely as the cluster
increases in size, cluster growth is locally self-enhancing and is
inhibited by the depletion of corpses in the cluster’s neighbor-
hood. This type of LALI model, coined ‘‘activator-substrate’’ (9),
has been suggested in the formation of certain seashell patterns
(4). To confirm this conjecture, the underlying microscopic rules
have to be identified. Observation of the ants’ behavior shows

that workers pick up or drop corpses with a probability that
depends on the local density (c) of corpses. Picking up and
dropping probabilities and their functional form have been
estimated from experimental data (Fig. 3 a and b). Unladen ants
pick up corpses with a probability that decreases with cluster size,
whereas corpse-carrying ants drop corpses with a probability
that increases with cluster size. The latter ants are also charac-
terized by a spontaneous dropping probability that has been
estimated from experimental data (Fig. 3c). Trajectory mea-
surements show that the ants move randomly along the arena’s
periphery (one-dimensional random walk) and allow the iden-
tification of two additional microscopic characteristics: individ-
ual velocity and mean free path. The mean velocity of ants is
! ! 1.6 " 0.7 cm!s#1 (n ! 25), and for such parameter range,
random walk can be shown to be only little influenced by the
velocity distribution. Further discussion will therefore assume a
constant velocity of walking at the average velocity value. Ants
are also characterized by a constant probability per unit of time
of making a U-turn during their walk (0.10 s#1), and the
corresponding mean free path (l ! 15.8 cm) is significantly
smaller than the size of the arena’s periphery (78.5 and 157.1 cm
for the arena sizes used in the experiments).

Model Description. These estimates of microscopic behavioral
parameters and the response functions have been used to build
a macroscopic mathematical model that falls within the activa-
tor-substrate class of LALI models, which thus confirmed our
previous assumptions. The model involves two variables: the
density of corpse-carrying ants a(x, t) and the density of corpses
c(x, t), where x and t stand for space and time, respectively. " is
the density of noncarrying ants. At any given time, their pro-
portion in experiments is large ("!(a $ ") ! 0.94 " 0.07,
estimated over 135 observations; mean density "! " SD ! 20.0 "
7.0 m#1). Because of the diffusion process resulting from the
random walk of noncarrying ants, " is assumed to remain
uniform and constant over time in the model. Ants’ behavior
can then be approximated by the following reaction–diffusion
equations:

#c
#t $ %&c, a' [1]

Fig. 1. An example of aggregation dynamics observed for an arena of Ø !
50 cm and with n ! 400 corpses. (a) At t ! 0; (b) after 6 h; (c) after 12 h; (d ) after
45 h.

Fig. 2. An example of growth of a surviving cluster of corpses for an arena
of Ø ! 25 cm and with n ! 100 corpses.
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Comparison of the Model’s Predictions with Experimental Results. As
shown in Fig. 5, the dynamics of the average number of piles with
time and the time at which the maximum number of piles is reached
given by the model are in close agreement with the experiments in
the four conditions studied. In particular, predictions of the stability
analysis are confirmed in the initial phase (up to maximum pile
number): (i) doubling the density leads to a doubling of the number
of piles; (ii) doubling the arena’s diameter, whereas keeping the
same density also leads to twice as many piles; (iii) in experiments
performed with an initial density of corpses (13 corpses m!1) below,
no stable clusters were observed. In situations where several piles
coexist after 24 or 48 hr (far from the homogenous state), although
no strict regularity may be noticed, a critical distance exists between
two consecutive piles below which only one of them can ‘‘survive’’
in the long term as shown in Fig. 6. After 24 hr, with the small arena
and whatever the initial density of corpses, the presence of two
consecutive piles within 20 cm of each other is very unlikely. In any
case, the distance between piles is never less than 10 cm. The most
frequent distribution, with piles located on opposite sides of the
arena, is observed in 50% of the cases. The corresponding theo-
retical distribution is not significantly different from the experi-
mental one, and both distributions differ significantly from a
random distribution (Fig. 6).

Discussion
The observation of cemetery formation in ant colonies suggests
a LALI mechanism based on individual worker behavior. It is a
peculiar example of such mechanisms in that it involves animal

behavior and not physical and chemical morphogens. All of the
behavioral parameters of the corresponding model were quan-
tified in dedicated experiments. When loaded with the experi-
mental parameter values, the model not only leads to the
formation of patterns that reproduce the properties of cemetery
formation, but also predicts how the pattern is affected by such
experimental characteristics as corpse density and arena size.
Experiments aimed at testing the model’s predictions show that
the predictions are indeed satisfied. This is a strong indication
that the formation of cemeteries in ants is an example of LALI
morphogenesis, which makes it one of the first convincing
documented biological examples and certainly the first involving
higher organisms. Our work should encourage researchers to
look for such mechanisms in other collective behavioral patterns
such as network formation (33, 34), nest construction (29–31,
39), or herd patterns (40, 41), where it could be easier to identify
the underlying activation and inhibition mechanisms than in
other systems.

We thank S. Foucaud and F. Villeneuve-Séguier for technical assis-
tance and discussions and P. Borckmans, G. Dewel, and R. Lefever for
helpful comments on an earlier draft. This work was supported by the
Santa Fe Institute and by grants from the Conseil Régional Midi-
Pyrénées and the Groupement d’Intérêt Scientifique ‘‘Sciences de la
Cognition.’’
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Fig. 5. Evolution as a function of time of the mean number of clusters (a
cluster contains at least five corpses) obtained from 20 integrations of the
model equations (full lines) and of the number of clusters obtained experi-
mentally (average and SD are given for six experiments per condition) in four
experimental conditions. (a) Ø " 25 cm, 100 corpses; (b) Ø " 25 cm, 200 corpses;
(c) Ø " 50 cm, 200 corpses; (d ) Ø " 50 cm, 400 corpses). The initial conditions
(spatial distribution of corpses) are randomly set around the value (cs). The
parameter values used in the model are those of Fig. 3 legend.

Fig. 6. Comparison between theoretical (n " 47) and experimental (n " 21)
distributions of distances between two consecutive clusters in the conditions
Ø " 25 cm, 100 corpses and Ø " 25 cm, 200 corpses in the case where only two
clusters remain after 24 hr. There is no statistical difference between experi-
mental and theoretical distributions (Kolmogorov–Smirnov test performed on
distances, P # 0.334, Z " 0.945) and both distributions are statistically different
of a random distribution, n " 5.103 (Kolmogorov–Smirnov test performed on
distances, P $ 0.05, Z " 1.543 and P $ 0.001, Z " 3.636 respectively). The
random distribution is generated as follows: the positions of the two clusters
are independent of each other, except that they cannot overlap. The proba-
bility that the distance is less than the length of the pile (L " 4 cm) is 0 and the
probability P(l) to have a distance l greater than L and smaller than 0.5!Ø is
P(l) " 1![0.5!Ø ! L].
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!a
!t " # !"c, a# $ D

!2a
!x2 , [2]

where !(c, a) is the sum of three terms:

!"c, a# " v ! kdaÇ
I

$
%1a&c

%2 $ &cÇ
II

#
%3'c

%4 $ &cÇ
III

" . [3]

In Eq. 3, v is the linear velocity of the ants, part I represents
spontaneous dropping (with kd the spontaneous dropping rate
per laden ants), and parts II and III represent density-dependent
dropping and picking, respectively. I and II are proportional to
the density of corpse-carrying ants (a), and III is proportional to
noncarrying ants ('). %1, %2, %3, and %4 are empirical constants.
&c is a nonlocal term that introduces a short-range interaction
between workers and corpses:

&c "
1

2$ #
x%$

x&$

c"z# dz ,

where $ is a small radius of perception within which workers can
detect corpses (dedicated experimental measurements lead to a
characteristic radius of 0.5 cm ' $ ' 1.0 cm). The dropping rate

per laden ants (II) increases with &c and reaches the asymptotic
value v%1. The picking rate per noncarrying ants (III) results
from the presence of noncarrying ants picking available corpses.
It decreases when &c increases. Therefore, according to III,
cluster size acts as a negative feedback on the picking rate,
because &c is a local indicator of cluster size. As a result of II and
III, clusters form, and their growth inhibits the further growth of
other clusters. A standard stability analysis, where a perturbation
around the unique homogeneous steady state (cs, as) is intro-
duced (c ( cs & (c0e)t&i*x; a ( as & (a0e)t&i*x), leads to the
characteristic equation:

)2 $ "%) $ * $ D*2#) # )D*2 " 0 , [4]

where

) "
sin"*$#

*$ $ %2%1as

"%2 $ cs#
2 $

%3'cs

"%4 $ cs#
2%#

%3'

"%4 $ cs#

* " kd $
%1cs

"%2 $ cs#
.

Solving Eq. 4 for ) yields the rate of growth )(*) of the
perturbation for a given wave number *. Here )(*) exhibits a
finite range of unstable modes that includes the marginally stable
mode )(0) ( 0 (Fig. 4). This is a well-known property of systems
involving a conservation law. Furthermore, as is usual with such
models, the most unstable wave number, that is the one for which
)(*) is maximum, is proportional to corpse density. In other
words the analysis predicts (i) that in the vicinity of the homo-
geneous state, doubling corpse density should lead to twice as
many piles; this situation may change over time as the system
relaxes away from the homogeneous state as other unstable wave
numbers may become amplified; (ii) that doubling the arena’s
diameter while keeping the density constant should lead to twice
as many piles; (iii) that a critical density of corpses exists (cc (
46 corpses m%1) below which no aggregation occurs.

Fig. 3. Density-dependent probabilities of dropping (a) and picking (b) a
corpse, as estimated from experiments and theoretical fittings of the drop-
ping and picking rates (continuous line). The total number of ants dropping
and picking up corpses for each size of pile is indicated in brackets. The
theoretical fitting is obtained by using the Eqs. 1–3. A pile of corpses is
introduced in the theoretical setup to reproduce the experimental procedure.
The fraction of corpse-carrying ants crossing the pile and dropping their load
gives the rate of dropping for this pile. This fraction is computed for different
pile sizes. The comparison between this theoretical fraction and the corre-
sponding experimental one provides an estimate of the parameters of the
dropping function %1 and %2. The same procedure is used to adjust the picking
rate (%3 and %4), for which the fraction of laden ants leaving the cluster was
measured. Adjusted values %1 ( 31.75 m%1, %2 ( 1,000 m%1, %3 ( 3.125 m%1 and
%4 ( 50 m%1 were obtained with kd ( 0.75 m%1, ' ( 40&+Ø!m%1, $ ( 1 cm, v (
1.6. 10%2 m!s%1, l ( 15.8 10%2 m and D ( v 1&2 ( 1.3!10%3 m2!s%1 (see Eqs. 2 and
3). (c) The natural log of the proportion of ants (n ( 127) still carrying a corpse
as a function of the distance covered since they had picked it up. The rela-
tionship is best described by the natural log of the proportion of ants that did
not yet dropped the corpse they carry ( % kdx with kd ( 0.75 m%1 (r2 ( 0.975;
x is the distance in m).

Fig. 4. Stability analysis of the steady states. Solution of the characteristic
equation as a function of the wave number * for the experimental conditions
Ø ( 25 cm, 100 corpses and 200 corpses. The parameter values are those of Fig.
3 legend.
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mm (half the average size of a corpse). A pile is defined as a
cluster of at least five corpses. The individual behavior of ants
was studied with a separate set of experiments. The spontaneous
probabilities for an ant to drop a corpse or to make a U-turn
during walking were estimated by calculating the regression line
of the survivorship curves of these events. The probabilities of
picking up and dropping a corpse as a function of the size of the
pile encountered by an ant were estimated by a series of
experiments during which piles with predefined sizes were
created. The size of the piles was kept constant during these
experiments. Ants’ trajectories were digitized by using a GrafBar
GP-7 sonic digitizer (Science Accessories, Southport, CT). We
put a glass plate over the active area of the digitizer and placed
behind it a 13-inch video monitor. As an ant moved on the
screen, it was followed with the digitizer cursor, and its path was
input into a microcomputer as a series of X-Y Cartesian coor-
dinates at a rate of five points per second. Because the speed at
which the ants were moving on the screen was relatively slow,
ants could be followed with the videotapes played at normal
speed. Digitized trajectories were used to compute the running
velocity of ants, defined as the ratio of total trajectory length
over the time the animal spent moving during the trajectory.

Results
Clustering Behavior: Collective and Individual Levels. After having
reached the arena, workers pick up corpses and drop them to
form piles. After a few hours, several clusters are formed. Over
time, some clusters grow and others disappear, leading to an
apparent steady state with a stable number of clusters over the
duration of the experiment (Fig. 1 b–d). The sigmoidal growth
of surviving clusters, an illustration of which is given in Fig. 2,
suggests that cluster formation is autocatalytic. The number of
clusters initially grows to reach a maximum after about 3 hr and
then decreases and stabilizes.

The above results suggest a LALI mechanism: because the
addition of corpses to a cluster is more likely as the cluster
increases in size, cluster growth is locally self-enhancing and is
inhibited by the depletion of corpses in the cluster’s neighbor-
hood. This type of LALI model, coined ‘‘activator-substrate’’ (9),
has been suggested in the formation of certain seashell patterns
(4). To confirm this conjecture, the underlying microscopic rules
have to be identified. Observation of the ants’ behavior shows

that workers pick up or drop corpses with a probability that
depends on the local density (c) of corpses. Picking up and
dropping probabilities and their functional form have been
estimated from experimental data (Fig. 3 a and b). Unladen ants
pick up corpses with a probability that decreases with cluster size,
whereas corpse-carrying ants drop corpses with a probability
that increases with cluster size. The latter ants are also charac-
terized by a spontaneous dropping probability that has been
estimated from experimental data (Fig. 3c). Trajectory mea-
surements show that the ants move randomly along the arena’s
periphery (one-dimensional random walk) and allow the iden-
tification of two additional microscopic characteristics: individ-
ual velocity and mean free path. The mean velocity of ants is
! ! 1.6 " 0.7 cm!s#1 (n ! 25), and for such parameter range,
random walk can be shown to be only little influenced by the
velocity distribution. Further discussion will therefore assume a
constant velocity of walking at the average velocity value. Ants
are also characterized by a constant probability per unit of time
of making a U-turn during their walk (0.10 s#1), and the
corresponding mean free path (l ! 15.8 cm) is significantly
smaller than the size of the arena’s periphery (78.5 and 157.1 cm
for the arena sizes used in the experiments).

Model Description. These estimates of microscopic behavioral
parameters and the response functions have been used to build
a macroscopic mathematical model that falls within the activa-
tor-substrate class of LALI models, which thus confirmed our
previous assumptions. The model involves two variables: the
density of corpse-carrying ants a(x, t) and the density of corpses
c(x, t), where x and t stand for space and time, respectively. " is
the density of noncarrying ants. At any given time, their pro-
portion in experiments is large ("!(a $ ") ! 0.94 " 0.07,
estimated over 135 observations; mean density "! " SD ! 20.0 "
7.0 m#1). Because of the diffusion process resulting from the
random walk of noncarrying ants, " is assumed to remain
uniform and constant over time in the model. Ants’ behavior
can then be approximated by the following reaction–diffusion
equations:

#c
#t $ %&c, a' [1]

Fig. 1. An example of aggregation dynamics observed for an arena of Ø !
50 cm and with n ! 400 corpses. (a) At t ! 0; (b) after 6 h; (c) after 12 h; (d ) after
45 h.

Fig. 2. An example of growth of a surviving cluster of corpses for an arena
of Ø ! 25 cm and with n ! 100 corpses.
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mm (half the average size of a corpse). A pile is defined as a
cluster of at least five corpses. The individual behavior of ants
was studied with a separate set of experiments. The spontaneous
probabilities for an ant to drop a corpse or to make a U-turn
during walking were estimated by calculating the regression line
of the survivorship curves of these events. The probabilities of
picking up and dropping a corpse as a function of the size of the
pile encountered by an ant were estimated by a series of
experiments during which piles with predefined sizes were
created. The size of the piles was kept constant during these
experiments. Ants’ trajectories were digitized by using a GrafBar
GP-7 sonic digitizer (Science Accessories, Southport, CT). We
put a glass plate over the active area of the digitizer and placed
behind it a 13-inch video monitor. As an ant moved on the
screen, it was followed with the digitizer cursor, and its path was
input into a microcomputer as a series of X-Y Cartesian coor-
dinates at a rate of five points per second. Because the speed at
which the ants were moving on the screen was relatively slow,
ants could be followed with the videotapes played at normal
speed. Digitized trajectories were used to compute the running
velocity of ants, defined as the ratio of total trajectory length
over the time the animal spent moving during the trajectory.

Results
Clustering Behavior: Collective and Individual Levels. After having
reached the arena, workers pick up corpses and drop them to
form piles. After a few hours, several clusters are formed. Over
time, some clusters grow and others disappear, leading to an
apparent steady state with a stable number of clusters over the
duration of the experiment (Fig. 1 b–d). The sigmoidal growth
of surviving clusters, an illustration of which is given in Fig. 2,
suggests that cluster formation is autocatalytic. The number of
clusters initially grows to reach a maximum after about 3 hr and
then decreases and stabilizes.

The above results suggest a LALI mechanism: because the
addition of corpses to a cluster is more likely as the cluster
increases in size, cluster growth is locally self-enhancing and is
inhibited by the depletion of corpses in the cluster’s neighbor-
hood. This type of LALI model, coined ‘‘activator-substrate’’ (9),
has been suggested in the formation of certain seashell patterns
(4). To confirm this conjecture, the underlying microscopic rules
have to be identified. Observation of the ants’ behavior shows

that workers pick up or drop corpses with a probability that
depends on the local density (c) of corpses. Picking up and
dropping probabilities and their functional form have been
estimated from experimental data (Fig. 3 a and b). Unladen ants
pick up corpses with a probability that decreases with cluster size,
whereas corpse-carrying ants drop corpses with a probability
that increases with cluster size. The latter ants are also charac-
terized by a spontaneous dropping probability that has been
estimated from experimental data (Fig. 3c). Trajectory mea-
surements show that the ants move randomly along the arena’s
periphery (one-dimensional random walk) and allow the iden-
tification of two additional microscopic characteristics: individ-
ual velocity and mean free path. The mean velocity of ants is
! ! 1.6 " 0.7 cm!s#1 (n ! 25), and for such parameter range,
random walk can be shown to be only little influenced by the
velocity distribution. Further discussion will therefore assume a
constant velocity of walking at the average velocity value. Ants
are also characterized by a constant probability per unit of time
of making a U-turn during their walk (0.10 s#1), and the
corresponding mean free path (l ! 15.8 cm) is significantly
smaller than the size of the arena’s periphery (78.5 and 157.1 cm
for the arena sizes used in the experiments).

Model Description. These estimates of microscopic behavioral
parameters and the response functions have been used to build
a macroscopic mathematical model that falls within the activa-
tor-substrate class of LALI models, which thus confirmed our
previous assumptions. The model involves two variables: the
density of corpse-carrying ants a(x, t) and the density of corpses
c(x, t), where x and t stand for space and time, respectively. " is
the density of noncarrying ants. At any given time, their pro-
portion in experiments is large ("!(a $ ") ! 0.94 " 0.07,
estimated over 135 observations; mean density "! " SD ! 20.0 "
7.0 m#1). Because of the diffusion process resulting from the
random walk of noncarrying ants, " is assumed to remain
uniform and constant over time in the model. Ants’ behavior
can then be approximated by the following reaction–diffusion
equations:

#c
#t $ %&c, a' [1]

Fig. 1. An example of aggregation dynamics observed for an arena of Ø !
50 cm and with n ! 400 corpses. (a) At t ! 0; (b) after 6 h; (c) after 12 h; (d ) after
45 h.

Fig. 2. An example of growth of a surviving cluster of corpses for an arena
of Ø ! 25 cm and with n ! 100 corpses.
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corpses

mm (half the average size of a corpse). A pile is defined as a
cluster of at least five corpses. The individual behavior of ants
was studied with a separate set of experiments. The spontaneous
probabilities for an ant to drop a corpse or to make a U-turn
during walking were estimated by calculating the regression line
of the survivorship curves of these events. The probabilities of
picking up and dropping a corpse as a function of the size of the
pile encountered by an ant were estimated by a series of
experiments during which piles with predefined sizes were
created. The size of the piles was kept constant during these
experiments. Ants’ trajectories were digitized by using a GrafBar
GP-7 sonic digitizer (Science Accessories, Southport, CT). We
put a glass plate over the active area of the digitizer and placed
behind it a 13-inch video monitor. As an ant moved on the
screen, it was followed with the digitizer cursor, and its path was
input into a microcomputer as a series of X-Y Cartesian coor-
dinates at a rate of five points per second. Because the speed at
which the ants were moving on the screen was relatively slow,
ants could be followed with the videotapes played at normal
speed. Digitized trajectories were used to compute the running
velocity of ants, defined as the ratio of total trajectory length
over the time the animal spent moving during the trajectory.

Results
Clustering Behavior: Collective and Individual Levels. After having
reached the arena, workers pick up corpses and drop them to
form piles. After a few hours, several clusters are formed. Over
time, some clusters grow and others disappear, leading to an
apparent steady state with a stable number of clusters over the
duration of the experiment (Fig. 1 b–d). The sigmoidal growth
of surviving clusters, an illustration of which is given in Fig. 2,
suggests that cluster formation is autocatalytic. The number of
clusters initially grows to reach a maximum after about 3 hr and
then decreases and stabilizes.

The above results suggest a LALI mechanism: because the
addition of corpses to a cluster is more likely as the cluster
increases in size, cluster growth is locally self-enhancing and is
inhibited by the depletion of corpses in the cluster’s neighbor-
hood. This type of LALI model, coined ‘‘activator-substrate’’ (9),
has been suggested in the formation of certain seashell patterns
(4). To confirm this conjecture, the underlying microscopic rules
have to be identified. Observation of the ants’ behavior shows

that workers pick up or drop corpses with a probability that
depends on the local density (c) of corpses. Picking up and
dropping probabilities and their functional form have been
estimated from experimental data (Fig. 3 a and b). Unladen ants
pick up corpses with a probability that decreases with cluster size,
whereas corpse-carrying ants drop corpses with a probability
that increases with cluster size. The latter ants are also charac-
terized by a spontaneous dropping probability that has been
estimated from experimental data (Fig. 3c). Trajectory mea-
surements show that the ants move randomly along the arena’s
periphery (one-dimensional random walk) and allow the iden-
tification of two additional microscopic characteristics: individ-
ual velocity and mean free path. The mean velocity of ants is
! ! 1.6 " 0.7 cm!s#1 (n ! 25), and for such parameter range,
random walk can be shown to be only little influenced by the
velocity distribution. Further discussion will therefore assume a
constant velocity of walking at the average velocity value. Ants
are also characterized by a constant probability per unit of time
of making a U-turn during their walk (0.10 s#1), and the
corresponding mean free path (l ! 15.8 cm) is significantly
smaller than the size of the arena’s periphery (78.5 and 157.1 cm
for the arena sizes used in the experiments).

Model Description. These estimates of microscopic behavioral
parameters and the response functions have been used to build
a macroscopic mathematical model that falls within the activa-
tor-substrate class of LALI models, which thus confirmed our
previous assumptions. The model involves two variables: the
density of corpse-carrying ants a(x, t) and the density of corpses
c(x, t), where x and t stand for space and time, respectively. " is
the density of noncarrying ants. At any given time, their pro-
portion in experiments is large ("!(a $ ") ! 0.94 " 0.07,
estimated over 135 observations; mean density "! " SD ! 20.0 "
7.0 m#1). Because of the diffusion process resulting from the
random walk of noncarrying ants, " is assumed to remain
uniform and constant over time in the model. Ants’ behavior
can then be approximated by the following reaction–diffusion
equations:

#c
#t $ %&c, a' [1]

Fig. 1. An example of aggregation dynamics observed for an arena of Ø !
50 cm and with n ! 400 corpses. (a) At t ! 0; (b) after 6 h; (c) after 12 h; (d ) after
45 h.

Fig. 2. An example of growth of a surviving cluster of corpses for an arena
of Ø ! 25 cm and with n ! 100 corpses.

9646 " www.pnas.org!cgi!doi!10.1073!pnas.152302199 Theraulaz et al.

corpse-carrying ant

Guy Theraulaz et al, and J-L. Deneubourg. PNAS  99:9645-9649 (2002)
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Figure 20.17: Local excitation and global inhibition in cell polarization. (A)
Lattice model of local activation and global inhibition. Two interacting molec-
ular species, shown here in red (activator) and blue (inhibitor) start o↵ nearly
uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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in greater detail. We begin with the most venerable biological trig-
ger wave, the action potential.

ACTION POTENTIALS
Action potentials originate at the axon hillock (Figure 1A) and prop-
agate down the axon at an undiminishing speed and amplitude 
(Figure 1B). Typically, action potentials occur at irregular time inter-
vals, but in some cases, circuits of neurons fire with a regular 
period.

The key protein in the generation and propagation of the action 
potential is the voltage-sensitive sodium channel (Figure 1C). When 
the plasma membrane begins to depolarize, that is, the intracellular 
side of the membrane becomes less negative with respect to the 
extracellular side, stochastic opening of the voltage-sensitive so-
dium channels occurs more frequently. Channel opening allows so-
dium to rush inward down its concentration and potential gradients, 
depolarizing the membrane further. This constitutes a positive feed-
back loop (Figure 1C), and in principle the cycle of depolarization l 
channel opening l depolarization could continue until the inside of 
the cell is positive enough to keep more Na+ from flowing inward. 
The fact that the feedback loop is operating at the level of protein 

range over nine orders of magnitude, the underlying dynamical pro-
cesses are similar.

Here we review the topic of how trigger waves are generated, 
with the goal of explaining in a self-contained way the mechanistic 
basis of these beautiful and important phenomena. For readers in-
terested in more detail on the physics of trigger waves, the classic 
review by Tyson and Keener (1988) and the analysis of propagating 
fronts presented by Rinzel and Terman (1982), Elphick et al. (1997), 
and Hagberg and Meron (1994) are recommended.

We use a set of equations well known to physicists, the 
FitzHugh–Nagumo (FHN) model (FitzHugh, 1961; Nagumo et al., 
1964). Originally proposed as a simplification of the Hodgkin–
Huxley model of action potentials (Hodgkin and Huxley, 1952), the 
FHN equations can be viewed as a simple and general model of 
interlinked positive and negative feedback loops that can produce 
various types of dynamical responses, including switches, pulses, 
and oscillations. Moreover, by adding diffusion to the FHN model, 
one can produce trigger waves that rapidly propagate these 
switches, pulses, and oscillations over large distances. Before 
beginning with the analysis of the FHN model, it is helpful to ex-
amine some of the circuits that generate biological trigger waves 

FIGURE 1: Examples of biological trigger waves. (A–C) Action potentials. (A) Action potentials are generated at the 
axon hillock and propagate distally down the axon. (B) Recordings of an action potential traveling down an axon, 
measured by an array of extracellular electrodes. The inward flux of Na+ during an action potential registers as a 
negative deflection of the potential registered by the extracellular electrodes. (Adapted from Bakkum et al., 2013.) 
(C) Schematic view of the circuit that generates the action potential. (D–F) Calcium waves in fertilized eggs. (D) Calcium 
waves are generated at the sperm entry point and spread across the egg. (E) Calcium concentrations as a function of 
time in a fertilized oocyte from the milky ribbon worm, Cerebratulus lacteus, as measured by ratiometric imaging after 
calcium green loading. (Taken from Stricker, 1999.) (F) Schematic view of the circuit that generates calcium waves. 
(G–I) Mitotic waves in Xenopus eggs. (G) About 1 h after fertilization and the postfertilization calcium wave, a wave of 
Cdk1 activation spreads from near the centrosome to the cortex of the cell. (H) Waves of mitosis in Xenopus egg 
extracts. Thin Teflon tubes were filled with cycling Xenopus egg extracts together with sperm chromatin and a nuclear 
localization signal–green fluorescent protein marker. Waves of nuclear envelope breakdown spread from the fastest 
regions of the cytoplasm, near the middle of this section of the tube, outward. (Taken from Chang and Ferrell, 2013.) 
(I) Schematic view of the circuit that generates waves of cyclin B-Cdk1 activation.
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in greater detail. We begin with the most venerable biological trig-
ger wave, the action potential.

ACTION POTENTIALS
Action potentials originate at the axon hillock (Figure 1A) and prop-
agate down the axon at an undiminishing speed and amplitude 
(Figure 1B). Typically, action potentials occur at irregular time inter-
vals, but in some cases, circuits of neurons fire with a regular 
period.

The key protein in the generation and propagation of the action 
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with the goal of explaining in a self-contained way the mechanistic 
basis of these beautiful and important phenomena. For readers in-
terested in more detail on the physics of trigger waves, the classic 
review by Tyson and Keener (1988) and the analysis of propagating 
fronts presented by Rinzel and Terman (1982), Elphick et al. (1997), 
and Hagberg and Meron (1994) are recommended.

We use a set of equations well known to physicists, the 
FitzHugh–Nagumo (FHN) model (FitzHugh, 1961; Nagumo et al., 
1964). Originally proposed as a simplification of the Hodgkin–
Huxley model of action potentials (Hodgkin and Huxley, 1952), the 
FHN equations can be viewed as a simple and general model of 
interlinked positive and negative feedback loops that can produce 
various types of dynamical responses, including switches, pulses, 
and oscillations. Moreover, by adding diffusion to the FHN model, 
one can produce trigger waves that rapidly propagate these 
switches, pulses, and oscillations over large distances. Before 
beginning with the analysis of the FHN model, it is helpful to ex-
amine some of the circuits that generate biological trigger waves 
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axon hillock and propagate distally down the axon. (B) Recordings of an action potential traveling down an axon, 
measured by an array of extracellular electrodes. The inward flux of Na+ during an action potential registers as a 
negative deflection of the potential registered by the extracellular electrodes. (Adapted from Bakkum et al., 2013.) 
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waves are generated at the sperm entry point and spread across the egg. (E) Calcium concentrations as a function of 
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Figure 4.25: The squid giant axon. Schematic of the squid axon which shows
the axon as part of the squid’s anatomy, illustrates the propagation of an ac-
tion potential in abstract electrical terms, and shows how that action potential
is mediated by the presence of ion channels. (Adapted from B. Alberts et al.,
Molecular Biology of the Cell, 5th ed. New York, Garland Science, 2008.)
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a time-delayed negative feedback loop (Yang and Ferrell, 2013); 
Cdk1 activates APC/CCdc20 complex, a ubiquitin E3 ligase that pro-
motes cyclin B degradation and restores the system to a low-Cdk1-
activity state.

DIFFERENCES AND COMMONALITIES
These three examples of spatiotemporal signaling are different in 
many respects. For one thing, the proteins involved are unrelated: 
sodium and potassium channels in the case of action potentials; 
phospholipases, IP3 receptors, and pumps in the case of calcium 
waves; and kinases, phosphatases, and ubiquitin ligases in the case 
of mitotic waves. The wave velocities and the distances over which 
the waves typically propagate are different as well. Finally, some of 
these waves recur in an oscillatory manner, and some are solitary 
pulses.

In all three cases, however, the outputs (membrane depolariza-
tion, intracellular Ca2+, or cyclin B-Cdk1 activity) spread through 
space and time via trigger waves. Trigger waves are made possible 
by the coexistence of two essential processes. The first is a local 
reaction process, which typically exhibits bistability, excitability, or 
relaxation oscillations. The FHN model is a particularly simple and 
well-studied ordinary differential equation model with interlinked 
positive and negative feedback loops that can exhibit, for the 
appropriate choice of parameters, all three of these behaviors. It is 
not necessarily the best or most realistic model of any of these pro-
cesses, but it contains the basic ingredients needed for generating 
trigger waves, and for this reason, we will use this model for the re-
action portion of our trigger wave model. The other essential pro-
cess is some sort of spatial coupling mechanism. Here we assume 
that diffusion provides the spatial coupling and use Fick’s second 
law to describe it.

THE FHN MODEL
Because of its simplicity, richness, and relevance to biology, the FHN 
model has been the subject of hundreds of papers (Rocsoreanu et 
al., 2000), including much work on waves and spatial propagation 
(Rinzel and Terman, 1982; Hagberg and Meron, 1994; Elphick et al., 
1997; Neu et al., 1997). The model is a modification of the van der 
Pol oscillator model, which was originally inspired by vacuum tube 
circuits (van der Pol and van der Mark, 1928).

The FHN model consists of two ordinary differential equations in 
two time-dependent variables:

�  du
dt u u v3

 
(1 )

dv
dt u bv a( )� E  �

  
(2 )

The first equation includes all of the fast reactions; the second, 
the slow ones (because the parameter E is generally taken to be 
<<1).

In its original context as a model for the action potential, the vari-
able u represents the membrane potential, and the three terms on 
the right-hand side of Eq. 1 represent three ways that the mem-
brane potential is rapidly regulated. The first term, du/dt s u, is the 
positive feedback, where depolarization linearly promotes more de-
polarization through the voltage-gated sodium channel. The sec-
ond term, du/dt s�  u3, is a fast negative feedback loop, which 
roughly corresponds to the autoinactivation of the sodium chan-
nel. The third term represents a recovery process like the outward 
potassium currents that oppose depolarization. The functional forms 
and coefficients were chosen such that the u-nullcline is shaped like 

conformation changes and ion flows, both of which are very rapid 
processes, allows the peak of the action potential to be attained in 
<1 ms.

The action potential is terminated by two processes: the delayed 
opening of voltage-sensitive potassium channels, which allows K+ to 
flow out of the cell and restore the net negative charge of the inside, 
and the autoinactivation of the voltage-dependent sodium channel 
(Figure 1C). Taken together, the circuit is a system of interlinked 
positive and negative feedback loops.

CALCIUM WAVES
Calcium waves occur in many species and cell types (Gilkey et al., 
1978; Busa and Nuccitelli, 1985; Cornell-Bell et al., 1990; Goldbeter 
et al., 1990; Stricker, 1999; Codazzi et al., 2001; Choi et al., 2014). 
One particularly striking example is the calcium wave that occurs 
when a sperm fertilizes an egg (Figure 1, D and E). Typically, the 
wave initiates at the sperm entry point, sweeps across the egg at 
^5–30 µm/s, and results in a filling of the whole egg with high (ap-
proximately micromolar) concentrations of free Ca2+ (Stricker, 1999). 
The high intracellular calcium helps prevent the refertilization of the 
egg by a second sperm. In some species, a single calcium wave oc-
curs; in others, there is a succession of waves (Stricker, 1999). Cal-
cium waves also occur in numerous other cells and tissues and can 
occur as solitary pulses, trains of pulses, or sustained pulsatile oscil-
lations (Meyer and Stryer, 1988; Cornell-Bell et al., 1990; Goldbeter 
et al., 1990; De Young and Keizer, 1992; Straub et al., 2000; Lewis, 
2003).

Like action potentials, calcium waves are generated by a circuit 
with positive feedback (Figure 1F). In this case, an increase in free 
intracellular Ca2+ activates phospholipase C (PLC), which cleaves the 
phosphatidylinositol 4,5 bisphosphate (PIP2) and generates the sec-
ond messenger inositol trisphosphate (IP3). IP3 then binds to IP3 re-
ceptors (IP3R) on the calcium-filled endoplasmic reticulum (ER), al-
lowing Ca2+ to flow into the cytoplasm and bringing about further 
activation of PLC (Figure 1F). Thus an increase in intracellular cal-
cium brings about a further increase. In addition, cytosolic Ca2+ 
more directly stimulates the release of ER Ca2+ by regulating IP3 re-
ceptors and ryanodine receptors on the ER. There are therefore two 
interlinked positive feedback loops operating on similar time scales. 
The increase in cytosolic Ca2+ is limited by the finite capacity of the 
ER and then reversed by membrane-bound calcium pumps, consti-
tuting a negative feedback loop (Figure 1F).

MITOTIC WAVES
About 1 h after the postfertilization calcium wave passes through a 
Xenopus egg, a wave of mitosis spreads through the cell (Hara, 
1971, 1980), beginning in the vicinity of the centrosome and con-
gressed pronuclei and progressing to the cell cortex at a constant 
speed of ^1 µm/s (Figure 1G; Hara, 1971; Rankin and Kirschner, 
1997; Perez-Mongiovi et al., 1998; Chang and Ferrell, 2013). This 
wave can be visualized by putting cycling Xenopus egg cytoplasm 
mixed with nuclei in a Teflon tube and watching the nuclei disappear 
as mitosis spreads through the cytoplasm (Figure 1H; Chang and 
Ferrell, 2013). Mitotic waves are believed to help spatially coordi-
nate mitosis and cell division in the huge (1.2 mm) Xenopus egg.

The circuit that generates this wave of mitosis is shown in Figure 
1I. It is centered on the cyclin B–cyclin-dependent kinase 1 (Cdk1) 
complex, the master regulator of mitosis. The protein kinase Cdk1 in 
turn is regulated by fast, interlinked positive and double-negative 
feedback loops (Cdk1 activates its activator Cdc25C and inactivates 
its inactivator Wee1), which constitutes a bistable switch (Pomerening 
et al., 2003; Sha et al., 2003). The switch is then turned back off by L. Gelens, G.A. Anderson and James Ferrel. MBoC  25:3486-3493. 2014
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In its original context as a model for the action potential, the vari-
able u represents the membrane potential, and the three terms on 
the right-hand side of Eq. 1 represent three ways that the mem-
brane potential is rapidly regulated. The first term, du/dt s u, is the 
positive feedback, where depolarization linearly promotes more de-
polarization through the voltage-gated sodium channel. The sec-
ond term, du/dt s�  u3, is a fast negative feedback loop, which 
roughly corresponds to the autoinactivation of the sodium chan-
nel. The third term represents a recovery process like the outward 
potassium currents that oppose depolarization. The functional forms 
and coefficients were chosen such that the u-nullcline is shaped like 

conformation changes and ion flows, both of which are very rapid 
processes, allows the peak of the action potential to be attained in 
<1 ms.

The action potential is terminated by two processes: the delayed 
opening of voltage-sensitive potassium channels, which allows K+ to 
flow out of the cell and restore the net negative charge of the inside, 
and the autoinactivation of the voltage-dependent sodium channel 
(Figure 1C). Taken together, the circuit is a system of interlinked 
positive and negative feedback loops.

CALCIUM WAVES
Calcium waves occur in many species and cell types (Gilkey et al., 
1978; Busa and Nuccitelli, 1985; Cornell-Bell et al., 1990; Goldbeter 
et al., 1990; Stricker, 1999; Codazzi et al., 2001; Choi et al., 2014). 
One particularly striking example is the calcium wave that occurs 
when a sperm fertilizes an egg (Figure 1, D and E). Typically, the 
wave initiates at the sperm entry point, sweeps across the egg at 
^5–30 µm/s, and results in a filling of the whole egg with high (ap-
proximately micromolar) concentrations of free Ca2+ (Stricker, 1999). 
The high intracellular calcium helps prevent the refertilization of the 
egg by a second sperm. In some species, a single calcium wave oc-
curs; in others, there is a succession of waves (Stricker, 1999). Cal-
cium waves also occur in numerous other cells and tissues and can 
occur as solitary pulses, trains of pulses, or sustained pulsatile oscil-
lations (Meyer and Stryer, 1988; Cornell-Bell et al., 1990; Goldbeter 
et al., 1990; De Young and Keizer, 1992; Straub et al., 2000; Lewis, 
2003).

Like action potentials, calcium waves are generated by a circuit 
with positive feedback (Figure 1F). In this case, an increase in free 
intracellular Ca2+ activates phospholipase C (PLC), which cleaves the 
phosphatidylinositol 4,5 bisphosphate (PIP2) and generates the sec-
ond messenger inositol trisphosphate (IP3). IP3 then binds to IP3 re-
ceptors (IP3R) on the calcium-filled endoplasmic reticulum (ER), al-
lowing Ca2+ to flow into the cytoplasm and bringing about further 
activation of PLC (Figure 1F). Thus an increase in intracellular cal-
cium brings about a further increase. In addition, cytosolic Ca2+ 
more directly stimulates the release of ER Ca2+ by regulating IP3 re-
ceptors and ryanodine receptors on the ER. There are therefore two 
interlinked positive feedback loops operating on similar time scales. 
The increase in cytosolic Ca2+ is limited by the finite capacity of the 
ER and then reversed by membrane-bound calcium pumps, consti-
tuting a negative feedback loop (Figure 1F).

MITOTIC WAVES
About 1 h after the postfertilization calcium wave passes through a 
Xenopus egg, a wave of mitosis spreads through the cell (Hara, 
1971, 1980), beginning in the vicinity of the centrosome and con-
gressed pronuclei and progressing to the cell cortex at a constant 
speed of ^1 µm/s (Figure 1G; Hara, 1971; Rankin and Kirschner, 
1997; Perez-Mongiovi et al., 1998; Chang and Ferrell, 2013). This 
wave can be visualized by putting cycling Xenopus egg cytoplasm 
mixed with nuclei in a Teflon tube and watching the nuclei disappear 
as mitosis spreads through the cytoplasm (Figure 1H; Chang and 
Ferrell, 2013). Mitotic waves are believed to help spatially coordi-
nate mitosis and cell division in the huge (1.2 mm) Xenopus egg.

The circuit that generates this wave of mitosis is shown in Figure 
1I. It is centered on the cyclin B–cyclin-dependent kinase 1 (Cdk1) 
complex, the master regulator of mitosis. The protein kinase Cdk1 in 
turn is regulated by fast, interlinked positive and double-negative 
feedback loops (Cdk1 activates its activator Cdc25C and inactivates 
its inactivator Wee1), which constitutes a bistable switch (Pomerening 
et al., 2003; Sha et al., 2003). The switch is then turned back off by 
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a time-delayed negative feedback loop (Yang and Ferrell, 2013); 
Cdk1 activates APC/CCdc20 complex, a ubiquitin E3 ligase that pro-
motes cyclin B degradation and restores the system to a low-Cdk1-
activity state.
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(Rinzel and Terman, 1982; Hagberg and Meron, 1994; Elphick et al., 
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circuits (van der Pol and van der Mark, 1928).

The FHN model consists of two ordinary differential equations in 
two time-dependent variables:
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the slow ones (because the parameter E is generally taken to be 
<<1).

In its original context as a model for the action potential, the vari-
able u represents the membrane potential, and the three terms on 
the right-hand side of Eq. 1 represent three ways that the mem-
brane potential is rapidly regulated. The first term, du/dt s u, is the 
positive feedback, where depolarization linearly promotes more de-
polarization through the voltage-gated sodium channel. The sec-
ond term, du/dt s�  u3, is a fast negative feedback loop, which 
roughly corresponds to the autoinactivation of the sodium chan-
nel. The third term represents a recovery process like the outward 
potassium currents that oppose depolarization. The functional forms 
and coefficients were chosen such that the u-nullcline is shaped like 
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^5–30 µm/s, and results in a filling of the whole egg with high (ap-
proximately micromolar) concentrations of free Ca2+ (Stricker, 1999). 
The high intracellular calcium helps prevent the refertilization of the 
egg by a second sperm. In some species, a single calcium wave oc-
curs; in others, there is a succession of waves (Stricker, 1999). Cal-
cium waves also occur in numerous other cells and tissues and can 
occur as solitary pulses, trains of pulses, or sustained pulsatile oscil-
lations (Meyer and Stryer, 1988; Cornell-Bell et al., 1990; Goldbeter 
et al., 1990; De Young and Keizer, 1992; Straub et al., 2000; Lewis, 
2003).

Like action potentials, calcium waves are generated by a circuit 
with positive feedback (Figure 1F). In this case, an increase in free 
intracellular Ca2+ activates phospholipase C (PLC), which cleaves the 
phosphatidylinositol 4,5 bisphosphate (PIP2) and generates the sec-
ond messenger inositol trisphosphate (IP3). IP3 then binds to IP3 re-
ceptors (IP3R) on the calcium-filled endoplasmic reticulum (ER), al-
lowing Ca2+ to flow into the cytoplasm and bringing about further 
activation of PLC (Figure 1F). Thus an increase in intracellular cal-
cium brings about a further increase. In addition, cytosolic Ca2+ 
more directly stimulates the release of ER Ca2+ by regulating IP3 re-
ceptors and ryanodine receptors on the ER. There are therefore two 
interlinked positive feedback loops operating on similar time scales. 
The increase in cytosolic Ca2+ is limited by the finite capacity of the 
ER and then reversed by membrane-bound calcium pumps, consti-
tuting a negative feedback loop (Figure 1F).

MITOTIC WAVES
About 1 h after the postfertilization calcium wave passes through a 
Xenopus egg, a wave of mitosis spreads through the cell (Hara, 
1971, 1980), beginning in the vicinity of the centrosome and con-
gressed pronuclei and progressing to the cell cortex at a constant 
speed of ^1 µm/s (Figure 1G; Hara, 1971; Rankin and Kirschner, 
1997; Perez-Mongiovi et al., 1998; Chang and Ferrell, 2013). This 
wave can be visualized by putting cycling Xenopus egg cytoplasm 
mixed with nuclei in a Teflon tube and watching the nuclei disappear 
as mitosis spreads through the cytoplasm (Figure 1H; Chang and 
Ferrell, 2013). Mitotic waves are believed to help spatially coordi-
nate mitosis and cell division in the huge (1.2 mm) Xenopus egg.

The circuit that generates this wave of mitosis is shown in Figure 
1I. It is centered on the cyclin B–cyclin-dependent kinase 1 (Cdk1) 
complex, the master regulator of mitosis. The protein kinase Cdk1 in 
turn is regulated by fast, interlinked positive and double-negative 
feedback loops (Cdk1 activates its activator Cdc25C and inactivates 
its inactivator Wee1), which constitutes a bistable switch (Pomerening 
et al., 2003; Sha et al., 2003). The switch is then turned back off by 
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steady states (filled circles), and one is an unstable saddle point 
(open circle). This means that the system is bistable.

Some initial conditions produce trajectories that approach the 
negative-potential steady state (Figure 2, A and B, blue region) and 
others that approach the positive-potential steady state (Figure 2, A 
and B, pink region). A separatrix (dashed curve) divides the basins of 
attraction for the two stable steady states.

EXCITABILITY IN THE FHN MODEL
As b is decreased, the slope of the v-nullcline decreases. This moves 
one of the stable steady states from the upper limb of the u-nullcline 
to the middle limb, and it changes from being stable to unstable. 
This leaves a single remaining stable steady state—the low-mem-
brane-potential steady state (Figure 2D). The system is now monos-
table but excitable. For some initial conditions, u and v will proceed 
more or less directly to the remaining stable steady state (Figure 2D, 
blue curve), whereas for others, the trajectory first shoots to the 
u-nullcline, circles around the unstable steady state, and only 

a backward S, which is critical to the model’s behavior (see later 
discussion), and not because they correspond exactly to the situa-
tion in nerves or other biological oscillators.

The second variable, v, is related to the potassium gradient. The 
resting situation, where the extracellular concentration of K+ is lower 
than the intracellular concentration, corresponds to a negative value 
of v. The processes that regulate v are all assumed to occur on a 
slow time scale. The first term represents the activation of the volt-
age-gated potassium channel by the membrane potential u, which 
increases the value of v. The second term, –Ebv, represents the 
pumping of K+ out of the neuron. The third term on the right-hand 
side, Ea, roughly corresponds to a potassium leak current.

The FHN model is less directly related to calcium signaling and 
Cdk1 activation, but one can still draw analogies: for calcium signal-
ing, u can represent the free cytosolic calcium, and v can represent 
the pumps and leaks that regulate calcium concentration more 
slowly. For mitosis, u can represent cyclin B-Cdk1 activity and v can 
represent the more slowly varying cyclin B concentration. Note, 
however, that the enduring significance of the FHN model for biolo-
gists does not come from a precise correspondence between the 
individual terms of the two equations and any particular biological 
process. Instead, it lies in the fact that the model is a simple way of 
generating bistability, excitability, and relaxation oscillations, three 
systems-level behaviors known to arise in a number of biological 
contexts.

BISTABILITY IN THE FHN MODEL
Here we assume a � 0.1 and E � 0.01 and change the behavior by 
varying the parameter b. Note that all parameters and variables are 
dimensionless throughout. When b is relatively large (b � 1.8), the 
system is bistable. Depending on the initial conditions, the system 
will settle down into one of two alternative stable steady states, one 
with a negative membrane potential (Figure 2A) and one with a 
positive membrane potential. For the initial value of v assumed here 
(v ��0.3), all trajectories that start with u ��0.3 (the threshold shown 
by the dashed line in Figure 2A) will approach the positive-potential 
steady state (Figure 2A, red curve), and all trajectories that start with 
u < 0.3 will end up at the negative-potential steady state (Figure 
2A, blue curve). Thus a small perturbation that pushes the system 
across the threshold will be amplified into a large difference in the 
system’s ultimate fate.

The origin of the bistability can be understood by examining a 
phase plot of the two-variable system, where the values of u and v 
(each of which is a function of time) are plotted in the uv-plane 
(Figure 2B). Stable steady states are attained when both du/dt and 
dv/dt are equal to zero:

  �u u v 03
  (3 )

u bv a( ) 0E  � �  (4 ) 

Equation 3 defines a curve in the uv plane, the u-nullcline, and it 
can be thought of as the steady-state response of u to various con-
stant levels of v (Figure 2B, gray curve). The positive feedback and 
cubic negative feedback terms give the nullcline a characteristic 
backward-S shape that is critical for the behavior of the model. 
Equation 4 is the v-nullcline, a straight line that describes the steady-
state response of v to u (Figure 2B, black line). Wherever the two 
nullclines intersect, both time derivatives (Eqs. 1 and 2) are equal to 
zero and the system is in steady state. For the particular value of b 
chosen in Figure 2, A and B (b � 2), the two nullclines intersect at 
three points (Figure 2B). Two of the intersection points can be shown 
through linear stability analysis (Strogatz, 1994) to represent stable 

FIGURE 2: Different types of dynamics from the FHN model. 
(A, C, E) Time course; (B, D, F) phase plots. (A, B) Bistability. For b � 2, 
the system is bistable, with two stable steady states (B, filled circles) 
and one saddle point (B, open circle). For the value of v(t = 0) 
assumed here (v(t = 0) � –0.3), trajectories beginning above a 
threshold value of u (A, dashed line) go to the high-u stable steady 
state, whereas those beginning below the threshold go to the low-u 
stable steady state. In the phase plane, a separatrix (dashed curve) 
divides the starting points that approach the high-u stable steady 
state (pink area) from those that go to the low-u steady state. 
(C, D) Excitability. For b � 1.5, there is a single stable steady state plus 
a saddle point and an unstable steady state. Trajectories beginning 
above the threshold (C) or the separatrix (D) yield a pulse of u and 
circle the unstable steady state before settling down to a low 
steady-state value of u. Those beginning below the threshold do not 
yield a pulse of high u. (E, F) Oscillations. For b � 1.0, the single 
steady state is unstable. From all initial conditions (except starting 
right on the unstable steady state), the trajectories approach the 
same stable limit cycle, although from above the threshold, they go 
first to the upper limb of the u-nullcline, and below the threshold, 
they go first to the lower limb. A, C, and E are time courses; B, D, and 
F are phase plots. In each case, a � 0.1, E � 0.01, v(t = 0) ��0.3, and 
u(t = 0) ��0.25 (red trajectories) or 0.35 (blue trajectories).
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steady states (filled circles), and one is an unstable saddle point 
(open circle). This means that the system is bistable.

Some initial conditions produce trajectories that approach the 
negative-potential steady state (Figure 2, A and B, blue region) and 
others that approach the positive-potential steady state (Figure 2, A 
and B, pink region). A separatrix (dashed curve) divides the basins of 
attraction for the two stable steady states.

EXCITABILITY IN THE FHN MODEL
As b is decreased, the slope of the v-nullcline decreases. This moves 
one of the stable steady states from the upper limb of the u-nullcline 
to the middle limb, and it changes from being stable to unstable. 
This leaves a single remaining stable steady state—the low-mem-
brane-potential steady state (Figure 2D). The system is now monos-
table but excitable. For some initial conditions, u and v will proceed 
more or less directly to the remaining stable steady state (Figure 2D, 
blue curve), whereas for others, the trajectory first shoots to the 
u-nullcline, circles around the unstable steady state, and only 

a backward S, which is critical to the model’s behavior (see later 
discussion), and not because they correspond exactly to the situa-
tion in nerves or other biological oscillators.

The second variable, v, is related to the potassium gradient. The 
resting situation, where the extracellular concentration of K+ is lower 
than the intracellular concentration, corresponds to a negative value 
of v. The processes that regulate v are all assumed to occur on a 
slow time scale. The first term represents the activation of the volt-
age-gated potassium channel by the membrane potential u, which 
increases the value of v. The second term, –Ebv, represents the 
pumping of K+ out of the neuron. The third term on the right-hand 
side, Ea, roughly corresponds to a potassium leak current.

The FHN model is less directly related to calcium signaling and 
Cdk1 activation, but one can still draw analogies: for calcium signal-
ing, u can represent the free cytosolic calcium, and v can represent 
the pumps and leaks that regulate calcium concentration more 
slowly. For mitosis, u can represent cyclin B-Cdk1 activity and v can 
represent the more slowly varying cyclin B concentration. Note, 
however, that the enduring significance of the FHN model for biolo-
gists does not come from a precise correspondence between the 
individual terms of the two equations and any particular biological 
process. Instead, it lies in the fact that the model is a simple way of 
generating bistability, excitability, and relaxation oscillations, three 
systems-level behaviors known to arise in a number of biological 
contexts.

BISTABILITY IN THE FHN MODEL
Here we assume a � 0.1 and E � 0.01 and change the behavior by 
varying the parameter b. Note that all parameters and variables are 
dimensionless throughout. When b is relatively large (b � 1.8), the 
system is bistable. Depending on the initial conditions, the system 
will settle down into one of two alternative stable steady states, one 
with a negative membrane potential (Figure 2A) and one with a 
positive membrane potential. For the initial value of v assumed here 
(v ��0.3), all trajectories that start with u ��0.3 (the threshold shown 
by the dashed line in Figure 2A) will approach the positive-potential 
steady state (Figure 2A, red curve), and all trajectories that start with 
u < 0.3 will end up at the negative-potential steady state (Figure 
2A, blue curve). Thus a small perturbation that pushes the system 
across the threshold will be amplified into a large difference in the 
system’s ultimate fate.

The origin of the bistability can be understood by examining a 
phase plot of the two-variable system, where the values of u and v 
(each of which is a function of time) are plotted in the uv-plane 
(Figure 2B). Stable steady states are attained when both du/dt and 
dv/dt are equal to zero:
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Equation 3 defines a curve in the uv plane, the u-nullcline, and it 
can be thought of as the steady-state response of u to various con-
stant levels of v (Figure 2B, gray curve). The positive feedback and 
cubic negative feedback terms give the nullcline a characteristic 
backward-S shape that is critical for the behavior of the model. 
Equation 4 is the v-nullcline, a straight line that describes the steady-
state response of v to u (Figure 2B, black line). Wherever the two 
nullclines intersect, both time derivatives (Eqs. 1 and 2) are equal to 
zero and the system is in steady state. For the particular value of b 
chosen in Figure 2, A and B (b � 2), the two nullclines intersect at 
three points (Figure 2B). Two of the intersection points can be shown 
through linear stability analysis (Strogatz, 1994) to represent stable 

FIGURE 2: Different types of dynamics from the FHN model. 
(A, C, E) Time course; (B, D, F) phase plots. (A, B) Bistability. For b � 2, 
the system is bistable, with two stable steady states (B, filled circles) 
and one saddle point (B, open circle). For the value of v(t = 0) 
assumed here (v(t = 0) � –0.3), trajectories beginning above a 
threshold value of u (A, dashed line) go to the high-u stable steady 
state, whereas those beginning below the threshold go to the low-u 
stable steady state. In the phase plane, a separatrix (dashed curve) 
divides the starting points that approach the high-u stable steady 
state (pink area) from those that go to the low-u steady state. 
(C, D) Excitability. For b � 1.5, there is a single stable steady state plus 
a saddle point and an unstable steady state. Trajectories beginning 
above the threshold (C) or the separatrix (D) yield a pulse of u and 
circle the unstable steady state before settling down to a low 
steady-state value of u. Those beginning below the threshold do not 
yield a pulse of high u. (E, F) Oscillations. For b � 1.0, the single 
steady state is unstable. From all initial conditions (except starting 
right on the unstable steady state), the trajectories approach the 
same stable limit cycle, although from above the threshold, they go 
first to the upper limb of the u-nullcline, and below the threshold, 
they go first to the lower limb. A, C, and E are time courses; B, D, and 
F are phase plots. In each case, a � 0.1, E � 0.01, v(t = 0) ��0.3, and 
u(t = 0) ��0.25 (red trajectories) or 0.35 (blue trajectories).
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steady states (filled circles), and one is an unstable saddle point 
(open circle). This means that the system is bistable.

Some initial conditions produce trajectories that approach the 
negative-potential steady state (Figure 2, A and B, blue region) and 
others that approach the positive-potential steady state (Figure 2, A 
and B, pink region). A separatrix (dashed curve) divides the basins of 
attraction for the two stable steady states.

EXCITABILITY IN THE FHN MODEL
As b is decreased, the slope of the v-nullcline decreases. This moves 
one of the stable steady states from the upper limb of the u-nullcline 
to the middle limb, and it changes from being stable to unstable. 
This leaves a single remaining stable steady state—the low-mem-
brane-potential steady state (Figure 2D). The system is now monos-
table but excitable. For some initial conditions, u and v will proceed 
more or less directly to the remaining stable steady state (Figure 2D, 
blue curve), whereas for others, the trajectory first shoots to the 
u-nullcline, circles around the unstable steady state, and only 

a backward S, which is critical to the model’s behavior (see later 
discussion), and not because they correspond exactly to the situa-
tion in nerves or other biological oscillators.

The second variable, v, is related to the potassium gradient. The 
resting situation, where the extracellular concentration of K+ is lower 
than the intracellular concentration, corresponds to a negative value 
of v. The processes that regulate v are all assumed to occur on a 
slow time scale. The first term represents the activation of the volt-
age-gated potassium channel by the membrane potential u, which 
increases the value of v. The second term, –Ebv, represents the 
pumping of K+ out of the neuron. The third term on the right-hand 
side, Ea, roughly corresponds to a potassium leak current.

The FHN model is less directly related to calcium signaling and 
Cdk1 activation, but one can still draw analogies: for calcium signal-
ing, u can represent the free cytosolic calcium, and v can represent 
the pumps and leaks that regulate calcium concentration more 
slowly. For mitosis, u can represent cyclin B-Cdk1 activity and v can 
represent the more slowly varying cyclin B concentration. Note, 
however, that the enduring significance of the FHN model for biolo-
gists does not come from a precise correspondence between the 
individual terms of the two equations and any particular biological 
process. Instead, it lies in the fact that the model is a simple way of 
generating bistability, excitability, and relaxation oscillations, three 
systems-level behaviors known to arise in a number of biological 
contexts.

BISTABILITY IN THE FHN MODEL
Here we assume a � 0.1 and E � 0.01 and change the behavior by 
varying the parameter b. Note that all parameters and variables are 
dimensionless throughout. When b is relatively large (b � 1.8), the 
system is bistable. Depending on the initial conditions, the system 
will settle down into one of two alternative stable steady states, one 
with a negative membrane potential (Figure 2A) and one with a 
positive membrane potential. For the initial value of v assumed here 
(v ��0.3), all trajectories that start with u ��0.3 (the threshold shown 
by the dashed line in Figure 2A) will approach the positive-potential 
steady state (Figure 2A, red curve), and all trajectories that start with 
u < 0.3 will end up at the negative-potential steady state (Figure 
2A, blue curve). Thus a small perturbation that pushes the system 
across the threshold will be amplified into a large difference in the 
system’s ultimate fate.

The origin of the bistability can be understood by examining a 
phase plot of the two-variable system, where the values of u and v 
(each of which is a function of time) are plotted in the uv-plane 
(Figure 2B). Stable steady states are attained when both du/dt and 
dv/dt are equal to zero:
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Equation 3 defines a curve in the uv plane, the u-nullcline, and it 
can be thought of as the steady-state response of u to various con-
stant levels of v (Figure 2B, gray curve). The positive feedback and 
cubic negative feedback terms give the nullcline a characteristic 
backward-S shape that is critical for the behavior of the model. 
Equation 4 is the v-nullcline, a straight line that describes the steady-
state response of v to u (Figure 2B, black line). Wherever the two 
nullclines intersect, both time derivatives (Eqs. 1 and 2) are equal to 
zero and the system is in steady state. For the particular value of b 
chosen in Figure 2, A and B (b � 2), the two nullclines intersect at 
three points (Figure 2B). Two of the intersection points can be shown 
through linear stability analysis (Strogatz, 1994) to represent stable 

FIGURE 2: Different types of dynamics from the FHN model. 
(A, C, E) Time course; (B, D, F) phase plots. (A, B) Bistability. For b � 2, 
the system is bistable, with two stable steady states (B, filled circles) 
and one saddle point (B, open circle). For the value of v(t = 0) 
assumed here (v(t = 0) � –0.3), trajectories beginning above a 
threshold value of u (A, dashed line) go to the high-u stable steady 
state, whereas those beginning below the threshold go to the low-u 
stable steady state. In the phase plane, a separatrix (dashed curve) 
divides the starting points that approach the high-u stable steady 
state (pink area) from those that go to the low-u steady state. 
(C, D) Excitability. For b � 1.5, there is a single stable steady state plus 
a saddle point and an unstable steady state. Trajectories beginning 
above the threshold (C) or the separatrix (D) yield a pulse of u and 
circle the unstable steady state before settling down to a low 
steady-state value of u. Those beginning below the threshold do not 
yield a pulse of high u. (E, F) Oscillations. For b � 1.0, the single 
steady state is unstable. From all initial conditions (except starting 
right on the unstable steady state), the trajectories approach the 
same stable limit cycle, although from above the threshold, they go 
first to the upper limb of the u-nullcline, and below the threshold, 
they go first to the lower limb. A, C, and E are time courses; B, D, and 
F are phase plots. In each case, a � 0.1, E � 0.01, v(t = 0) ��0.3, and 
u(t = 0) ��0.25 (red trajectories) or 0.35 (blue trajectories).
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steady states (filled circles), and one is an unstable saddle point 
(open circle). This means that the system is bistable.

Some initial conditions produce trajectories that approach the 
negative-potential steady state (Figure 2, A and B, blue region) and 
others that approach the positive-potential steady state (Figure 2, A 
and B, pink region). A separatrix (dashed curve) divides the basins of 
attraction for the two stable steady states.

EXCITABILITY IN THE FHN MODEL
As b is decreased, the slope of the v-nullcline decreases. This moves 
one of the stable steady states from the upper limb of the u-nullcline 
to the middle limb, and it changes from being stable to unstable. 
This leaves a single remaining stable steady state—the low-mem-
brane-potential steady state (Figure 2D). The system is now monos-
table but excitable. For some initial conditions, u and v will proceed 
more or less directly to the remaining stable steady state (Figure 2D, 
blue curve), whereas for others, the trajectory first shoots to the 
u-nullcline, circles around the unstable steady state, and only 

a backward S, which is critical to the model’s behavior (see later 
discussion), and not because they correspond exactly to the situa-
tion in nerves or other biological oscillators.

The second variable, v, is related to the potassium gradient. The 
resting situation, where the extracellular concentration of K+ is lower 
than the intracellular concentration, corresponds to a negative value 
of v. The processes that regulate v are all assumed to occur on a 
slow time scale. The first term represents the activation of the volt-
age-gated potassium channel by the membrane potential u, which 
increases the value of v. The second term, –Ebv, represents the 
pumping of K+ out of the neuron. The third term on the right-hand 
side, Ea, roughly corresponds to a potassium leak current.

The FHN model is less directly related to calcium signaling and 
Cdk1 activation, but one can still draw analogies: for calcium signal-
ing, u can represent the free cytosolic calcium, and v can represent 
the pumps and leaks that regulate calcium concentration more 
slowly. For mitosis, u can represent cyclin B-Cdk1 activity and v can 
represent the more slowly varying cyclin B concentration. Note, 
however, that the enduring significance of the FHN model for biolo-
gists does not come from a precise correspondence between the 
individual terms of the two equations and any particular biological 
process. Instead, it lies in the fact that the model is a simple way of 
generating bistability, excitability, and relaxation oscillations, three 
systems-level behaviors known to arise in a number of biological 
contexts.

BISTABILITY IN THE FHN MODEL
Here we assume a � 0.1 and E � 0.01 and change the behavior by 
varying the parameter b. Note that all parameters and variables are 
dimensionless throughout. When b is relatively large (b � 1.8), the 
system is bistable. Depending on the initial conditions, the system 
will settle down into one of two alternative stable steady states, one 
with a negative membrane potential (Figure 2A) and one with a 
positive membrane potential. For the initial value of v assumed here 
(v ��0.3), all trajectories that start with u ��0.3 (the threshold shown 
by the dashed line in Figure 2A) will approach the positive-potential 
steady state (Figure 2A, red curve), and all trajectories that start with 
u < 0.3 will end up at the negative-potential steady state (Figure 
2A, blue curve). Thus a small perturbation that pushes the system 
across the threshold will be amplified into a large difference in the 
system’s ultimate fate.

The origin of the bistability can be understood by examining a 
phase plot of the two-variable system, where the values of u and v 
(each of which is a function of time) are plotted in the uv-plane 
(Figure 2B). Stable steady states are attained when both du/dt and 
dv/dt are equal to zero:
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Equation 3 defines a curve in the uv plane, the u-nullcline, and it 
can be thought of as the steady-state response of u to various con-
stant levels of v (Figure 2B, gray curve). The positive feedback and 
cubic negative feedback terms give the nullcline a characteristic 
backward-S shape that is critical for the behavior of the model. 
Equation 4 is the v-nullcline, a straight line that describes the steady-
state response of v to u (Figure 2B, black line). Wherever the two 
nullclines intersect, both time derivatives (Eqs. 1 and 2) are equal to 
zero and the system is in steady state. For the particular value of b 
chosen in Figure 2, A and B (b � 2), the two nullclines intersect at 
three points (Figure 2B). Two of the intersection points can be shown 
through linear stability analysis (Strogatz, 1994) to represent stable 

FIGURE 2: Different types of dynamics from the FHN model. 
(A, C, E) Time course; (B, D, F) phase plots. (A, B) Bistability. For b � 2, 
the system is bistable, with two stable steady states (B, filled circles) 
and one saddle point (B, open circle). For the value of v(t = 0) 
assumed here (v(t = 0) � –0.3), trajectories beginning above a 
threshold value of u (A, dashed line) go to the high-u stable steady 
state, whereas those beginning below the threshold go to the low-u 
stable steady state. In the phase plane, a separatrix (dashed curve) 
divides the starting points that approach the high-u stable steady 
state (pink area) from those that go to the low-u steady state. 
(C, D) Excitability. For b � 1.5, there is a single stable steady state plus 
a saddle point and an unstable steady state. Trajectories beginning 
above the threshold (C) or the separatrix (D) yield a pulse of u and 
circle the unstable steady state before settling down to a low 
steady-state value of u. Those beginning below the threshold do not 
yield a pulse of high u. (E, F) Oscillations. For b � 1.0, the single 
steady state is unstable. From all initial conditions (except starting 
right on the unstable steady state), the trajectories approach the 
same stable limit cycle, although from above the threshold, they go 
first to the upper limb of the u-nullcline, and below the threshold, 
they go first to the lower limb. A, C, and E are time courses; B, D, and 
F are phase plots. In each case, a � 0.1, E � 0.01, v(t = 0) ��0.3, and 
u(t = 0) ��0.25 (red trajectories) or 0.35 (blue trajectories).
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steady states (filled circles), and one is an unstable saddle point 
(open circle). This means that the system is bistable.

Some initial conditions produce trajectories that approach the 
negative-potential steady state (Figure 2, A and B, blue region) and 
others that approach the positive-potential steady state (Figure 2, A 
and B, pink region). A separatrix (dashed curve) divides the basins of 
attraction for the two stable steady states.

EXCITABILITY IN THE FHN MODEL
As b is decreased, the slope of the v-nullcline decreases. This moves 
one of the stable steady states from the upper limb of the u-nullcline 
to the middle limb, and it changes from being stable to unstable. 
This leaves a single remaining stable steady state—the low-mem-
brane-potential steady state (Figure 2D). The system is now monos-
table but excitable. For some initial conditions, u and v will proceed 
more or less directly to the remaining stable steady state (Figure 2D, 
blue curve), whereas for others, the trajectory first shoots to the 
u-nullcline, circles around the unstable steady state, and only 

a backward S, which is critical to the model’s behavior (see later 
discussion), and not because they correspond exactly to the situa-
tion in nerves or other biological oscillators.

The second variable, v, is related to the potassium gradient. The 
resting situation, where the extracellular concentration of K+ is lower 
than the intracellular concentration, corresponds to a negative value 
of v. The processes that regulate v are all assumed to occur on a 
slow time scale. The first term represents the activation of the volt-
age-gated potassium channel by the membrane potential u, which 
increases the value of v. The second term, –Ebv, represents the 
pumping of K+ out of the neuron. The third term on the right-hand 
side, Ea, roughly corresponds to a potassium leak current.

The FHN model is less directly related to calcium signaling and 
Cdk1 activation, but one can still draw analogies: for calcium signal-
ing, u can represent the free cytosolic calcium, and v can represent 
the pumps and leaks that regulate calcium concentration more 
slowly. For mitosis, u can represent cyclin B-Cdk1 activity and v can 
represent the more slowly varying cyclin B concentration. Note, 
however, that the enduring significance of the FHN model for biolo-
gists does not come from a precise correspondence between the 
individual terms of the two equations and any particular biological 
process. Instead, it lies in the fact that the model is a simple way of 
generating bistability, excitability, and relaxation oscillations, three 
systems-level behaviors known to arise in a number of biological 
contexts.

BISTABILITY IN THE FHN MODEL
Here we assume a � 0.1 and E � 0.01 and change the behavior by 
varying the parameter b. Note that all parameters and variables are 
dimensionless throughout. When b is relatively large (b � 1.8), the 
system is bistable. Depending on the initial conditions, the system 
will settle down into one of two alternative stable steady states, one 
with a negative membrane potential (Figure 2A) and one with a 
positive membrane potential. For the initial value of v assumed here 
(v ��0.3), all trajectories that start with u ��0.3 (the threshold shown 
by the dashed line in Figure 2A) will approach the positive-potential 
steady state (Figure 2A, red curve), and all trajectories that start with 
u < 0.3 will end up at the negative-potential steady state (Figure 
2A, blue curve). Thus a small perturbation that pushes the system 
across the threshold will be amplified into a large difference in the 
system’s ultimate fate.

The origin of the bistability can be understood by examining a 
phase plot of the two-variable system, where the values of u and v 
(each of which is a function of time) are plotted in the uv-plane 
(Figure 2B). Stable steady states are attained when both du/dt and 
dv/dt are equal to zero:
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Equation 3 defines a curve in the uv plane, the u-nullcline, and it 
can be thought of as the steady-state response of u to various con-
stant levels of v (Figure 2B, gray curve). The positive feedback and 
cubic negative feedback terms give the nullcline a characteristic 
backward-S shape that is critical for the behavior of the model. 
Equation 4 is the v-nullcline, a straight line that describes the steady-
state response of v to u (Figure 2B, black line). Wherever the two 
nullclines intersect, both time derivatives (Eqs. 1 and 2) are equal to 
zero and the system is in steady state. For the particular value of b 
chosen in Figure 2, A and B (b � 2), the two nullclines intersect at 
three points (Figure 2B). Two of the intersection points can be shown 
through linear stability analysis (Strogatz, 1994) to represent stable 

FIGURE 2: Different types of dynamics from the FHN model. 
(A, C, E) Time course; (B, D, F) phase plots. (A, B) Bistability. For b � 2, 
the system is bistable, with two stable steady states (B, filled circles) 
and one saddle point (B, open circle). For the value of v(t = 0) 
assumed here (v(t = 0) � –0.3), trajectories beginning above a 
threshold value of u (A, dashed line) go to the high-u stable steady 
state, whereas those beginning below the threshold go to the low-u 
stable steady state. In the phase plane, a separatrix (dashed curve) 
divides the starting points that approach the high-u stable steady 
state (pink area) from those that go to the low-u steady state. 
(C, D) Excitability. For b � 1.5, there is a single stable steady state plus 
a saddle point and an unstable steady state. Trajectories beginning 
above the threshold (C) or the separatrix (D) yield a pulse of u and 
circle the unstable steady state before settling down to a low 
steady-state value of u. Those beginning below the threshold do not 
yield a pulse of high u. (E, F) Oscillations. For b � 1.0, the single 
steady state is unstable. From all initial conditions (except starting 
right on the unstable steady state), the trajectories approach the 
same stable limit cycle, although from above the threshold, they go 
first to the upper limb of the u-nullcline, and below the threshold, 
they go first to the lower limb. A, C, and E are time courses; B, D, and 
F are phase plots. In each case, a � 0.1, E � 0.01, v(t = 0) ��0.3, and 
u(t = 0) ��0.25 (red trajectories) or 0.35 (blue trajectories).
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where the system has a higher membrane potential (u(t = 0) � 1). In 
Figure 3D, the oscillatory case, we also assumed that the frequency 
of the oscillations is higher in the middle of the tube than in the 
other regions. We then assumed that either there was no diffusive 
coupling (top, D = 0) or there was diffusive coupling (bottom, D = 1) 
and examined how the systems evolved with time. We represent the 
value of u at each point in space and time by a heat map color 
scale.

If there is no reaction and no diffusion, then the middle region 
remains red and the outer regions remain blue indefinitely (Figure 
3A, top). Adding diffusion makes the high-potential region both 
spread out and decrease in amplitude with time (Figure 3A, bot-
tom), as would be expected intuitively. The high-u region has a sig-
nificant effect only on the regions close to it and only for a limited 
period of time.

BISTABLE, EXCITABLE, AND OSCILLATORY 
TRIGGER WAVES
The situation is very different when we assume that the reactions of 
u and v are described by the FHN model. If the system is bistable 
(b � 2), so that in the absence of diffusion the two regions settle into 
the two different stable steady states (Figure 3B, top), then adding 
diffusion of the appropriate strength allows the high-u state to prop-
agate up and down the tube at constant speed (Figure 3B, bottom). 
Eventually the entire tube flips from the low-u state to the high-u 
state. If the system is excitable (Figure 3C), diffusion allows a pulse 
of high u to spread up and down the tube at constant speed 
(Figure 3C, bottom). If the tube is oscillatory, with the phase ad-
vanced and frequency higher in the center of the tube relative the 
rest of the tube, the fast oscillations spread up and down from the 
center at constant speed until they meet up with the delayed oscil-
lations (Figure 3D, bottom). With each successive oscillation, the 
trigger wave of fast oscillations spreads further up and down the 
tube (Figure 3D, bottom). In each of these cases, a dynamical phe-
nomenon—bistable switching, excitable spikes, or oscillations—
propagates through space via trigger waves.

To get an idea of why the combination of FHN reactions and 
diffusion allows for the generation of trigger waves, first ignore 
diffusion and recall that there is a separatrix or threshold built 
into the reactions (Figure 2). For a given initial value of v, if you 
begin with a value of u above the threshold, the trajectory will 
have one sort of fate, and if you begin below it, another. In the 
bistable case (Figure 2, A and B), the threshold separates the 
trajectories that approach the high-u steady state from those that 
approach the low-u steady state; in the excitable case (Figure 2, 
C and D), it separates the trajectories that include an upward 
pulse of u from those that do not; and in the oscillatory case 
(Figure 2, E and F), it separates the oscillations that initially head 
toward the upper limb of the u-nullcline from those that head 
toward the lower limb.

Diffusion provides a mechanism for crossing the threshold. This 
is illustrated in Figure 4 for the case of the bistable FHN system. Dif-
fusion mixes nearby values such that a point in space within the 
low-u region will have its value of u initially increase as the high-u 
region mixes with it and then eventually fall back down (Figure 4, 
A–C). The higher the diffusion coefficient, the faster is the initial in-
crease, but the fall back down is faster as well (Figure 4, A–C). Diffu-
sion can therefore allow the value of u to increase above the thresh-
old (or, in phase space, to cross the separatrix) for some period of 
time. If the time is sufficient, the FHN reactions can convert that re-
gion of space into an even higher level of u (Figure 4, C and D). The 
entire process is repeated in the next region of space and then the 

then heads toward the stable steady state (Figure 2D, red curve). 
The result is that some initial conditions will result in pulses of 
depolarization (Figure 2C, red curve), whereas others will not (Figure 
2C, blue curve). The separatrix dividing the trajectories that pulse 
from those that do not is similar in shape to that which divided the 
basins of attraction in the bistable case (Figure 2B).

OSCILLATIONS IN THE FHN MODEL
When b is decreased below ^1.2, so that the v-nullcline intersects 
the middle limb of the u-nullcline rather that the lower limb, there is 
only one steady state, and it is unstable (Figure 2F). The result is that 
the system is now oscillatory rather than excitable, and this type of 
oscillation in which the trajectory switches back and forth between 
the two limbs of the u-nullcline is termed a relaxation oscillation. 
From some initial conditions, the trajectories aim upward (Figure 2F, 
pink region), and from others, they aim downward (blue region), but 
they always approach the same stable limit cycle (Figure 2F). This 
yields an unending succession of alternations between high and low 
membrane potentials (Figure 2E), which are very similar to repeated 
trains of the pulses that were generated when the model was in its 
excitable regime (Figure 2C, red curve).

Thus the FHN model can exhibit three types of behavior: bista-
bility, excitability, and oscillations. When combined with a spatial 
coupling mechanism like diffusion, each of these responses can be 
propagated as a trigger wave.

REACTION-DIFFUSION DYNAMICS IN THE FHN MODEL
The ordinary differential equations of the FHN model describe ei-
ther the behavior of a well-stirred, spatially homogeneous system 
or a spatially inhomogeneous system with no coupling between 
points in space. To generate trigger waves, we need the system to 
be both inhomogeneous and spatially coupled. Action potentials, 
calcium waves, and mitotic waves all arise out of spatial inhomoge-
neities in either the initial conditions of the system or the parame-
ters of the system. Because they all occur within a shared cyto-
plasm, we will assume here that diffusion provides the spatial 
coupling.

In the absence of any local reaction process, a locally elevated 
concentration of molecules will spread through a cell and eventually 
approach a homogeneous spatial distribution. Fick’s second law de-
scribes how the concentrations change in time through diffusion. 
For one spatial dimension (e.g., for diffusion in a thin tube like an 
axon) this is

t
t � t

t
u x t

t D u x t
x

( , ) ( , )2

2
 

(5 )

where D is the diffusion coefficient, typically ^300 µm2/s for a small 
molecule like IP3 and ^10 µm2/s for a rapidly diffusing cytosolic pro-
tein or for Ca2+, which spends most of its time bound to proteins 
(Allbritton et al., 1992). We can add diffusion terms to the FHN 
model to yield a system of partial differential equations:
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These can be solved numerically for some choice of parameters 
and initial conditions. For each of the simulations shown in Figure 3, 
we assumed that we have a long, one-dimensional tube (like an 
axon) with the system in a low-u state (u(t = 0) ^ –0.6, v(t = 0) ^ –0.3) 
everywhere except for a small region in the middle of the tube, 
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region to a high-u  region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u  state that 
would spread into, and eventually take 
over, the high-u  region.

THE TIME SCALES OF REACTION 
VERSUS DIFFUSION
As the FHN reactions speed up and the dif-
fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
equation

� Ts D2
 

(8)

where D is the diffusion coefficient and T is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 

Showalter and Tyson (1987) pointed out, for action potentials, the 
equivalent of D is ^0.034 m2/s and T y 0.3 ms in the giant squid 
axon, yielding a propagation speed of 20 m/s, in good agreement 
with experimental observation (Hodgkin and Huxley, 1952). For 
calcium-induced calcium release, D y 10 µm2/s and T y 1 s, yielding 
a wave speed of ̂ 6 µm/s, in reasonable agreement with observation 
(Stricker, 1999). For the IP3-mediated positive feedback loop, the IP3 

next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u  regions is negative, so that the low-u  region is close to the 
threshold and the high-u  region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u  

FIGURE 3: Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) � 1) and a low initial value of u elsewhere (u(t = 0) � –0.6). 
The initial value for v is the same everywhere (v(t = 0) � –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b � 0.5) than 
in the rest of the tube (b � 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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region to a high-u  region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u  state that 
would spread into, and eventually take 
over, the high-u  region.

THE TIME SCALES OF REACTION 
VERSUS DIFFUSION
As the FHN reactions speed up and the dif-
fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
equation

� Ts D2
 

(8)

where D is the diffusion coefficient and T is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 

Showalter and Tyson (1987) pointed out, for action potentials, the 
equivalent of D is ^0.034 m2/s and T y 0.3 ms in the giant squid 
axon, yielding a propagation speed of 20 m/s, in good agreement 
with experimental observation (Hodgkin and Huxley, 1952). For 
calcium-induced calcium release, D y 10 µm2/s and T y 1 s, yielding 
a wave speed of ̂ 6 µm/s, in reasonable agreement with observation 
(Stricker, 1999). For the IP3-mediated positive feedback loop, the IP3 

next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u  regions is negative, so that the low-u  region is close to the 
threshold and the high-u  region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u  

FIGURE 3: Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) � 1) and a low initial value of u elsewhere (u(t = 0) � –0.6). 
The initial value for v is the same everywhere (v(t = 0) � –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b � 0.5) than 
in the rest of the tube (b � 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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region to a high-u  region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u  state that 
would spread into, and eventually take 
over, the high-u  region.

THE TIME SCALES OF REACTION 
VERSUS DIFFUSION
As the FHN reactions speed up and the dif-
fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
equation

� Ts D2
 

(8)

where D is the diffusion coefficient and T is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 

Showalter and Tyson (1987) pointed out, for action potentials, the 
equivalent of D is ^0.034 m2/s and T y 0.3 ms in the giant squid 
axon, yielding a propagation speed of 20 m/s, in good agreement 
with experimental observation (Hodgkin and Huxley, 1952). For 
calcium-induced calcium release, D y 10 µm2/s and T y 1 s, yielding 
a wave speed of ̂ 6 µm/s, in reasonable agreement with observation 
(Stricker, 1999). For the IP3-mediated positive feedback loop, the IP3 

next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u  regions is negative, so that the low-u  region is close to the 
threshold and the high-u  region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u  

FIGURE 3: Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) � 1) and a low initial value of u elsewhere (u(t = 0) � –0.6). 
The initial value for v is the same everywhere (v(t = 0) � –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b � 0.5) than 
in the rest of the tube (b � 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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region to a high-u  region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u  state that 
would spread into, and eventually take 
over, the high-u  region.

THE TIME SCALES OF REACTION 
VERSUS DIFFUSION
As the FHN reactions speed up and the dif-
fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
equation

� Ts D2
 

(8)

where D is the diffusion coefficient and T is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 

Showalter and Tyson (1987) pointed out, for action potentials, the 
equivalent of D is ^0.034 m2/s and T y 0.3 ms in the giant squid 
axon, yielding a propagation speed of 20 m/s, in good agreement 
with experimental observation (Hodgkin and Huxley, 1952). For 
calcium-induced calcium release, D y 10 µm2/s and T y 1 s, yielding 
a wave speed of ̂ 6 µm/s, in reasonable agreement with observation 
(Stricker, 1999). For the IP3-mediated positive feedback loop, the IP3 

next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u  regions is negative, so that the low-u  region is close to the 
threshold and the high-u  region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u  

FIGURE 3: Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) � 1) and a low initial value of u elsewhere (u(t = 0) � –0.6). 
The initial value for v is the same everywhere (v(t = 0) � –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b � 0.5) than 
in the rest of the tube (b � 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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region to a high-u  region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u  state that 
would spread into, and eventually take 
over, the high-u  region.

THE TIME SCALES OF REACTION 
VERSUS DIFFUSION
As the FHN reactions speed up and the dif-
fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
equation

� Ts D2
 

(8)

where D is the diffusion coefficient and T is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 

Showalter and Tyson (1987) pointed out, for action potentials, the 
equivalent of D is ^0.034 m2/s and T y 0.3 ms in the giant squid 
axon, yielding a propagation speed of 20 m/s, in good agreement 
with experimental observation (Hodgkin and Huxley, 1952). For 
calcium-induced calcium release, D y 10 µm2/s and T y 1 s, yielding 
a wave speed of ̂ 6 µm/s, in reasonable agreement with observation 
(Stricker, 1999). For the IP3-mediated positive feedback loop, the IP3 

next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u  regions is negative, so that the low-u  region is close to the 
threshold and the high-u  region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u  

FIGURE 3: Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) � 1) and a low initial value of u elsewhere (u(t = 0) � –0.6). 
The initial value for v is the same everywhere (v(t = 0) � –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b � 0.5) than 
in the rest of the tube (b � 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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region to a high-u  region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u  state that 
would spread into, and eventually take 
over, the high-u  region.

THE TIME SCALES OF REACTION 
VERSUS DIFFUSION
As the FHN reactions speed up and the dif-
fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
equation

� Ts D2
 

(8)

where D is the diffusion coefficient and T is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 

Showalter and Tyson (1987) pointed out, for action potentials, the 
equivalent of D is ^0.034 m2/s and T y 0.3 ms in the giant squid 
axon, yielding a propagation speed of 20 m/s, in good agreement 
with experimental observation (Hodgkin and Huxley, 1952). For 
calcium-induced calcium release, D y 10 µm2/s and T y 1 s, yielding 
a wave speed of ̂ 6 µm/s, in reasonable agreement with observation 
(Stricker, 1999). For the IP3-mediated positive feedback loop, the IP3 

next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u  regions is negative, so that the low-u  region is close to the 
threshold and the high-u  region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u  

FIGURE 3: Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) � 1) and a low initial value of u elsewhere (u(t = 0) � –0.6). 
The initial value for v is the same everywhere (v(t = 0) � –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b � 0.5) than 
in the rest of the tube (b � 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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23. Spatial Temporal patterns: Trigger waves

• Diffusion is a mechanism for crossing the threshold in space

• a low u value state will increase its u concentration 
due to diffusion of nearby high u state

but will relax back

• Higher diffusion increases rate of local propagation 
but makes it more transient
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region to a high-u  region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u  state that 
would spread into, and eventually take 
over, the high-u  region.

THE TIME SCALES OF REACTION 
VERSUS DIFFUSION
As the FHN reactions speed up and the dif-
fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
equation

� Ts D2
 

(8)

where D is the diffusion coefficient and T is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 

Showalter and Tyson (1987) pointed out, for action potentials, the 
equivalent of D is ^0.034 m2/s and T y 0.3 ms in the giant squid 
axon, yielding a propagation speed of 20 m/s, in good agreement 
with experimental observation (Hodgkin and Huxley, 1952). For 
calcium-induced calcium release, D y 10 µm2/s and T y 1 s, yielding 
a wave speed of ̂ 6 µm/s, in reasonable agreement with observation 
(Stricker, 1999). For the IP3-mediated positive feedback loop, the IP3 

next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u  regions is negative, so that the low-u  region is close to the 
threshold and the high-u  region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u  

FIGURE 3: Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) � 1) and a low initial value of u elsewhere (u(t = 0) � –0.6). 
The initial value for v is the same everywhere (v(t = 0) � –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b � 0.5) than 
in the rest of the tube (b � 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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• The presence of a reaction captures supra-
threshold state and move to high u state

• This depends on the relative time scale of diffusion 
and reaction
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region to a high-u  region than vice versa. If 
instead we had assumed that the initial 
value of v were positive, then we would ob-
tain a trigger wave of the low-u  state that 
would spread into, and eventually take 
over, the high-u  region.
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fusion coefficient D increases, in general 
the speed of the trigger wave increases. 
The speed s is approximated by the 
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where D is the diffusion coefficient and T is 
related to the doubling time for the sys-
tem’s positive feedback, essentially the in-
verse of the speed of the reactions. This 
equation was first presented by Robert  
Luther in his 1906 analysis of chemical 
waves and then, independently in 1937, by 
R. A. Fisher in a classic paper on the spatial 
spread of an advantageous gene allele 
through a population (Luther, 1906; Fisher, 
1937; Showalter and Tyson, 1987). As 
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a wave speed of ̂ 6 µm/s, in reasonable agreement with observation 
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next, resulting in a trigger wave of bistable switching that never 
slows down and never peters out (Figure 4C). Similar arguments can 
be made for the excitable and oscillatory cases.

We assumed here that the initial value of v in both the low- and 
high-u  regions is negative, so that the low-u  region is close to the 
threshold and the high-u  region is far from it (Figure 4C). This makes 
it so that it is easier for diffusion and reaction to convert the low-u  

FIGURE 3: Three types of trigger waves from coupling the FHN reactions to diffusion. The 
system is assumed to have one spatial dimension (represented on the y-axis); it is essentially a 
long, thin tube. The values of u as a function of time and position are represented by a heat map 
color scale. In all cases we assumed that the system has a high initial value of u in the middle of 
the tube over a width of 40 units (u(t = 0) � 1) and a low initial value of u elsewhere (u(t = 0) � –0.6). 
The initial value for v is the same everywhere (v(t = 0) � –0.3). For the oscillatory case, we also 
assumed that the frequency of the oscillations is higher in the middle of the tube (b � 0.5) than 
in the rest of the tube (b � 1), acting as a pacemaker for the whole system. In the top panels 
there is no diffusive coupling (D = 0), while in the bottom panels diffusion is included (D = 1). 
The FHN parameters are the same as those shown in Figure 2.
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23. Spatial Temporal patterns: Trigger waves

• Initiation of waves: self-organisation
1. Stochastic processes in homogeneous medium
2. Pacemaker: spatial bias (heterogeneous medium) set up by pre-

pattern (e.g. frequency modulation: higher frequency region will become pacemaker). 

II. Chemical Instabilities
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Summary: Properties of excitable systems
• Initiation beyond a threshold for activation
• Self-organisation of trigger waves
• Refractory period: clearance of excess inhibitor or new synthesis of depleted substrate
• Colliding waves annihilation: due to wave entering refractory zone.

23. Spatio-temporal patterns: seashell patterns
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Hans Meinhardt 
The algorithmic beauty of seashells (Springer)

Lioconcha hieroglyphica

• Bistability• Excitability

Conus marmoreus23. Spatio-temporal patterns: seashell patterns

II. Chemical Instabilities
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Hans Meinhardt 
The algorithmic beauty of seashells (Springer)

Synchronous oscillations: 
(diffusion mediated coupling)

Spatial patterns: 
Reduced inhibitor lifetime

• Temporal instability: Oscillations

• Spatial instability: Turing patterns

23. Spatio-temporal patterns: seashell patterns
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1354CHAPTER 20. BIOLOGICAL PATTERNS: ORDER IN SPACE AND TIME
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Figure 20.23: Model for sea shell pattern formation. (A) A cross section near
the growing lip of a shell shows how the mantle of the mollusk can reach around
the edge to “taste” the pre-existing pattern. The pigment pattern detected by
the sensory cells is processed according to their pattern generation program, and
communicated to the secretory cells, which lay down a new strip of appropri-
ately pigmented shell. (B) Generation of horizontal pinstripes by propagation
of a standing wave pattern. The sensory cells detecting pigment generate both
excitatory and inhibitory signals with respect to pigment generation by the se-
cretory cells. The excitatory signals act over short distances, and the inhibitory
signals act over longer distances, maintaining narrow stripes. (C) Modifications
of the processing rules followed by the sensory cells can create vertical stripes,
spots, zigzags, or many, many other patterns. (Adapted from A. Boettiger et
al., Proc. Nat. Acad. Sci. 106:6837, 2009.)
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Rob Philipps, Jane Kondev, Julie Theriot, Hernan G. Garcia.
illustration: Nigel Orme 

Physical Biological of the Cell (Garland Science)

A. Boettiger, B. Ermentrout and G. Oster. P.N.A.S  106:6837-6842. 2009

• Seashell patterns are not mediated by diffusing chemical activators/inhibitors
• They reflect the spatial-temporal activity patterns of neural nets
• Sensory cells « read » past activity and induce secretory cells

Seashell patterns as EEGs…

https://www.eb.tuebingen.mpg.de/emeriti/hans-meinhardt/

23. Spatio-temporal patterns: seashell patterns
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Rob Philipps, Jane Kondev, Julie Theriot, Hernan G. Garcia.
illustration: Nigel Orme 

Physical Biological of the Cell (Garland Science)
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Figure 20.16: Min oscillations and how the bacterium finds its middle. (A)
Fluorescently tagged MinD can be seen to oscillate rapidly from one pole of
the cell to another with a period of only about 40 seconds, much less than the
cell’s division time. (B) In cells that are prevented from physically dividing, the
Min oscillations continue forming an oscillating stripe pattern throughout the
entire length of the filamentous cell. The total size of the cell is shown in the
transmitted light micrograph in the bottom panel. (Adapted from D. M. Raskin
and P. A. J. DeBoer, Proc. Natl. Acad. Sci. 96:4971, 1999.)

eling wave. How is this dynamical property used by E. coli to regulate its
division? Recall that the biological function of the Min proteins is to regulate
the position of FtsZ ring assembly by ensuring that the concentration of the
FtsZ inhibitor MinC (a passive passenger of MinD) is lowest right at the mid-
dle of the cell. In considering wave equations in the context of fluid mechanics
or electromagnetism, it is well-appreciated that the same governing dynamical
equations that generate propagating waves in an extended medium will lead
to standing waves when boundary conditions are imposed. Inspection of the
dynamics of MinD localization inside of living bacterial cells (see Figure 20.16)
suggests that its behavior is consistent with what might be expected when a
traveling wave system is confined to the small oblong box of the bacterial cell.
As shown in Figure 20.16(A), MinD oscillates from one pole to another of a
pre-divisional bacterial cell, with a period T of about 40 seconds, which is much
shorter than the cell’s division time (on the order of about 30 minutes). As the
oscillating MinD carries MinC with it, the time-averaged concentration of the
MinC protein will necessarily be lowest right at the cell’s center, exactly where
the FtsZ ring is supposed to assemble, and preventing FtsZ ring assembly near
the cell poles, which would result in formation of minicells devoid of DNA. The
nature of the MinD standing wave is illustrated more dramatically in long cells
where division has been inhibited, as shown in Figure 20.16(B). For these fil-
amentous cells, the standing wave pattern shows a spatial periodicity that is
about twice the normal length of an individual cell.

We can use the physical dimensions of the standing wave to estimate whether

Oscillations of MinD
MinC recruited by MinD
>mean MinC concentration is lowest in middle

MinC inhibits FtsZ (tubulin homolog in Bacteria)

3.1. THE HIERARCHY OF TEMPORAL SCALES 155

minutes

Figure 3.7: Schematic of an idealized bacterial cell cycle. A newborn cell shown
at the top has a single chromosome with a single origin of replication marked
by the green dot. The cell cycle initiates with the duplication of the origin
and DNA replication then proceeds in an orderly fashion around the circular
chromosome. At the same time, a group of cell division proteins beginning
with the tubulin analog FtsZ form a ring at the center of the cell that will
dictate the future site of septum formation. As DNA replication proceeds and
the cell elongates, the two origins become separated from each other with one
traveling the entire length of the cell to take up residence at the opposite pole.
As the septum begins to close down, the two chromosomal masses are physically
separated into the two daughter cells where the cycle can begin anew.

MinD standing wave results from opposing moving waves

FtsZ

23. Spatio-temporal patterns: defining the middle of a cell
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Turing instabilities: travelling waves in 2D
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Figure 20.14: In vitro patterns in the Min system. (A) Reconstitution of MinD
and MinE interaction with the membrane in vitro. The diagram illustrates key
biochemical features: MinD can form dimers in solution and bind to the mem-
brane, MinE binds MinD only on the membrane and causes is to dissociate and
disassemble, followed by dissociation of MinE itself. (B) The spatial distribution
of both proteins can be directly observed after tagging them with fluorescent
molecules. The simple mixture of MinD, MinE and ATP spontaneously forms
dramatic wave-like patterns on lipid bilayers. As shown in the time series at
the bottom, these waves migrate over time. (C) A cross section through a wave
showing fluorescence intensity suggests that accumulation of MinE delimits the
rear of each MinD band. (D) The wavelength of the Min pattern decreases with
increasing concentration of MinE. (A and B, adapted from M. Loose and P.
Schwille, J. of Struc. Biol. 168:143, 2009; C and D, adapted from M. Loose et
al., Science 320:789, 2008.)
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and MinE interaction with the membrane in vitro. The diagram illustrates key
biochemical features: MinD can form dimers in solution and bind to the mem-
brane, MinE binds MinD only on the membrane and causes is to dissociate and
disassemble, followed by dissociation of MinE itself. (B) The spatial distribution
of both proteins can be directly observed after tagging them with fluorescent
molecules. The simple mixture of MinD, MinE and ATP spontaneously forms
dramatic wave-like patterns on lipid bilayers. As shown in the time series at
the bottom, these waves migrate over time. (C) A cross section through a wave
showing fluorescence intensity suggests that accumulation of MinE delimits the
rear of each MinD band. (D) The wavelength of the Min pattern decreases with
increasing concentration of MinE. (A and B, adapted from M. Loose and P.
Schwille, J. of Struc. Biol. 168:143, 2009; C and D, adapted from M. Loose et
al., Science 320:789, 2008.)
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Figure 20.14: In vitro patterns in the Min system. (A) Reconstitution of MinD
and MinE interaction with the membrane in vitro. The diagram illustrates key
biochemical features: MinD can form dimers in solution and bind to the mem-
brane, MinE binds MinD only on the membrane and causes is to dissociate and
disassemble, followed by dissociation of MinE itself. (B) The spatial distribution
of both proteins can be directly observed after tagging them with fluorescent
molecules. The simple mixture of MinD, MinE and ATP spontaneously forms
dramatic wave-like patterns on lipid bilayers. As shown in the time series at
the bottom, these waves migrate over time. (C) A cross section through a wave
showing fluorescence intensity suggests that accumulation of MinE delimits the
rear of each MinD band. (D) The wavelength of the Min pattern decreases with
increasing concentration of MinE. (A and B, adapted from M. Loose and P.
Schwille, J. of Struc. Biol. 168:143, 2009; C and D, adapted from M. Loose et
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Figure 20.15: Toy model of Min waves. (A) Toy model of a traveling wave
of particle density formed by exchange of particles bound to a one-dimensional
lattice, with spacing d equal to the particle diameter, with those in solution.
Particles attach at one end of the density band and detach at the other, with
rates kon and koff respectively. (This is analogous to actin or microtubule
treadmilling shown in Figures 15.32 and 15.33 (p. 907 and 909). The two rates
are required to be equal for the length of a band to remain constant in time.
After a single attachment and detachment event the band moves by a distance d
which is related to the wave speed by v = dkon. The wavelength of the pattern
is �. (B) Toy model of Min waves in one dimension. MinD proteins are added
at the front end of the MinD band, where the MinE concentration is low. MinE
binds only when MinD is present and this leads to a concentration of MinE
that increases toward the back end of the MinD band, as observed in vitro (see
Figure 20.14). We assume that MinD dissociates when the MinE concentration
has risen above a threshold value.

stable length scale requires that kon = koff, which can
be achieved if MinE promotes MinD dissociation.

dissociation of MinD above threshold of MinE recruitment
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with the membrane when they make physical contact with the edge of a MinD
domain, but that this stabilization is reversed when the local bound concentra-
tion of MinE is high. Thus, new molecules of MinD stably associate only with
the leading edge of the band, not with the rear. To an external observer, the
bands of MinD with a wavelength � will appear to travel at a speed v across the
membrane (represented by the one dimensional lattice in the toy model), even
though each individual molecule of MinD is actually only coming on and o↵ the
membrane. At a given fixed point on the membrane, the local concentration of
bound MinD will be periodic in time with a period T , where T = �/v.

Like in the case of treadmilling actin filaments, the length of the MinD band
will remain constant if and only if the on and o↵ rates at the two ends are
precisely balanced. Within the context of our toy model, this equality of rates
can be achieved by having a MinD detachment rate that is stimulated by MinE,
whose concentration increases from the front to the back end of the MinD band.
According to the experimental measurement, the density of MinE appears to
increase approximately linearly from the leading edge of the MinD band to the
trailing edge (see Figure 20.14(C)). For our toy model, we assume that MinE
proteins arriving di↵usively from the solution phase are able to associate with
immobilized (membrane-bound) MinD and then remain attached, and that the
accumulation of MinE proteins on immobilized MinD proceeds at a constant
rate. We further assume that, when the local concentration of MinE passes
some threshold (drawn in Figure 20.15 as four molecules per lattice unit), MinD
is triggered to dissociate from the membrane and return to solution, followed by
MinE. The linear increase of MinE from the front to the back of the MinD band
is a simple consequence of the fact that the MinD proteins at the back end have
been present on the one-dimensional lattice longer than those on the front end
and thus will have accumulated more MinE proteins from solution, as shown in
Figure 20.15(B). A simple prediction of this model is that the length of the MinD
band and therefore the wavelength � of the pattern will be reduced by having
the MinE attachment rate increase, which can be achieved by increasing the
concentration of MinE in solution. This prediction is in qualitative agreement
with observations, as seen in Figure 20.14(D).

The proposed toy model can also be used to make a rough estimate of the
speed v of the Min waves in vitro. As illustrated in Figure 20.15(A) the speed
of the wave is v = kond, which is the speed of length extension of the MinD
band. The on rate for MinD proteins can be approximated as the di↵usion-
limited rate of capture kon = Ddc, where d is the lattice spacing (equal to the
diameter of a MinD protein), D the di↵usion constant of MinD in solution,
and c its concentration in solution. Using the measured di↵usion constant in
vitro D = 60 µm2/s, the concentration of MinD employed in these experiments,
c = 1 µM, and taking d = 5 nm, which is our rule of thumb for the size of a
typical protein, we estimate v ⇡ 0.7 µm/s. This estimate is comparable to the
range of velocities observed in experiments, v = 0.3 � 0.8 µm/s. It is notable
that this traveling wave speed is similar in magnitude to the di↵usion-limited
polymerization rates of actin filaments and microtubules.

So, in vitro, the Min system bears great resemblance to a Turing-like trav-
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Figure 20.15: Toy model of Min waves. (A) Toy model of a traveling wave
of particle density formed by exchange of particles bound to a one-dimensional
lattice, with spacing d equal to the particle diameter, with those in solution.
Particles attach at one end of the density band and detach at the other, with
rates kon and koff respectively. (This is analogous to actin or microtubule
treadmilling shown in Figures 15.32 and 15.33 (p. 907 and 909). The two rates
are required to be equal for the length of a band to remain constant in time.
After a single attachment and detachment event the band moves by a distance d
which is related to the wave speed by v = dkon. The wavelength of the pattern
is �. (B) Toy model of Min waves in one dimension. MinD proteins are added
at the front end of the MinD band, where the MinE concentration is low. MinE
binds only when MinD is present and this leads to a concentration of MinE
that increases toward the back end of the MinD band, as observed in vitro (see
Figure 20.14). We assume that MinD dissociates when the MinE concentration
has risen above a threshold value.
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from one pattern into another, rather than from homogeneity into a pattern. One would 
like to be able to follow this more general process mathematically also. The difficulties are, 
however, such that one cannot hope to have any very embracing tlzeory of such processes, 
beyond the statement of the equations. I t  might be possible, however, to treat a few par- 
ticular cases in detail with the aid of a digital computer. This method has the advantage 
that it is not so necessary to make simplifying assunlptions as it is whcn doing a more 
theoretical type of analysis. I t  might even be possible to take the mechanical aspects of the 
problem into account as well as the chemical, when applying this type of method. The 
essential disadvantage of the method is that one only gets results for particular cases. But 
this disadvantage is probably of comparatively little importance. Even with the ring 
problem, considered in this paper, for which a reasonably complete mathematical analysis 
was possible, the computational treatment of a particular case was most illuminating. The 
morphogen theory of phyllotaxis, to be described, as already mentioned, in a later paper, 
will be covered by this computational method. Non-linear equations will be used. 

I t  must be admitted that the biological examples which it has been possible to give in 
the present paper are very limited. This can be ascribed quite simply to the fact that 
biological phenomena are usually very complicated. Taking this in combination with the 
relatively elementary mathematics used in this paper one could hardly expect to find that 
many observed biological phenomena would be covered. I t  is thought, however, that the 
imaginary biological systems which have been treated, and the principles which have been 
discussed, should be of some help in interpreting real biological forms. 
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Davson, H. & Danielli, J. F. 1943 The permeability of natural membranes. Cambridge University Press.  
Jeans, J. H. 1927 The mathematical theory of elasticity and magnetism, 5th ed. Cambridge University  

Press. 
Michaelis, L. & Menten, A/I. L. 1913 Die Kinetik der Invertinwirkung. Biochem. 2.49, 333. 
Thompson, Sir D'Arcy 1942 On growth andform, 2nd ed. Cambridge University Press. 
Waddington, C. H. 1940 Organisers and genes. Cambridge University Press. 
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be given. In  the continuous form of the theory the concentrations and diffusibilities of 
each substance have to be given at  each point. In determining the changes of state one 
should take into account 

(i) The changes of position and velocity as given by Newton's laws of motion. 
(ii) The stresses as given by the elasticities and motions, also taking into account the 

osmotic pressures as given from the chemical data. 
(iii) The chemical reactions. 
(iv) The diffusion of the chemical substances. The region in which this diffusion is 

possible is given from the mechanical data. 
This account of the problem omits many features, e.g. electrical properties and the 

internal structure of the cell. But even so it is a problem of formidable mathematical com- 
plexity. One cannot at  present hope to make any progress with the understanding of such 
systems except in very simplified cases. The interdependence of the chemical and mechanical 
data adds enormously to the difficulty, and attention will therefore be confined, so far as is 
possible, to cases where these can be separated. The mathematics of elastic solids is a well- 
developed subject, and has often been applied to biological systems. In  this paper it is 
proposed to give attention rather to cases where the mechanical aspect can be ignored and 
the chemical aspect is the most significant. These cases promise greater interest, for the 
characteristic action of the genes themselves is presumably chemical. The systems actually 
to be considered consist therefore of masses of tissues which are not growing, but within 
which certain substances are reacting chemically, and through which they are diffusing. 
These substances will be called morphogens, the word being intended to convey the idea 
of a form producer. I t  is not intended to have any very exact meaning, but is simply the 
kind of substance concerned in this theory. The evocators of Waddington provide a good 
example of morphogens (Waddington 1940).These evocators diffusing into a tissue somehow 
persuade it to develop along different lines from those which would have been followed in 
its absence. The genes themselves may also be considered to be morphogens. But they 
certainly form rather a special class. They are quite indiffusible. Moreover, it is only by 
courtesy that genes can be regarded as separate molecules. I t  would be more accurate 
(at any rate at mitosis) to regard them as radicals of the giant molecules known as chromo- 
somes. But presumably these radicals act almost independently, so that it is unlikely that 
serious errors will arise through regarding the genes as molecules. Hormones may also be 
regarded as quite typical morphogens. Skin pigments may be regarded as morphogens if 
desired. But those whose action is to be considered here do not come squarely within any 
of these categories. 

The function of genes is presumed to be purely catalytic. They catalyze the production 
of other morphogens, which in turn may only be catalysts. Eventually, presumably, the 
chain leads to some morphogens whose duties are not purely catalytic. For instance, a 
substance might break down into a number of smaller molecules, thereby increasing the 
osmotic pressure in a cell and promoting its growth. The genes might thus be said to in- 
fluence the anatomical form of the organism by determining the rates of those reactions 
which they catalyze. If the rates are assumed to be those determined by the genes, and if 
a comparison of organisms is not in question, the genes themselves may be eliminated from 
the discussion. Likewise any other catalysts obtained secondarily through the agency of 

Alan Turing. The chemical basis of morphogenesis. 
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Figure 6: An order of magnitude census of the major components 
of the three model cells we employ often in the lab and in this 
book. A bacterial cell (E. coli), a unicellular eukaryote (the budding 
yeast S. cerevisiae, and a mammalian cell line (such as an 
adherent HeLa cell).  
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How big are biochemical nuts and bolts?  
 
 
 
 
The textbook picture of the molecules of life is dominated by nucleic acids 
and proteins, in no small measure because of their fascinating linkage 
through the processes of the central dogma. On the other hand, this 
picture is terribly distorted biochemically because many of the key 
reactions even in the central dogma would not happen at all were it not 
for a host of biochemical allies such as water and the many ions that are 
needed as cofactors for the enzymes that make these reactions go. 
Further, we cannot forget the substrates themselves, namely, the 
nucleotides and amino acids from which the famed nucleic acids and 
proteins are constructed. Energizing all of this busy activity are small 
sugar molecules, energy carriers such as ATP and other metabolites. In 
this vignette, we take stock of the sizes of the many biochemical “nuts and 
bolts” that provide the molecular backdrop for the lives of cells as shown 
in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Probably the single most important biochemical nut and bolt of them all 
is water. It is no accident that the search for life beyond Earth often begins 
with the question: is there water? Though part of the reason for this might 
be a lack of imagination about what other life-supporting chemistries 
might look like, the simplest reason for this obsession with water is that 
without it, life as we know it could not exist. One of the easiest ways for us 
to characterize the size of a water molecule which is a convenient 
standard molecular ruler for biology is by reference to the roughly 0.1 nm 
bonds (BNID 106548) between its hydrogen and oxygen atoms. Since 
water molecules are not spherically symmetric it is hard to assign an 
effective radius to such a molecule. As another estimate for the size of a 

Figure 1:     A structural view of some of the basic constituents of a cell.  
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SUMMARY
We have studied the generation of spatial patterns created by mechanical (rather than chemi-

cal) instabilities. When dissociated fibroblasts are suspended in a gel of reprecipitated collagen,
and the contraction of the gel as a whole is physically restrained by attachment of its margin to
a glass fibre meshwork, then the effect of the fibroblasts' traction is to break up the cell-matrix
mixture into a series of clumps or aggregations of cells and compressed matrix. These aggrega-
tions are interconnected by linear tracts of collagen fibres aligned under the tensile stress
exerted by fibroblast traction. The patterns generated by this mechanical instability vary
depending upon cell population density and other factors. Over a certain range of cell con-
centrations, this mechanical instability yields geometric patterns which resemble but are usu-
ally much less regular than the patterns which develop normally in the dermis of developing
bird skin. We propose that an equivalent mechanical instability, occurring during the embryon-
ic development of this skin, could be the cause not only of the clumping of dermal fibroblasts
to form the feather papillae, but also of the alignment of collagen fibres into the characteristic
polygonal network of fibre bundles - which interconnect these papillae and which presage the
subsequent pattern of the dermal muscles serving to control feather movements.

More generally, we suggest that this type of mechanical instability can serve the morpho-
genetic functions for which Turing's chemical instability and other reaction-diffusion systems
have been proposed. Mechanical instabilities can create physical structures directly, in one
step, in contrast to the two or more steps which would be required if positional information
first had to be specified by chemical gradients and then only secondarily implemented in
physical form. In addition, physical forces can act more quickly and at much longer range than
can diffusing chemicals and can generate a greater range of possible geometries than is possible
using gradients of scalar properties. In cases (such as chondrogenesis) where cell differentia-
tion is influenced by the local population density of cells and extracellular matrix, the physical
patterns of force and distortion within this extracellular matrix should even be able to accom-
plish the spatial control of differentiation, usually attributed to diffusible 'morphogens'.

INTRODUCTION

The development of a spatial pattern by an initially homogeneous tissue
requires some sort of autocatalytic instability; one capable of magnifying the

Spatially periodic patterns created by mechanical instability 9

J/ "I
^

:«*Fig. 4. Time sequence of pattern development. A. 24 h after plating, fibroblasts are
still evenly distributed. B. After 6 days, the formation of periodic condensations is
complete. The scale bar equals 100 fim.

attached). The net displacement is thus apparently less the result of the aggregat-
ing cells' own locomotion than it is the result of traction exerted on the collagen
meshwork by the cells already concentrated into these aggregations. The cells
appear to be pulled passively into the aggregations. Cells peripheral to these

A.K Harris, D. Stopak and P. Warner. J. Embryol exp. Morph.  1984. 80:1-20
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Effects of cell population density on the pattern of condensation
The size and spacing of the aggregations (or condensations) varied as a func-

tion of the original population density at which the cells had been plated out (Fig.
5). At densities below 104 cells/cm2, cells spread and migrated on and through
the collagen matrix, visibly distorting the gel in their immediate proximity. But
at these low population densities, the cells' collective strength was apparently
insufficient to produce the massive, permanent rearrangements of the matrix,
which results in the formation of the condensations. Instead, only occasional,
small and irregular aggregations were formed. At population densities of
2 x 104 cells/cm2 small condensations of ten or fewer cells formed.

When the cell density was further increased, the numbers of cells composing
each resulting condensation likewise increased. For example, at a plating density
of 5 x 104 cells/cm2, the condensations which formed had diameters averaging
about 500 fim. Each of these consisted of many hundreds of cells. At still higher
population levels, a different pattern of condensation arose, instead of the pun-
ctate tessellation pattern. Between 7 x 104 and 1 x 105 cells per cm2, instead of
condensing into more or less round aggregations as at lower densities, the cells
condensed into elongate columns which coursed irregularly through the matrix,
roughly parallel to one another (Fig. 2B). Just as the rounded condensations

Fig. 5. Effects of differing initial population densities of fibroblasts on the resulting
spatial pattern. Scale bar equals 400 jum. A. 2 x 104 cells/cm2. B. 4 x 104 cells/cm2.
C. 7 x 104 cells/cm2. D. 9 x 104 cells/cm2.

Spatially periodic patterns created by mechanical instability 15
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Fig. 7. Schematic diagram of the type of mechanical instability responsible for re-
arranging collagen matrices into the patterns described here. When cells move up
gradients of their own concentration (as well as pulling collagen fibres up these
gradients), then even a small local deviation from the average population density will
initiate an accumulation of cells. The accumulation of cells into a growing peak will
deplete the surrounding area, thereby creating secondary gradients on the opposite
side of the depleted areas. Since cells also move up these secondary gradients, the
instability propagates itself. Thus the resulting pattern of alternating high and low
population areas can develop either simultaneously over the field, if the system is
excited by widespread initiating irregularities, or sequentially when initiated in one
area from which the instability then propagates.

Several different factors may contribute to the antidiffusive tendency of cells
to move up gradients of cell and matrix density. One is haptotaxis - the migration
of cells up gradients of adhesiveness (Carter, 1967; Harris, 1973). As the cells are
adhesive to sites on the collagen molecules, a gradient of collagen concentration
should therefore be a gradient of adhesiveness for these cells (Murray et al.
1983). Among other factors which should contribute to the autocatalytic

Mechanically driven self-organisation of cellular patterns

A.K Harris, D. Stopak and P. Warner. J. Embryol exp. Morph.  1984. 80:1-20

Higher density of initial cell population affects aggregate pattern

Positive feedback
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can be transmitted over long distances, and guide the movements of distant cells 
(Harris, 1982). 

We have constructed a mathematical model of traction-producing cells 
migrating within an elastic matrix, and we find that such a system is capable of 
exhibiting a surprising amount of self-organizing behavior. In the following section 
we briefly summarize the model equations and report on how we have applied them 
to a number of morphogenetic situations. 

II. The Model 

Consider a population of motile cells moving within an elastic medium which we 
associate with an initially isotropic extracellular matrix (ECM). In the absence of 
other influences the cells exhibit a random walk. Superimposed on this random 
motion are two biases: (a) the tendency for cells to align themselves along 
anisotropies in the substratum; we call this bias "strain guidance". (b) If there is a 
gradient in adhesive sites within the substratum then cells will tend to move up this 
gradient (haptotaxis; cf. Carter, 1965, 1967; Harris, 1973). This comes about by the 
simple mechanism of the differential traction generated by the cell's protuberances 
during motion. Let 

n(t, x) = the cell density (number of cells/unit volume at position x and time t), 

p(t, x) = the matrix density (mass of matrix material/unit volume at position x and 
time t), 

u(t, x) = the displacement vector of the matrix: a material point in the matrix which 
is initially located at position x undergoes a displacement to x + u. 

The balance equation governing the cell density is 

{ 0n~t - V" [Da(e)V(V2n) - Dl(e)Vn] + Jan Vp] + [_ 0 t J )  + r n ( N -  n) (1) 

strain guidance haptotaxis convection mitosis 

Because typical in vivo cell densities are quite high we have used a Landau- 
Ginzburg approach to derive the first two terms on the right-hand side of (1); these 
represent a generalized diffusion model for random cell motions (Cohen and 
Murray, 1981). The diffusion constants D1 and D 2 must be weighted by the strain 
matrix, e = [grad u + grad ur]/2, so that motion is biased along strain trajectories. 
The third term models the "haptotactic" response of the cells to an adhesive 
gradient. This gradient arises .because the tractions developed by the moving cells 
compress the matrix thus increasing the density of adhesive sites in regions where 
high cell densities cause large contractions. The fourth term accounts for the 
convective transport of cells due to the movement of the mairix. The last term 
represents ceil proliferation to a maximum cell density, N. 

The balance equation governing the matrix density, p(t, x) is 

- ( ~ ~  ~P V" O ~ .  (2) 
0t 
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Conservation law

J.D. Murray, G.F. Oster and A.K. Harris. J. Math. Biology  1983. 17:125-129

• Modelling cell motility on viscoelastic matrix

Donald Cohen and J.D. Murray J. Math. Biology  1981. 12:237-249

mitosis  Mflux J

G.F. Oster, J.D. Murray,  and A.K. Harris. J. Embryol. esp. Morph.  1983. 78:83-125

• Random motion: harmonic (Fickian, short-range) diffusion and biharmonic (long-range) diffusion
• Directed motility: passive cell dragging (advection), migration up adhesion gradient (haptotaxis), contact 

guidance (mediated via anisotropic mechanical strain of matrix by cell tractions)

diffusion
(local

interactions)

random motion

(non-local 
interactions)

diffusion

with strain guidance

haptotaxis advectionAutocatalytic aggregation

directed motion
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{ rate of change in matrix density ^ r_ . , Ta , /1/Vv
n

b . . J y = [flux in] - [flux out] (10)in a small volume element J l

By adding a term to the right-hand side of (10) we could also account for matrix
secretion by the cells. However, we shall assume for simplicity that, on the time
scale of cell movements we are interested in, matrix secretion is negligible.

Equations (7), (8) and (10) comprise a complete model for cell motion in an
elastic ECM. While the mathematical structure of the corresponding equations
derived in Appendix A appears complicated (it is), the physical interpretation
of the model is straightforward (see Fig. 4). Equation (7) is simply a balance
equation describing how local cell density changes due to cell division and the
various types of cell motion: kinesis, haptotaxis and strain guidance. Equation
(8) expresses the fact that cell tractions must be counterbalanced by the elastic
forces of the ECM. Equation (10) is a mass balance on the matrix material. We
emphasize that these equations simply embody the experimentally well-
documented properties of cell motility; we have not invented any novel or
hypothetical behaviours for cells. The mechanical equation coupling the cells to
the ECM is the simplest possible model: more complicated assumptions would
only enhance the model's pattern-forming predictions.

The parameters control the model's behaviour in dimensionless groupings
The mathematical model formulated in Appendix A contains 10 parameters,

which in principle are measurable: we list them here:

(Di(e), D2(e), a, r, T, N, E, V, & , in) (11)

cell tractions

cell aggregation
patterns

cell motion
convection
random motion
contact guidance
haptotaxis

^

guidance
cues

L

deform
ECM

J
Fig. 4. The causal chain contained in the model equations. Cell tractions, necessary
for cell motion and spreading, also deform the extracellular matrix material. These
deformations move cells attached to the matrix convectively, and produce guidance
cues which influence cell motions via contact guidance and haptotaxis. In turn, these
directional cues tend to cause cells to aggregate into patterned clusters.
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can be transmitted over long distances, and guide the movements of distant cells 
(Harris, 1982). 

We have constructed a mathematical model of traction-producing cells 
migrating within an elastic matrix, and we find that such a system is capable of 
exhibiting a surprising amount of self-organizing behavior. In the following section 
we briefly summarize the model equations and report on how we have applied them 
to a number of morphogenetic situations. 

II. The Model 

Consider a population of motile cells moving within an elastic medium which we 
associate with an initially isotropic extracellular matrix (ECM). In the absence of 
other influences the cells exhibit a random walk. Superimposed on this random 
motion are two biases: (a) the tendency for cells to align themselves along 
anisotropies in the substratum; we call this bias "strain guidance". (b) If there is a 
gradient in adhesive sites within the substratum then cells will tend to move up this 
gradient (haptotaxis; cf. Carter, 1965, 1967; Harris, 1973). This comes about by the 
simple mechanism of the differential traction generated by the cell's protuberances 
during motion. Let 

n(t, x) = the cell density (number of cells/unit volume at position x and time t), 

p(t, x) = the matrix density (mass of matrix material/unit volume at position x and 
time t), 

u(t, x) = the displacement vector of the matrix: a material point in the matrix which 
is initially located at position x undergoes a displacement to x + u. 

The balance equation governing the cell density is 

{ 0n~t - V" [Da(e)V(V2n) - Dl(e)Vn] + Jan Vp] + [_ 0 t J )  + r n ( N -  n) (1) 

strain guidance haptotaxis convection mitosis 

Because typical in vivo cell densities are quite high we have used a Landau- 
Ginzburg approach to derive the first two terms on the right-hand side of (1); these 
represent a generalized diffusion model for random cell motions (Cohen and 
Murray, 1981). The diffusion constants D1 and D 2 must be weighted by the strain 
matrix, e = [grad u + grad ur]/2, so that motion is biased along strain trajectories. 
The third term models the "haptotactic" response of the cells to an adhesive 
gradient. This gradient arises .because the tractions developed by the moving cells 
compress the matrix thus increasing the density of adhesive sites in regions where 
high cell densities cause large contractions. The fourth term accounts for the 
convective transport of cells due to the movement of the mairix. The last term 
represents ceil proliferation to a maximum cell density, N. 

The balance equation governing the matrix density, p(t, x) is 

- ( ~ ~  ~P V" O ~ .  (2) 
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Cellular secretion of matrix can be included by adding a source term to the right- 
hand side of (2). Finally, the effect of the cell tractions in deforming the matrix is 
obtained by equating the tractions developed by the cells to the elastic restoring 
forces of the matrix: 

V. + 2 5 1  + + 0I +rpnI  =0 .  (3) 

Here 0 = div n is the dilatation of the matrix,/~ and 2 are viscosity coefficients, and 
E and v the Young's modulus and the Poisson ratio of the matrix material, 
respectively. ~ measures the traction force a cell exerts on the matrix material. 
Equation (3) is simply the Stokes equation of linear elasticity theory (cf. Lin and 
Segel, 1974) with an additional term proportional to the cell density and the matrix 
density. 

Since cells align in the direction of their motion, which tends to be in the 
direction of the matrix orientation, the displacement field of the matrix, u, provides 
a picture of the instantaneous alignment of the cell population. 

Equations (1) - (3) describe a feedback mechanism between motile cells and the 
extracellular substratum in which they move: motile cells develop traction to move; 
this traction deforms the substratum which, in turn, steers the cell motion. Changes 
in matrix density caused by tractions can also affect mitotic rates by providing a 
substrate more conducive to cell spreading-a prerequisite for division (Folkman, 
1978). 

III. Applications of the Model 

The model was originally designed to describe the pattern of deformations observed 
when cells were cultured on an elastic substrate (Harris et al., 1981). We discovered, 
however, that the equations predicted that motile cell populations could spon- 
taneously form spatial structures by a sequence of bifurcations analogous to, but 
different from, those characteristic of nonlinear diffusion-reaction systems 
(Murray, 1981). Therefore, we have investigated the model in the following 
biological settings. 

A. Skin Organ Primordia 

The morphogenesis of the skin organs (hair, teeth, scales, skin glands and feathers) 
commences as condensations of dermal cells (papillae) underlying arrays of 
columnar epithelial cells (placodes) (cf. Sengel, 1976; Wake, 1979). The model 
predicts that a uniform density of dermal cells moving in an elastically deformable 
medium will spontaneously aggregate into periodic condensations. This occurs 
when a dimensionless parameter involving the cell and matrix properties exceeds a 
critical bifurcation value. The spacing of the arrays can be estimated to be 
approximately 

(D2~  1/4 
w c  ~ . ( 5 )  

A related model for epithelial morphogenesis (Odell et al., 1981 ; Odell et al., 1982) 

Force balance

traction force

J.D. Murray, G.F. Oster and A.K. Harris. J. Math. Biology  1983. 17:125-129

• Feedback mechanism between cells and the matrix: traction forces due to cell 
motility causes matrix deformation which steers cell motility

viscous force elastic force
dilatation of ECM matrix
strain matrix
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If the matrix material within which the cells are migrating is itself under strain

then the matrix is no longer isotropic, and, because of the phenomenon of contact
guidance, cells will be biased in their random walks. We can model contact
guidance by weighting the diffusion coefficients Di and D2 by the strains in the
ECM. That is, Di(e) and D2(e) are functions of the strain e= l /2[Vu+ VuT],
where the superscript denotes the transpose. However, since we will only be per-
forming a linear analysis here we shall choose Di and D2 to be positive constants.

(ii) Haptotaxis. As the cells migrate their tractions deform the ECM and thus
generate gradients in the matrix density, g(t,x). As discussed in the text, these
density gradients produce gradients in the density of adhesive sites for cell attach-
ment. The simplest model for haptotactic transport is to assume that the cell 0ux
is proportional to this matrix gradient and to the density of cells whose tractions
are deforming the matrix. The cell traction coefficient, r, can be viewed as the
compressive stress exerted per cell on a unit mass of matrix.

(iii) Mitosis. We represent this term by a logistic growth model with growth
rate, r, and maximum density, N. The detailed form of this term is not critical
as long as it is qualitatively similar.

(iv) Convection. This term represents the passive movement of cells riding on
the matrix, which is itself being towed by distant cell tractions. It is simply the
product of cell density and the local matrix velocity, du/dt. Note that in this
term, and throughout the following treatment, we shall employ the small strain
approximation to the matrix deformation.

(2) Cell-matrix interaction
The time scale of embryonic motions is very long (h), and the spatial scale is

very small (usually < mm). Therefore, we are in the regime of very low Reynolds
numbers (c.f. Purcell, 1977; Odell et al. 1981) and we can assume that the
tractions developed by the cells are in equilibrium with the elastic restoring
forces developed by the strained matrix material (equation 8). We shall write the
equilibrium equations by considering the composite material [cells+matrix] and
modifying the usual expression for the viscoelastic stress tensor (Landau &
Lifshitz, 1970).

op= {[^de/dt + fA2dd/dtl] + [^v(e + I ^ e i ^ (A.4a)

viscous elastic
where:

6 = V -u = the dilatation of the matrix material
/ii = shear viscosity
]U2 = bulk viscosity
E = Young's modulus
v = Poisson ratio
I = the unit tensor

e
E
v

Young’s modulus
Poisson ratio
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Fig. 3. An elastic matrix can be viewed as a three-dimensional 'bedspring' consisting
of elastic elements cross linked at various points. If a longitudinal strain is imposed by
opposing cell tractions, a transverse compression will be generated. The magnitude of
this transverse compression is given by the Poisson ratio: v= (W—W0)/(L—Lo).
For fibrous materials, vcan be much larger than 1; Stopak (1983, pers. comm.) has
measured values as high as 5 to 8 in collagen gels.

materials; Stopak (1983) has measured the ratios of lateral compression to lon-
gitudinal extension between fibroblast explants in collagen gels and found values
as high as 5 to 8. Thus the transverse compression effect that accompanies cell
traction can be as large as the compression due to the tractions themselves. This
transverse compression creates a transverse component of the adhesive gradient.
Haptotaxis should therefore cause cells to migrate into the region between trac-
tion centres as well as toward the centres of traction.

Cells tend to align along strain directions
Several workers have documented the phenomenon of 'strain alignment':

within an aligned matrix, such as a collagen gel, cells will configure themselves
such that their long axis is in the same direction as the matrix orientation (Harris
etal. 1981; Bellows, Melcher & Aubin, 1982). This phenomenon suggests a role
for matrix orientation in the development of oriented tissues, such as muscle and
tendon (Harris, 1983).

At the cost of considerably complicating the model one can add an 'orientation
vector' to the cell description. However, this may not really be necessary, since
the displacement field, u, of the matrix shown in Fig. 3 provides a good cue to
cell polarization. From this figure we see that the Poisson effect will first guide
cells into the region between two centres of contraction, where they will tend to
align along the axis between the centres. Since increasing fibre density may
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Each parameter controls a different physical effect. Nondirectional cell migra-
tion - cell kinesis - is controlled by the magnitude of the diffusion parameters,
Di & D2, while the cells' sensitivity to contact guidance is incorporated into
their dependence on the strain, e. a controls the haptotactic response, and r
governs the amount of traction the cell exerts on the ECM. r and N control
the mitotic rate and the maximum cell density, respectively. E and v charac-
terize the elastic properties of the ECM, and /ii and \i2 are two viscosity
coefficients that describe its viscous properties (see Appendix A). In addition,
it will turn out that the size and shape of the domain will be important
characteristics in determining the spatial patterns. This will add geometrical
parameters to the above list.

In the Appendix we show that these parameters affect the model's behaviour
not singly, but in dimensionless groups. For example, when discussing the effect
of cell traction it is not the parameter r which is important, but rather the
dimensionless traction parameter

r* = rp0N(l+v)/E (12)

where g0 is some initial density of the ECM.
After nondimensionalizing the model there remains but seven composite

parameter groupings that govern the model's behaviour. We want to emphasize
the point that variations in one parameter can be compensated for by variations
in another. This interdependence is important for understanding how anatomical
patterns are regulated, and in particular how the system can compensate for
imposed or experimental alterations. In equation (12), for example, a reduction
in cell traction can be compensated by increases in cell density, or changes in
elastic properties of the matrix material.

The parameters are experimentally measurable
The model parameters listed in (11) can be divided into three groups: (1)

cell properties ({Di ,D2,a,r,r,N}; (2) matrix properties {E,v,jUi,jtt2}; (3) geo-
metrical parameters (e.g. length, W, and width, B, of the domain, and
shape = B/W). The viscoelastic properties of the ECM are easily accessible to
measurement by standard physical techniques, as are the geometrical
parameters (c.f. Wainwright, Biggs, Currey & Gosline, 1976). The cell proper-
ties Di, D2 and a can be measured by the same techniques discussed by Lackie
& Wilkinson (1981); i.e. by measuring mean free paths and cell trajectories.
The division rate parameters, r & N are also measurable, in principle, although
in vivo estimates may have to be based on estimates of mitotic index from
autoradiographic and other techniques. Finally, the crucial traction parameter,
T, can be estimated in vitro by measuring the amount of deformation cells can
produce in a calibrated silicone-rubber substratum (Harris, Wild & Stopak,
1980).
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III . HOW THE PATTERNING MECHANISM WORKS

One-dimensional spatial patterns
Consider the simplest possible geometric arrangement: a strip of elastic ECM

in which cells are free to migrate only along the x-axis, as shown in Fig. 5.
Suppose that the cells are initially distributed uniformly in the region between
x = 0 and x = L with cell density N, and further assume that the cell traction, r,
is quite low. In this situation the cells will distribute themselves uniformly over
the strip, and no spatial pattern will form.

The uniform steady state can become unstable
Now let cell traction gradually increase. (Note that equation (12) shows that

increasing r has the same effect as increasing the ECM density, go, the cell
density, N, or the Poisson ratio, v, since they all enter in the same way into the
dimensionless traction parameter, T*.) At first, the cell and matrix densities will
continue to remain uniform everywhere. However, there is a critical value of
T = rc whereupon the uniform cell distribution commences to break up into local

cell density ^ o o °

< X c

o

T3>T2

Fig. 5. A strip of ECM where the initial cell traction is below the critical level, TC ,
will not be able to support any aggregation centres. If x rises above the bifurcation
value, TC , a single aggregation centre will arise. If r rises still further, a second
bifurcation threshold is reached wherein the stable cell distribution exhibits two
aggregation centres. Successive bifurcations will yield cell distributions with larger
numbers of periodic aggregation centres, whose separation can be calculated
approximately from equation (13). The same pattern can be generated by varying
other parameters than the cell traction T.
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• Bifurcation point: when cell traction 
induced strain guidance, haptotaxis and 
advection overcome diffusion

• Multiple foci can emerge: elastic resistance 
limits the range of local contraction 

• Elasticity as a Turing like « long range 
inhibitor » and cell traction as « local 
activator» with autocatalysis (guidance 
effects)

• dimensionless traction parameter (cell traction, matrix density and 
Poisson ratio play equivalent roles)

Spacing between foci:
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{ rate of change in matrix density ^ r_ . , Ta , /1/Vv
n

b . . J y = [flux in] - [flux out] (10)in a small volume element J l

By adding a term to the right-hand side of (10) we could also account for matrix
secretion by the cells. However, we shall assume for simplicity that, on the time
scale of cell movements we are interested in, matrix secretion is negligible.

Equations (7), (8) and (10) comprise a complete model for cell motion in an
elastic ECM. While the mathematical structure of the corresponding equations
derived in Appendix A appears complicated (it is), the physical interpretation
of the model is straightforward (see Fig. 4). Equation (7) is simply a balance
equation describing how local cell density changes due to cell division and the
various types of cell motion: kinesis, haptotaxis and strain guidance. Equation
(8) expresses the fact that cell tractions must be counterbalanced by the elastic
forces of the ECM. Equation (10) is a mass balance on the matrix material. We
emphasize that these equations simply embody the experimentally well-
documented properties of cell motility; we have not invented any novel or
hypothetical behaviours for cells. The mechanical equation coupling the cells to
the ECM is the simplest possible model: more complicated assumptions would
only enhance the model's pattern-forming predictions.

The parameters control the model's behaviour in dimensionless groupings
The mathematical model formulated in Appendix A contains 10 parameters,

which in principle are measurable: we list them here:

(Di(e), D2(e), a, r, T, N, E, V, & , in) (11)
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convection
random motion
contact guidance
haptotaxis
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Fig. 4. The causal chain contained in the model equations. Cell tractions, necessary
for cell motion and spreading, also deform the extracellular matrix material. These
deformations move cells attached to the matrix convectively, and produce guidance
cues which influence cell motions via contact guidance and haptotaxis. In turn, these
directional cues tend to cause cells to aggregate into patterned clusters.
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• Feedback mechanism between cells and the matrix: traction forces due to cell 
motility causes matrix deformation which steers cell motility

• Emergence of cellular patterns
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this is in exact accord with the predictions of the model wherein cell tractions
align the ECM between condensation centres. The condensations spread pos-
teriorly and laterally as a 'wave'.

Consider a cross section of the presumptive feather tract along the midline -
corresponding to Fig. 5. Aggregation can be initiated at the anterior end when
any increase in cell density (by proliferation or lateral immigration) or traction
pushes the system over the bifurcation boundary. The uniform aggregation will
then become locally unstable as discussed in the previous section, and break up
into isolated condensations whose local spacing can be computed from the cell
and matrix properties (e.g. equation 13). The pattern will propagate posteriorly
and laterally along the age gradient as we discussed above.

If the ECM is isotropic then the aggregation wave will spread radially from the
initiation site (or perpendicularly to the age-contours). If, however, there is a pre-
stress in the tissue then the papillae will form faster in the direction of the tension
lines. Thus the temporal development of the model papillae can be made to imitate
the in vivo situation wherein feather primordia form first along the dorsal axis from
anterior to posterior, then secondary rows spreading laterally to form a 'chevron-
shaped' array. A full numerical simulation of the two-dimensional pattern will be
presented in a subsequent publication; here our analysis indicates that the model
can indeed generate dermal condensations in the manner illustrated in Fig. 8.

if —o#o
°:°

t I

—
®

1•
Fig. 8. The model predicts the sequence of bifurcations shown, leading from a
uniform distribution to a columnar array, which then breaks up into isolated aggrega-
tions. Subsequent aggregations spread laterally to form a periodic array. Depending
on the anisotropic character of the substratum (e.g. prestresses), the final periodic
array can exhibit a variety of geometries ranging from hexagonal to square or
rhombic patterns.
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The spacing of hair in mammals and feathers in birds is one of the most apparent
morphological features of the skin. This pattern arises when uniform fields of progenitor
cells diversify their molecular fate while adopting higher-order structure. Using the
nascent skin of the developing chicken embryo as a model system, we find that
morphological and molecular symmetries are simultaneously broken by an emergent
process of cellular self-organization. The key initiators of heterogeneity are dermal
progenitors, which spontaneously aggregate through contractility-driven cellular pulling.
Concurrently, this dermal cell aggregation triggers the mechanosensitive activation of
b-catenin in adjacent epidermal cells, initiating the follicle gene expression program. Taken
together, this mechanism provides a means of integrating mechanical and molecular
perspectives of organ formation.

D
uring skin organogenesis, the structures
that produce hair inmammals and feathers
in birds, termed follicles, emerge in a spaced
array. Before follicle formation in amniotes,
the embryonic skin consists of a sheet of

epithelial cells attached to a slab ofmesenchymal
cells via a basement membrane (Fig. 1, A and B).
Over the course of 2 days, this uniform tissue bi-
layer transitions into one studded with regularly
spaced, multicellular aggregates, each with an

activated follicle primordium gene expression
program (Fig. 1, A and B). Coordinating follicle
spacingwith appropriate gene expression changes
is critical for the proper patterning of feathers in
birds and hair in mammals. How this leap in
complexity is reproducibly initiated remains un-
solved (1, 2).
Previous studies have posited that molecular

patterns arise first and then dictate differential
cell behaviors that cause changes in tissue struc-

ture (3, 4). This has led to the inference that fol-
licle initiation is dependent on the establishment
of a molecular prepattern. We began to question
this model when we discovered that, in the avian
skin, initial follicle fatemarkers, nuclear b-catenin
(amaster regulator of the follicle gene expression
program) (5) and downstream expression of bmp2
and fgf10, accompany rather than precede the
earliest architectural changes of the follicle (Fig.
1B and fig. S1). At day 7 of development (E7),
before the detection of these molecular markers,
emerging follicles become detectable as stacked
epithelial cells overlying aggregated mesenchyme
(fig. S2). To confirm that initiation of structural
changes does not rely on b-catenin activation, we
promoted b-catenin degradation by culturing re-
constituted skin explants before aggregation in
XAV939, which stimulates b-catenin degradation
(see the supplementary materials) (6) (Fig. 1C).
Although samples cultured in XAV939 lack nu-
clear b-catenin and bmp2 expression, they are
capable of forming spaced aggregates compa-
rable to the follicle structure (Fig. 1C).
Given that follicle structures are capable of

emerging in the absence of b-catenin activation,we
investigated the driver of these structural changes.
We were guided by the observation that, as fol-
licles emerge, the primordium basement mem-
brane becomes increasingly arched, resembling a
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Fig. 1. Feather primordium formation initiates with a coaggregation
of the epidermal and dermal cells. (A) An array of feather follicle
primordia forms by E8. (B) (Top) Cross section of embryonic chicken
skin antibody stained with DAPI (4′,6-diamidino-2-phenylindole, nuclei),
laminin (basement membrane), and E-cadherin (epidermal cell
boundaries). (Middle) Localization of b-catenin protein. (Bottom)

Fluorescence in situ hybridization (FISH) for bmp2 as a feather
primordium forms from day 6 to day 8. (C) Reconstitution culture with
or without XAV939; primordium structures initiate in the absence of
nuclear b-catenin and localized bmp2. Lack of sharp boundaries in the
XAV939 condition suggests a role for localized signals in refining
primordia domains (n = 3).
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The spacing of hair in mammals and feathers in birds is one of the most apparent
morphological features of the skin. This pattern arises when uniform fields of progenitor
cells diversify their molecular fate while adopting higher-order structure. Using the
nascent skin of the developing chicken embryo as a model system, we find that
morphological and molecular symmetries are simultaneously broken by an emergent
process of cellular self-organization. The key initiators of heterogeneity are dermal
progenitors, which spontaneously aggregate through contractility-driven cellular pulling.
Concurrently, this dermal cell aggregation triggers the mechanosensitive activation of
b-catenin in adjacent epidermal cells, initiating the follicle gene expression program. Taken
together, this mechanism provides a means of integrating mechanical and molecular
perspectives of organ formation.
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licle initiation is dependent on the establishment
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this model when we discovered that, in the avian
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(amaster regulator of the follicle gene expression
program) (5) and downstream expression of bmp2
and fgf10, accompany rather than precede the
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1B and fig. S1). At day 7 of development (E7),
before the detection of these molecular markers,
emerging follicles become detectable as stacked
epithelial cells overlying aggregated mesenchyme
(fig. S2). To confirm that initiation of structural
changes does not rely on b-catenin activation, we
promoted b-catenin degradation by culturing re-
constituted skin explants before aggregation in
XAV939, which stimulates b-catenin degradation
(see the supplementary materials) (6) (Fig. 1C).
Although samples cultured in XAV939 lack nu-
clear b-catenin and bmp2 expression, they are
capable of forming spaced aggregates compa-
rable to the follicle structure (Fig. 1C).
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investigated the driver of these structural changes.
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Fig. 1. Feather primordium formation initiates with a coaggregation
of the epidermal and dermal cells. (A) An array of feather follicle
primordia forms by E8. (B) (Top) Cross section of embryonic chicken
skin antibody stained with DAPI (4′,6-diamidino-2-phenylindole, nuclei),
laminin (basement membrane), and E-cadherin (epidermal cell
boundaries). (Middle) Localization of b-catenin protein. (Bottom)

Fluorescence in situ hybridization (FISH) for bmp2 as a feather
primordium forms from day 6 to day 8. (C) Reconstitution culture with
or without XAV939; primordium structures initiate in the absence of
nuclear b-catenin and localized bmp2. Lack of sharp boundaries in the
XAV939 condition suggests a role for localized signals in refining
primordia domains (n = 3).
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The spacing of hair in mammals and feathers in birds is one of the most apparent
morphological features of the skin. This pattern arises when uniform fields of progenitor
cells diversify their molecular fate while adopting higher-order structure. Using the
nascent skin of the developing chicken embryo as a model system, we find that
morphological and molecular symmetries are simultaneously broken by an emergent
process of cellular self-organization. The key initiators of heterogeneity are dermal
progenitors, which spontaneously aggregate through contractility-driven cellular pulling.
Concurrently, this dermal cell aggregation triggers the mechanosensitive activation of
b-catenin in adjacent epidermal cells, initiating the follicle gene expression program. Taken
together, this mechanism provides a means of integrating mechanical and molecular
perspectives of organ formation.
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in birds, termed follicles, emerge in a spaced
array. Before follicle formation in amniotes,
the embryonic skin consists of a sheet of

epithelial cells attached to a slab ofmesenchymal
cells via a basement membrane (Fig. 1, A and B).
Over the course of 2 days, this uniform tissue bi-
layer transitions into one studded with regularly
spaced, multicellular aggregates, each with an

activated follicle primordium gene expression
program (Fig. 1, A and B). Coordinating follicle
spacingwith appropriate gene expression changes
is critical for the proper patterning of feathers in
birds and hair in mammals. How this leap in
complexity is reproducibly initiated remains un-
solved (1, 2).
Previous studies have posited that molecular

patterns arise first and then dictate differential
cell behaviors that cause changes in tissue struc-

ture (3, 4). This has led to the inference that fol-
licle initiation is dependent on the establishment
of a molecular prepattern. We began to question
this model when we discovered that, in the avian
skin, initial follicle fatemarkers, nuclear b-catenin
(amaster regulator of the follicle gene expression
program) (5) and downstream expression of bmp2
and fgf10, accompany rather than precede the
earliest architectural changes of the follicle (Fig.
1B and fig. S1). At day 7 of development (E7),
before the detection of these molecular markers,
emerging follicles become detectable as stacked
epithelial cells overlying aggregated mesenchyme
(fig. S2). To confirm that initiation of structural
changes does not rely on b-catenin activation, we
promoted b-catenin degradation by culturing re-
constituted skin explants before aggregation in
XAV939, which stimulates b-catenin degradation
(see the supplementary materials) (6) (Fig. 1C).
Although samples cultured in XAV939 lack nu-
clear b-catenin and bmp2 expression, they are
capable of forming spaced aggregates compa-
rable to the follicle structure (Fig. 1C).
Given that follicle structures are capable of

emerging in the absence of b-catenin activation,we
investigated the driver of these structural changes.
We were guided by the observation that, as fol-
licles emerge, the primordium basement mem-
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Fig. 1. Feather primordium formation initiates with a coaggregation
of the epidermal and dermal cells. (A) An array of feather follicle
primordia forms by E8. (B) (Top) Cross section of embryonic chicken
skin antibody stained with DAPI (4′,6-diamidino-2-phenylindole, nuclei),
laminin (basement membrane), and E-cadherin (epidermal cell
boundaries). (Middle) Localization of b-catenin protein. (Bottom)

Fluorescence in situ hybridization (FISH) for bmp2 as a feather
primordium forms from day 6 to day 8. (C) Reconstitution culture with
or without XAV939; primordium structures initiate in the absence of
nuclear b-catenin and localized bmp2. Lack of sharp boundaries in the
XAV939 condition suggests a role for localized signals in refining
primordia domains (n = 3).
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The spacing of hair in mammals and feathers in birds is one of the most apparent
morphological features of the skin. This pattern arises when uniform fields of progenitor
cells diversify their molecular fate while adopting higher-order structure. Using the
nascent skin of the developing chicken embryo as a model system, we find that
morphological and molecular symmetries are simultaneously broken by an emergent
process of cellular self-organization. The key initiators of heterogeneity are dermal
progenitors, which spontaneously aggregate through contractility-driven cellular pulling.
Concurrently, this dermal cell aggregation triggers the mechanosensitive activation of
b-catenin in adjacent epidermal cells, initiating the follicle gene expression program. Taken
together, this mechanism provides a means of integrating mechanical and molecular
perspectives of organ formation.

D
uring skin organogenesis, the structures
that produce hair inmammals and feathers
in birds, termed follicles, emerge in a spaced
array. Before follicle formation in amniotes,
the embryonic skin consists of a sheet of

epithelial cells attached to a slab ofmesenchymal
cells via a basement membrane (Fig. 1, A and B).
Over the course of 2 days, this uniform tissue bi-
layer transitions into one studded with regularly
spaced, multicellular aggregates, each with an

activated follicle primordium gene expression
program (Fig. 1, A and B). Coordinating follicle
spacingwith appropriate gene expression changes
is critical for the proper patterning of feathers in
birds and hair in mammals. How this leap in
complexity is reproducibly initiated remains un-
solved (1, 2).
Previous studies have posited that molecular

patterns arise first and then dictate differential
cell behaviors that cause changes in tissue struc-

ture (3, 4). This has led to the inference that fol-
licle initiation is dependent on the establishment
of a molecular prepattern. We began to question
this model when we discovered that, in the avian
skin, initial follicle fatemarkers, nuclear b-catenin
(amaster regulator of the follicle gene expression
program) (5) and downstream expression of bmp2
and fgf10, accompany rather than precede the
earliest architectural changes of the follicle (Fig.
1B and fig. S1). At day 7 of development (E7),
before the detection of these molecular markers,
emerging follicles become detectable as stacked
epithelial cells overlying aggregated mesenchyme
(fig. S2). To confirm that initiation of structural
changes does not rely on b-catenin activation, we
promoted b-catenin degradation by culturing re-
constituted skin explants before aggregation in
XAV939, which stimulates b-catenin degradation
(see the supplementary materials) (6) (Fig. 1C).
Although samples cultured in XAV939 lack nu-
clear b-catenin and bmp2 expression, they are
capable of forming spaced aggregates compa-
rable to the follicle structure (Fig. 1C).
Given that follicle structures are capable of

emerging in the absence of b-catenin activation,we
investigated the driver of these structural changes.
We were guided by the observation that, as fol-
licles emerge, the primordium basement mem-
brane becomes increasingly arched, resembling a
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Fig. 1. Feather primordium formation initiates with a coaggregation
of the epidermal and dermal cells. (A) An array of feather follicle
primordia forms by E8. (B) (Top) Cross section of embryonic chicken
skin antibody stained with DAPI (4′,6-diamidino-2-phenylindole, nuclei),
laminin (basement membrane), and E-cadherin (epidermal cell
boundaries). (Middle) Localization of b-catenin protein. (Bottom)

Fluorescence in situ hybridization (FISH) for bmp2 as a feather
primordium forms from day 6 to day 8. (C) Reconstitution culture with
or without XAV939; primordium structures initiate in the absence of
nuclear b-catenin and localized bmp2. Lack of sharp boundaries in the
XAV939 condition suggests a role for localized signals in refining
primordia domains (n = 3).
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The spacing of hair in mammals and feathers in birds is one of the most apparent
morphological features of the skin. This pattern arises when uniform fields of progenitor
cells diversify their molecular fate while adopting higher-order structure. Using the
nascent skin of the developing chicken embryo as a model system, we find that
morphological and molecular symmetries are simultaneously broken by an emergent
process of cellular self-organization. The key initiators of heterogeneity are dermal
progenitors, which spontaneously aggregate through contractility-driven cellular pulling.
Concurrently, this dermal cell aggregation triggers the mechanosensitive activation of
b-catenin in adjacent epidermal cells, initiating the follicle gene expression program. Taken
together, this mechanism provides a means of integrating mechanical and molecular
perspectives of organ formation.
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program) (5) and downstream expression of bmp2
and fgf10, accompany rather than precede the
earliest architectural changes of the follicle (Fig.
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before the detection of these molecular markers,
emerging follicles become detectable as stacked
epithelial cells overlying aggregated mesenchyme
(fig. S2). To confirm that initiation of structural
changes does not rely on b-catenin activation, we
promoted b-catenin degradation by culturing re-
constituted skin explants before aggregation in
XAV939, which stimulates b-catenin degradation
(see the supplementary materials) (6) (Fig. 1C).
Although samples cultured in XAV939 lack nu-
clear b-catenin and bmp2 expression, they are
capable of forming spaced aggregates compa-
rable to the follicle structure (Fig. 1C).
Given that follicle structures are capable of

emerging in the absence of b-catenin activation,we
investigated the driver of these structural changes.
We were guided by the observation that, as fol-
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Fig. 1. Feather primordium formation initiates with a coaggregation
of the epidermal and dermal cells. (A) An array of feather follicle
primordia forms by E8. (B) (Top) Cross section of embryonic chicken
skin antibody stained with DAPI (4′,6-diamidino-2-phenylindole, nuclei),
laminin (basement membrane), and E-cadherin (epidermal cell
boundaries). (Middle) Localization of b-catenin protein. (Bottom)

Fluorescence in situ hybridization (FISH) for bmp2 as a feather
primordium forms from day 6 to day 8. (C) Reconstitution culture with
or without XAV939; primordium structures initiate in the absence of
nuclear b-catenin and localized bmp2. Lack of sharp boundaries in the
XAV939 condition suggests a role for localized signals in refining
primordia domains (n = 3).
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Similar to freely floating explants, culture on soft
gels allow the tissue to markedly contract with
no clear emergence of aggregate pattern (Fig. 3A).
Conversely, culture on the stiffest gel resulted in
thin, stretched skin with either sparse or no pat-
tern (Fig. 3A). At intermediate stiffness, however,
explants formed aggregates where spacing be-
tween aggregates increases as a function of stiff-
ness (Fig. 3, A to D).
We then tested the necessity of cellular con-

tractility for aggregate formation, as well as the
effect of varying contractility on pattern. Explants
were cultured on a membrane or on collagen gels
seeded with beads for detecting gel deformation.
Tissues treated with high levels of blebbistatin, a

myosin II inhibitor (18, 19), showed no increase
in subadjacent gel bead density, indicating an ef-
fective pharmacological ablation of cellular con-
tractility (fig. S4). This loss of contractility resulted
in an abnormally large, thin tissue and an absence
of any aggregate pattern (Fig. 3E). We also tested
an independent inhibitor of myosin II activity,
Rho-associated protein kinase (ROCK) inhibitor
Y27632, andobserved similar disruption of pattern
formation (fig. S5). In contrast, tissues treated
with high levels of calyculin A, a myosin II ac-
tivator (20), significantly increased subadjacent
collagen gel bead density, indicating an effective
pharmacological augmentation of cellular con-
tractility (fig. S4). Increased contractility led to

decreased tissue surface area and increased
thickness, as well as the elimination of pattern
(Fig. 3E). To rule out the possibility that the ef-
fects observed when myosin II activity was al-
tered were through changes in cell division, we
confirmed that proliferation was not altered by
these drugs (fig. S6). Strikingly, between the ex-
tremes of traction, we find that the sizing of pri-
mordia was progressively tuned (Fig. 3A). Even
with a uniform starting area, the final number of
primordia per sample increased at lower con-
tractility and decreased at higher contractility,
demonstrating that perturbing contractility does
not result in the simple scaling of a bud pre-
pattern (Fig. 3, E to H).
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Fig. 3. Cellular contractility within a rigid context leads to primordia
emergence and pattern formation. (A) Skin samples cultured on gels of
high stiffness to low stiffness (values given are storage moduli) and
(E) samples grown across a spectrum of contractility through pharmaco-
logical inhibition with blebbistatin or activation with calyculin A, as

compared to control cultured on the filter membrane; higher magnification
and cross sections below. Quantifications of (B and F) surface area and
(C and G) number of buds per sample (n > 3). (D and H) Quantification of
pattern geometry across traction conditions (n > 3, at least three
measurements per sample). Error bars are mean ± SD.
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Similar to freely floating explants, culture on soft
gels allow the tissue to markedly contract with
no clear emergence of aggregate pattern (Fig. 3A).
Conversely, culture on the stiffest gel resulted in
thin, stretched skin with either sparse or no pat-
tern (Fig. 3A). At intermediate stiffness, however,
explants formed aggregates where spacing be-
tween aggregates increases as a function of stiff-
ness (Fig. 3, A to D).
We then tested the necessity of cellular con-

tractility for aggregate formation, as well as the
effect of varying contractility on pattern. Explants
were cultured on a membrane or on collagen gels
seeded with beads for detecting gel deformation.
Tissues treated with high levels of blebbistatin, a

myosin II inhibitor (18, 19), showed no increase
in subadjacent gel bead density, indicating an ef-
fective pharmacological ablation of cellular con-
tractility (fig. S4). This loss of contractility resulted
in an abnormally large, thin tissue and an absence
of any aggregate pattern (Fig. 3E). We also tested
an independent inhibitor of myosin II activity,
Rho-associated protein kinase (ROCK) inhibitor
Y27632, andobserved similar disruption of pattern
formation (fig. S5). In contrast, tissues treated
with high levels of calyculin A, a myosin II ac-
tivator (20), significantly increased subadjacent
collagen gel bead density, indicating an effective
pharmacological augmentation of cellular con-
tractility (fig. S4). Increased contractility led to

decreased tissue surface area and increased
thickness, as well as the elimination of pattern
(Fig. 3E). To rule out the possibility that the ef-
fects observed when myosin II activity was al-
tered were through changes in cell division, we
confirmed that proliferation was not altered by
these drugs (fig. S6). Strikingly, between the ex-
tremes of traction, we find that the sizing of pri-
mordia was progressively tuned (Fig. 3A). Even
with a uniform starting area, the final number of
primordia per sample increased at lower con-
tractility and decreased at higher contractility,
demonstrating that perturbing contractility does
not result in the simple scaling of a bud pre-
pattern (Fig. 3, E to H).
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logical inhibition with blebbistatin or activation with calyculin A, as

compared to control cultured on the filter membrane; higher magnification
and cross sections below. Quantifications of (B and F) surface area and
(C and G) number of buds per sample (n > 3). (D and H) Quantification of
pattern geometry across traction conditions (n > 3, at least three
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Mechanically driven self-organisation of cellular patterns

• Spatial patterns require 
cellular contractility

• Spatial patterns require 
mechanical resistance of 
substrate

III - Mechanical Instabilities
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These results are consistent with a model in
which cellular contractility serves as a local acti-
vator and substrate stiffness serves as a long-
range inhibitor of follicle aggregate formation.
Thus, follicles emerge through a mechanical
instability that spontaneously generates an in-
crease in morphological complexity. Of note, this
mechanism bears resemblance to Alan Turing’s
models of chemical patterning, in which local
activation competes against long-range inhibi-
tion (21). However, in this context, the key unit
of pattern occurs at the cellular level and not
the molecular.
Although this model of mesenchymal cell gen-

eration of mechanical instability provides an ac-
count of how follicle structure is initiated, it alone

does not account for how changes in gene ex-
pression are triggered. We considered a mecha-
nismwhereby b-catenin in epithelial cells acts as
a sensor of mechanical compression triggered by
dermal cell aggregation. This putative mecha-
nism is based on three reinforcing lines of evi-
dence. First, it has been established that nuclear
b-catenin in the epidermis is the earliest known
regulator of primordium-specific gene expression
(5). Second, b-catenin has been shown to serve as
a sensor and transducer of mechanical stimulus
in invertebrate embryos and tumors (22,23). Third,
experiments presented above argue that the der-
mal layer focally compresses overlying epithelial
cells through mechanical cross-talk, suggesting a
direct mechanical trigger.

To show that b-catenin nuclear localization is
dependent on dermal compression, we pharma-
cologically manipulated cellular contractility in
cultured skin explants. Very high levels of con-
tractility led to nuclear b-catenin across the en-
tire epithelium, indicating that the entire bud
adopted a follicle gene expression program (Fig.
4A). Conversely, under very low levels of contrac-
tility, no nuclear b-catenin was observed across
the epidermis (Fig. 4A). At intermediate levels of
traction, when primordia size is tuned, nuclear
b-catenin adjusted in a lock-step manner with
dermal aggregation (fig. S7). In parallel to changes
in contractility, analogous nuclear b-catenin re-
sponses were observed when tissue mechanics
were manipulated through substrate stiffness
(fig. S8).
To determine the immediacy of b-catenin re-

sponse to physical compression, we cultured ex-
cised skin freely floating in media to allow for
rapid contraction on the order of hours. In con-
tracted tissues, nuclear b-catenin was observed
in the epidermis after just 2 hours, suggesting a
direct response at the posttranscriptional level
(fig. S9). In control conditions, when explants
were cultured attached to the body to prevent
tissue contraction, no nuclear b-catenin was ob-
served in the epithelium (fig. S9).
To further confirm the mechanical activation

of b-catenin, we assayed for Y654 phosphoryl-
ation. Functionally, this Src kinase–dependent
modification allows for b-catenin release from E-
cadherin at the membrane and for subsequent
translocation into the nucleus (24, 25). As pre-
dicted, Y654 staining was only observed in form-
ing primordia (fig. S10). Tissue with ectopically
high compression showed broad Y654 staining,
whereas tissue with ablated compression showed
none (figs. S10 and S11). Y654 staining was also
lost when tissues were cultured in the presence
of SKI-1, an inhibitor of Src kinase activity, con-
firming the Src-dependent nature of this phos-
phorylation in the skin (fig. S11).
Finally, to confirm that this mechanical acti-

vation of b-catenin leads to activation of the
downstream follicle gene expression program,
we assayed expression of bmp2. Indeed, bmp2
was also broadly expressed across the epidermis
in highly contracted samples, and no bmp2 ex-
pression was seen in the uncompressed epider-
mis (Fig. 4B). This loss of expression was rescued
through the addition of BIO (6-bromoindirubin-
3′-oxime) to inhibit cytosolic degradation of
b-catenin (fig. S10). Together, these results dem-
onstrate that mechanically triggered movement
of b-catenin to the nucleus is sufficient to initiate
the primordia gene expression program.
Here, we identify key initiators of follicle struc-

ture and fate in the skin. Our findings argue that
the mechanics of cellular self-organization and
structural rearrangement are critical not only
for creating follicle shape but also for triggering
the follicle gene expression program. Critically,
tissue symmetry is brokenmechanically and then
directly conveyed to the genome via b-catenin
mechanosensation. We propose that a similar
mechanism could be at play in other contexts
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Fig. 4. Movement of b-catenin to the nucleus in the forming primordium is mechanically trig-
gered and upstream of the primordia gene expression program. (A) b-catenin localization and
FISH for bmp2 (B) in samples with low (left) and high (right) contractility, as compared to the control
sample (center) (n = 3). (C) Model: A field of dense, contractile dermal cells will resolve into many
spaced aggregates if cell contractility is met with resistance. If resistance is too low (top) or too high
(bottom), cells will be unable to pull into any aggregates or collapse into a single aggregate,
respectively. Dermal cell aggregation compresses the adjacent epidermis focally, bunching the
epidermal cells of each primordium. Compression of the epidermis is sensed through the protein
b-catenin, which responds to this force by moving to the nucleus.
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DEVELOPMENT

Emergent cellular self-organization
and mechanosensation initiate
follicle pattern in the avian skin
Amy E. Shyer,1*† Alan R. Rodrigues,1,2* Grant G. Schroeder,1 Elena Kassianidou,3

Sanjay Kumar,3 Richard M. Harland1

The spacing of hair in mammals and feathers in birds is one of the most apparent
morphological features of the skin. This pattern arises when uniform fields of progenitor
cells diversify their molecular fate while adopting higher-order structure. Using the
nascent skin of the developing chicken embryo as a model system, we find that
morphological and molecular symmetries are simultaneously broken by an emergent
process of cellular self-organization. The key initiators of heterogeneity are dermal
progenitors, which spontaneously aggregate through contractility-driven cellular pulling.
Concurrently, this dermal cell aggregation triggers the mechanosensitive activation of
b-catenin in adjacent epidermal cells, initiating the follicle gene expression program. Taken
together, this mechanism provides a means of integrating mechanical and molecular
perspectives of organ formation.

D
uring skin organogenesis, the structures
that produce hair inmammals and feathers
in birds, termed follicles, emerge in a spaced
array. Before follicle formation in amniotes,
the embryonic skin consists of a sheet of

epithelial cells attached to a slab ofmesenchymal
cells via a basement membrane (Fig. 1, A and B).
Over the course of 2 days, this uniform tissue bi-
layer transitions into one studded with regularly
spaced, multicellular aggregates, each with an

activated follicle primordium gene expression
program (Fig. 1, A and B). Coordinating follicle
spacingwith appropriate gene expression changes
is critical for the proper patterning of feathers in
birds and hair in mammals. How this leap in
complexity is reproducibly initiated remains un-
solved (1, 2).
Previous studies have posited that molecular

patterns arise first and then dictate differential
cell behaviors that cause changes in tissue struc-

ture (3, 4). This has led to the inference that fol-
licle initiation is dependent on the establishment
of a molecular prepattern. We began to question
this model when we discovered that, in the avian
skin, initial follicle fatemarkers, nuclear b-catenin
(amaster regulator of the follicle gene expression
program) (5) and downstream expression of bmp2
and fgf10, accompany rather than precede the
earliest architectural changes of the follicle (Fig.
1B and fig. S1). At day 7 of development (E7),
before the detection of these molecular markers,
emerging follicles become detectable as stacked
epithelial cells overlying aggregated mesenchyme
(fig. S2). To confirm that initiation of structural
changes does not rely on b-catenin activation, we
promoted b-catenin degradation by culturing re-
constituted skin explants before aggregation in
XAV939, which stimulates b-catenin degradation
(see the supplementary materials) (6) (Fig. 1C).
Although samples cultured in XAV939 lack nu-
clear b-catenin and bmp2 expression, they are
capable of forming spaced aggregates compa-
rable to the follicle structure (Fig. 1C).
Given that follicle structures are capable of

emerging in the absence of b-catenin activation,we
investigated the driver of these structural changes.
We were guided by the observation that, as fol-
licles emerge, the primordium basement mem-
brane becomes increasingly arched, resembling a
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Fig. 1. Feather primordium formation initiates with a coaggregation
of the epidermal and dermal cells. (A) An array of feather follicle
primordia forms by E8. (B) (Top) Cross section of embryonic chicken
skin antibody stained with DAPI (4′,6-diamidino-2-phenylindole, nuclei),
laminin (basement membrane), and E-cadherin (epidermal cell
boundaries). (Middle) Localization of b-catenin protein. (Bottom)

Fluorescence in situ hybridization (FISH) for bmp2 as a feather
primordium forms from day 6 to day 8. (C) Reconstitution culture with
or without XAV939; primordium structures initiate in the absence of
nuclear b-catenin and localized bmp2. Lack of sharp boundaries in the
XAV939 condition suggests a role for localized signals in refining
primordia domains (n = 3).
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Mechanically driven self-organisation of cellular patterns

These results are consistent with a model in
which cellular contractility serves as a local acti-
vator and substrate stiffness serves as a long-
range inhibitor of follicle aggregate formation.
Thus, follicles emerge through a mechanical
instability that spontaneously generates an in-
crease in morphological complexity. Of note, this
mechanism bears resemblance to Alan Turing’s
models of chemical patterning, in which local
activation competes against long-range inhibi-
tion (21). However, in this context, the key unit
of pattern occurs at the cellular level and not
the molecular.
Although this model of mesenchymal cell gen-

eration of mechanical instability provides an ac-
count of how follicle structure is initiated, it alone

does not account for how changes in gene ex-
pression are triggered. We considered a mecha-
nismwhereby b-catenin in epithelial cells acts as
a sensor of mechanical compression triggered by
dermal cell aggregation. This putative mecha-
nism is based on three reinforcing lines of evi-
dence. First, it has been established that nuclear
b-catenin in the epidermis is the earliest known
regulator of primordium-specific gene expression
(5). Second, b-catenin has been shown to serve as
a sensor and transducer of mechanical stimulus
in invertebrate embryos and tumors (22,23). Third,
experiments presented above argue that the der-
mal layer focally compresses overlying epithelial
cells through mechanical cross-talk, suggesting a
direct mechanical trigger.

To show that b-catenin nuclear localization is
dependent on dermal compression, we pharma-
cologically manipulated cellular contractility in
cultured skin explants. Very high levels of con-
tractility led to nuclear b-catenin across the en-
tire epithelium, indicating that the entire bud
adopted a follicle gene expression program (Fig.
4A). Conversely, under very low levels of contrac-
tility, no nuclear b-catenin was observed across
the epidermis (Fig. 4A). At intermediate levels of
traction, when primordia size is tuned, nuclear
b-catenin adjusted in a lock-step manner with
dermal aggregation (fig. S7). In parallel to changes
in contractility, analogous nuclear b-catenin re-
sponses were observed when tissue mechanics
were manipulated through substrate stiffness
(fig. S8).
To determine the immediacy of b-catenin re-

sponse to physical compression, we cultured ex-
cised skin freely floating in media to allow for
rapid contraction on the order of hours. In con-
tracted tissues, nuclear b-catenin was observed
in the epidermis after just 2 hours, suggesting a
direct response at the posttranscriptional level
(fig. S9). In control conditions, when explants
were cultured attached to the body to prevent
tissue contraction, no nuclear b-catenin was ob-
served in the epithelium (fig. S9).
To further confirm the mechanical activation

of b-catenin, we assayed for Y654 phosphoryl-
ation. Functionally, this Src kinase–dependent
modification allows for b-catenin release from E-
cadherin at the membrane and for subsequent
translocation into the nucleus (24, 25). As pre-
dicted, Y654 staining was only observed in form-
ing primordia (fig. S10). Tissue with ectopically
high compression showed broad Y654 staining,
whereas tissue with ablated compression showed
none (figs. S10 and S11). Y654 staining was also
lost when tissues were cultured in the presence
of SKI-1, an inhibitor of Src kinase activity, con-
firming the Src-dependent nature of this phos-
phorylation in the skin (fig. S11).
Finally, to confirm that this mechanical acti-

vation of b-catenin leads to activation of the
downstream follicle gene expression program,
we assayed expression of bmp2. Indeed, bmp2
was also broadly expressed across the epidermis
in highly contracted samples, and no bmp2 ex-
pression was seen in the uncompressed epider-
mis (Fig. 4B). This loss of expression was rescued
through the addition of BIO (6-bromoindirubin-
3′-oxime) to inhibit cytosolic degradation of
b-catenin (fig. S10). Together, these results dem-
onstrate that mechanically triggered movement
of b-catenin to the nucleus is sufficient to initiate
the primordia gene expression program.
Here, we identify key initiators of follicle struc-

ture and fate in the skin. Our findings argue that
the mechanics of cellular self-organization and
structural rearrangement are critical not only
for creating follicle shape but also for triggering
the follicle gene expression program. Critically,
tissue symmetry is brokenmechanically and then
directly conveyed to the genome via b-catenin
mechanosensation. We propose that a similar
mechanism could be at play in other contexts
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Fig. 4. Movement of b-catenin to the nucleus in the forming primordium is mechanically trig-
gered and upstream of the primordia gene expression program. (A) b-catenin localization and
FISH for bmp2 (B) in samples with low (left) and high (right) contractility, as compared to the control
sample (center) (n = 3). (C) Model: A field of dense, contractile dermal cells will resolve into many
spaced aggregates if cell contractility is met with resistance. If resistance is too low (top) or too high
(bottom), cells will be unable to pull into any aggregates or collapse into a single aggregate,
respectively. Dermal cell aggregation compresses the adjacent epidermis focally, bunching the
epidermal cells of each primordium. Compression of the epidermis is sensed through the protein
b-catenin, which responds to this force by moving to the nucleus.
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Spatial Mechanical instabilities

Mechanics

self-organization in 
nonequilibrium 
mechanical systems 

Space: Turing instabilities

• Turing like pattern: Contraction must overcome Inhibitory effect 
of substrate stiffness

• Cell traction as « local activator» with autocatalysis (guidance 
effects) and Elasticity as« long range inhibitor ».
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Figure 20.17: Local excitation and global inhibition in cell polarization. (A)
Lattice model of local activation and global inhibition. Two interacting molec-
ular species, shown here in red (activator) and blue (inhibitor) start o↵ nearly
uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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