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Biological organisation in space and time

• Two modalities of information flow during morphogenesis

• hierarchical, indirect interactions
• modular
• long and short range interactions
• high-wired 
• multiple parameters

Self-organization 

• local and direct interactions
• few rules and parameters
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Figure 6: An order of magnitude census of the major components 
of the three model cells we employ often in the lab and in this 
book. A bacterial cell (E. coli), a unicellular eukaryote (the budding 
yeast S. cerevisiae, and a mammalian cell line (such as an 
adherent HeLa cell).  
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How big are biochemical nuts and bolts?  
 
 
 
 
The textbook picture of the molecules of life is dominated by nucleic acids 
and proteins, in no small measure because of their fascinating linkage 
through the processes of the central dogma. On the other hand, this 
picture is terribly distorted biochemically because many of the key 
reactions even in the central dogma would not happen at all were it not 
for a host of biochemical allies such as water and the many ions that are 
needed as cofactors for the enzymes that make these reactions go. 
Further, we cannot forget the substrates themselves, namely, the 
nucleotides and amino acids from which the famed nucleic acids and 
proteins are constructed. Energizing all of this busy activity are small 
sugar molecules, energy carriers such as ATP and other metabolites. In 
this vignette, we take stock of the sizes of the many biochemical “nuts and 
bolts” that provide the molecular backdrop for the lives of cells as shown 
in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Probably the single most important biochemical nut and bolt of them all 
is water. It is no accident that the search for life beyond Earth often begins 
with the question: is there water? Though part of the reason for this might 
be a lack of imagination about what other life-supporting chemistries 
might look like, the simplest reason for this obsession with water is that 
without it, life as we know it could not exist. One of the easiest ways for us 
to characterize the size of a water molecule which is a convenient 
standard molecular ruler for biology is by reference to the roughly 0.1 nm 
bonds (BNID 106548) between its hydrogen and oxygen atoms. Since 
water molecules are not spherically symmetric it is hard to assign an 
effective radius to such a molecule. As another estimate for the size of a 

Figure 1:     A structural view of some of the basic constituents of a cell.  
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1342CHAPTER 20. BIOLOGICAL PATTERNS: ORDER IN SPACE AND TIME
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Figure 20.17: Local excitation and global inhibition in cell polarization. (A)
Lattice model of local activation and global inhibition. Two interacting molec-
ular species, shown here in red (activator) and blue (inhibitor) start o↵ nearly
uniformly distributed, with a small increase in activator leading to a sharply
localized peak in activator concentration over time. The activator activates its
own production (or, equivalently, the activity) and the production of inhibitor
molecules, while the inhibitor represses the production of activator molecules.
Both molecular species di↵use through the lattice but the spread of inhibitor
is much faster than that of activator. The graphs on the right show the time
evolution of the position-dependent concentration of the two species, with an
arrow indicating the initial local perturbation that transiently increases the
concentration of activator. This small initial perturbation is amplified by the
self-activation of the activator which leads to a sharp increase in inhibitor con-
centration. The newly produced inhibitor molecules quickly di↵use away and
repress activator production far from the position of the initial perturbation.
The end result is that the activator dominates only closest to the signal, but
the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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the inhibitor dominates elsewhere. (B) A local excitation / global inhibition
mechanism can contribute to large-scale cell polarization in response to external
signals. Here, the bacterium is shedding peptide fragments that the neutrophil
recognizes via a cell surface receptor. Although the concentration of the pep-
tide is highest on the side of the neutrophil facing the bacterium, there is some
peptide present all around the neutrophil. The receptor is postulated to initiate
two kinds of intracellular signals, a positive signal that promotes actin assembly
and cell protrusion, and a negative signal that suppresses cell protrusion. As
long as the positive signal acts locally while the negative signal acts globally
(or at least, over a longer distance than the positive signal), the positive signal
(shown in red) can promote protrusion over the negative inhibitory signal only
on the side of the neutrophil that is closest to the bacterium. The diagram at
the bottom shows how directed cell migration can result from a positive signal
that promotes branched actin filament network assembly (red) and a negative
signal that acts to generate contractile myosin-actin bundles (blue). (A, adapted
from H. Meinhardt, J. Cell Sci. 112: 2867, 1999.)
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Contractility driven positive feedback
Elasticity: « long-range inhibitor »

• Local positive feedback

• Long range inhibition

• Local positive feedback

• Negative feedback with a delay

Turing-like patterns
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• Pattern formation in an active fluid (e.g. actomyosin gel)

III - Mechanical Instabilities
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Figure 5
Pattern formation via an interplay between cell mechanics and biochemical signaling. (a) Positive feedback
occurs among cell mechanics, transporting signaling molecules, and regulation of the cytoskeleton. (b) Such
feedback can induce advective fluxes into regions of high motor density, which can compensate for the
diffusive tendency to flatten inhomogeneous motor concentration profiles. (c) Nonmotor proteins can also
use mechanochemical feedback to generate steady-state patterns by upregulating motor protein
concentrations.

field c evolves in time under the effects of both advection and diffusion. Diffusion leads to sup-
pression of fluctuations in the concentration field, whereas advection leads to clumping (which
is a result of active stress upregulation). This competition between diffusive smoothing and con-
tractile clumping balances at some point, which is where the steady-state patterns appear (11)
(Figure 5b). Specifically, the control parameter that drives the pattern-forming instability is the
ratio of the strength of the active flows to that of passive diffusion—the Péclet number. Notably,
this instability is essentially mechanical in nature, as there are no local chemical reactions that can
generate any other instabilities à la reaction–diffusion systems.

Kumar et al. (62) studied a particularly interesting case of this kind of mechanochemical in-
stability leading to pulsatile patterns in an active thin film. Consider two species A and I , both of
which regulate active stress σa = σa(cA, cI ). A linear stability analysis shows the existence of Turing-
like criteria for the emergence of spontaneous oscillatory patterns (62). Specifically, it was found
that oscillatory patterns spontaneously emerge when (a) the fast-diffusing species upregulates and
the slow-diffusing species downregulates the active stress or (b) the active stress upregulator turns
over faster compared to the active stress downregulator. The key physical idea for the emergence
of these pulsatile patterns is the coupling between differential regulation of active stress and the

346 Gross · Kumar · Grill
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Pattern Formation in Active Fluids
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We discuss pattern formation in active fluids in which active stress is regulated by diffusing molecular

components. Nonhomogeneous active stress profiles create patterns of flow which transport stress

regulators by advection. Our work is motivated by the dynamics of the actomyosin cell cortex in which

biochemical pathways regulate active stress. We present a mechanism in which a single diffusing species

up regulates active stress, resulting in steady flow and concentration patterns. We also discuss general

pattern-formation behaviors of reaction-diffusion systems placed in active fluids.

DOI: 10.1103/PhysRevLett.106.028103 PACS numbers: 87.16.Uv, 87.10.Ca, 87.16.Ln, 89.75.Kd

In his seminal 1952 paper, Turing proposed that reaction-
diffusion mechanisms are responsible for pattern formation
in developing organisms [1]. He remarked that mechanical
stresses affect chemical patterning and should also be
considered. In a biological context, such stresses can, for
example, be generated by motor proteins in the cell cyto-
skeleton, driven by hydrolysis of adenosine triphosphate.
The dynamic reorganization of the cytoskeleton far from
thermal equilibriumhas been identified as an integral part of
many aspects of cell and tissue patterning [2].

It has been argued that the cytoskeleton is an example of
an active fluid [3]. Here, we discuss general phenomena of
pattern formation in active fluids that involves actively
generated hydrodynamic flows which advect chemical
species that control active stresses and may undergo
chemical reactions. We develop a general framework de-
scribing such processes, based on hydrodynamic descrip-
tions of active fluids or gels [3–6]. As a simple example, we
consider pattern formation in a thin film of active fluid of
constant thickness h where movements occur only along
the x axis. This one-dimensional scenario is motivated by
the cell cortex, a thin layer of active gel associated with the
cell membrane which exhibits flows and maintains con-
stant thickness through exchange of material with the
surrounding cytoplasm [6,7]. Here, we ignore viscoelastic-
ity and treat the material as isotropic. A key ingredient is
that the active stress is a function of the concentrations of
regulatory chemical species that obey reaction-diffusion-
advection equations.

We first consider the case where the fluid contains a
single regulator of active stress with concentration cðx; tÞ.
The concentration of the regulator is governed by a one-
dimensional conservation law [8]:

@ tc ¼ $ @ xj; j ¼ $ D@ xc þ vc; (1)

where the flux j of the regulator has a diffusive component
with diffusion coefficient D and an advective component
with bulk flow velocity v. The constitutive equation of the
active fluid is [6,7]

! ¼ "@ xv þ #!$: (2)

The total stress ! consists of viscous stress "@ xv, where "
is the viscosity, and c-dependent active stress #!$ðcÞ,
positive for contraction and dependent on the change in
chemical potential associated with adenosine triphosphate
hydrolysis, !$. Neglecting inertial forces, typically valid
on a cellular scale, we write the force balance as

@ x! ¼ %v; (3)

where we have introduced a friction coefficient % to
account for relative motion against a cell membrane or
substrate. Taken together, (1)–(3) state that advective trans-
port and concentration dependence of the active stress
couple the spatial distribution of the regulator to active
fluid motion.
In characterizing the system, we restrict ourselves to

finite domains with x 2 ½0; L' with periodic or no-flux
boundary conditions. For both types of boundary condi-
tions, the total amount of regulator is conserved and the
average concentration

c0 ¼
1

L

Z L

0
dxcðx; tÞ (4)

is constant. Therefore, [cðxÞ ¼ c0, v ¼ 0] is the unique
homogeneous steady state.
To determine the nonhomogeneous steady states, we

seek solutions of (1)–(3) with @ tc ¼ 0. Assuming a con-
stant diffusion coefficient, we may integrate (1) to solve for
the flow velocity, giving

v ¼ D@ x lnc þ j0=c; (5)

where j0 is a constant of integration representing a constant
flux through the system. For no-flux boundary conditions,
vð0Þ ¼ @ xcð0Þ ¼ 0 requires that j0 ¼ 0. For periodic
boundary conditions, it is instructive to use (5) in (3) and
integrate with respect to x. Assuming constant %, we obtain
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diffusion advection

Diffusion: smoothens fluctuations

Advection: amplifies fluctuations (mechanical feedback)

Péclet number (advection rate/diffusion rate)

! ¼ !0 þ "D lncþ "j0
Z x

0

dx0

cðx0Þ ; (6)

where !0 is a constant of integration. Because

j0
Z L

0

dx

cðxÞ ¼
!ðLÞ % !ð0Þ

"
% D ln

cðLÞ
cð0Þ ; (7)

periodic boundary conditions require j0 ¼ 0. Thus, the
steady state velocity for both no-flux and periodic bound-
ary conditions is

v ¼ D@x lnc ¼ D@xu; (8)

where we have defined u & lnc for notational convenience.
We use (6) and (8) in (2) to obtain an ordinary differen-

tial equation describing steady concentration profiles:

@2xu ¼ ‘% 2uþ ðD#Þ% 1½!0 % $!%ðuÞ(: (9)

Here, ‘ &
ffiffiffiffiffiffiffiffiffiffi
#="

p
is the characteristic length over which

fluid velocity decays from a local active stress gradient [7].
The right-hand side may be written as % @uVðuÞ, revealing
that for constant parameters (9) has the form of a conser-
vative anharmonic oscillator in which x is the ‘‘time vari-
able’’ and u is the ‘‘space variable’’ with Hamiltonian

Hðu;@xuÞ ¼
1

2
ð@xuÞ2 þ VðuÞ;

VðuÞ ¼ % u2

2‘2
% 1

D#

"
!0u %

Z u

0
du0$!%ðu0Þ

#
:

(10)

This analogy is instructive in investigating the nature of the
steady states because we can employ known properties of
conservative Hamiltonian systems [9]. In particular, non-
homogeneous steady states featuring a patterned regulator
correspond to ‘‘oscillations’’ of uðxÞ with u varying be-
tween two roots, u1 and u2, of E % VðuÞ ¼ 0, where E is
the conserved value of H along uðxÞ. For oscillations, the
roots satisfy u1 < lnc0 < u2. The trajectory of the oscilla-
tions must satisfy (4) and have period 2L=N with N=& 2
Z>0, where & ¼ 1 for no-flux and & ¼ 2 for periodic
boundary conditions. The resulting regulator concentration
profile consists ofN þ 1 evenly spaced symmetric extrema
with peaks of concentration cmax ¼ eu2 separated by val-
leys of concentration cmin ¼ eu1 . An example is depicted in
Fig. 1, where we have chosen $!%ðcÞ ¼ ð$!%Þ0fðcÞ,
where ð$!%Þ0 is a positive characteristic active stress
and fðcÞ ¼ c=ð1þ cÞ. The steady velocity profile, given
by (8), crosses zero at the extrema of the concentration
profile such that material flows into the peaks and out of the
valleys (Fig. 1). The pattern is maintained by a balance of
advective flux into the peaks and diffusive flux out of them,
thereby creating a concentration pattern together with a
steady state flow profile.

If VðuÞ is strictly concave, i.e., @2uV < 0 for all u, where
@2uV ¼ ‘% 2ðPe@uf % 1Þ, with Pe & ð$!%Þ0=D", then
u1 ¼ u2 ¼ lnc0, allowing only the homogeneous concen-
tration profile. Here, we have defined the Péclet number,

the ratio of diffusive to advective time scales: Pe ¼ U‘=D,
where U ¼ ð$!%Þ0=

ffiffiffiffiffiffiffi
#"

p
is the characteristic velocity,

as evident from (2) and (3). If, however, @cfðc0Þ> 0
(i.e., active stress is up regulated by the regulator) and Pe
is sufficiently large, VðuÞ is locally convex (@2uV > 0) at
lnc0 and may allow oscillations that give nonhomogeneous
steady states satisfying (4) with period 2L=N, as depicted
in Fig. 2. The physical implication is that the active stress
must be strong enough to promote advective flux into
regions of high concentrations to counteract frictional
resistance and diffusive counterflux.
To investigate the spontaneous emergence of flow-

accompanied patterns from a quiescent homogeneous
steady state, we perform linear stability analysis on the
c ¼ c0 steady state. We consider a small perturbation

of 'c ¼ 'c0e
(ðkÞtþikx, where k ¼ ) &n)=L (n 2 Z) is

the wave number of the spatial perturbation. Inserting

FIG. 1. The nonhomogeneous steady states with (a) one maxi-
mum and (b) two maxima for $!%ðcÞ ¼ ð$!%Þ0c=ð1þ cÞ,
Pe ¼ 25, L=‘ ¼ 2), and c0 ¼ 1, with periodic boundary con-
ditions. The total stress ! and active stress $!% are given in
units of ð$!%Þ0.

FIG. 2. (a) ‘‘Potentials’’ VðuÞ for stable steady states with
$!% ¼ ð$!%Þ0c=ð1þ cÞ and c0 ¼ 1. For small Pe, VðuÞ is
concave; for moderate Pe, VðuÞ has a shallow minimum at
lnc0; and for large Pe, VðuÞ has a minimum at a u < lnc0 that
is deep enough to support a nonhomogeneous steady state.
Inset: Detail of the central extremum of VðuÞ. (b) Detail of
relevant portions of potentials corresponding to the steady states
depicted in Fig. 1 (Pe ¼ 25). The thick lines depict the portions
of the potentials explored by the steady state.

PRL 106, 028103 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 JANUARY 2011

028103-2

• Dimensionless parameter that considers the respective 
contributions of two sources of flux
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Figure 11. Stephan Grill group: intro to actomyosin cortical flows and the ”full tensorial treatment” of active fluids.

(CH: 2 typos to fix: negative dj/dx and ”a di↵usive.” [4, 5] )

• Pattern formation in an active fluid:  actomyosin flow

III - Mechanical Instabilities

M. Mayer et al., and SW. Grill. Nature.  2010. 467, 617-621
illustration: Nigel Orme

j = — D
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• Pattern formation in an active fluid (e.g. actomyosin gel)
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We discuss pattern formation in active fluids in which active stress is regulated by diffusing molecular

components. Nonhomogeneous active stress profiles create patterns of flow which transport stress

regulators by advection. Our work is motivated by the dynamics of the actomyosin cell cortex in which

biochemical pathways regulate active stress. We present a mechanism in which a single diffusing species

up regulates active stress, resulting in steady flow and concentration patterns. We also discuss general

pattern-formation behaviors of reaction-diffusion systems placed in active fluids.

DOI: 10.1103/PhysRevLett.106.028103 PACS numbers: 87.16.Uv, 87.10.Ca, 87.16.Ln, 89.75.Kd

In his seminal 1952 paper, Turing proposed that reaction-
diffusion mechanisms are responsible for pattern formation
in developing organisms [1]. He remarked that mechanical
stresses affect chemical patterning and should also be
considered. In a biological context, such stresses can, for
example, be generated by motor proteins in the cell cyto-
skeleton, driven by hydrolysis of adenosine triphosphate.
The dynamic reorganization of the cytoskeleton far from
thermal equilibriumhas been identified as an integral part of
many aspects of cell and tissue patterning [2].

It has been argued that the cytoskeleton is an example of
an active fluid [3]. Here, we discuss general phenomena of
pattern formation in active fluids that involves actively
generated hydrodynamic flows which advect chemical
species that control active stresses and may undergo
chemical reactions. We develop a general framework de-
scribing such processes, based on hydrodynamic descrip-
tions of active fluids or gels [3–6]. As a simple example, we
consider pattern formation in a thin film of active fluid of
constant thickness h where movements occur only along
the x axis. This one-dimensional scenario is motivated by
the cell cortex, a thin layer of active gel associated with the
cell membrane which exhibits flows and maintains con-
stant thickness through exchange of material with the
surrounding cytoplasm [6,7]. Here, we ignore viscoelastic-
ity and treat the material as isotropic. A key ingredient is
that the active stress is a function of the concentrations of
regulatory chemical species that obey reaction-diffusion-
advection equations.

We first consider the case where the fluid contains a
single regulator of active stress with concentration cðx; tÞ.
The concentration of the regulator is governed by a one-
dimensional conservation law [8]:

@ tc ¼ $ @ xj; j ¼ $ D@ xc þ vc; (1)

where the flux j of the regulator has a diffusive component
with diffusion coefficient D and an advective component
with bulk flow velocity v. The constitutive equation of the
active fluid is [6,7]

! ¼ "@ xv þ #!$: (2)

The total stress ! consists of viscous stress "@ xv, where "
is the viscosity, and c-dependent active stress #!$ðcÞ,
positive for contraction and dependent on the change in
chemical potential associated with adenosine triphosphate
hydrolysis, !$. Neglecting inertial forces, typically valid
on a cellular scale, we write the force balance as

@ x! ¼ %v; (3)

where we have introduced a friction coefficient % to
account for relative motion against a cell membrane or
substrate. Taken together, (1)–(3) state that advective trans-
port and concentration dependence of the active stress
couple the spatial distribution of the regulator to active
fluid motion.
In characterizing the system, we restrict ourselves to

finite domains with x 2 ½0; L' with periodic or no-flux
boundary conditions. For both types of boundary condi-
tions, the total amount of regulator is conserved and the
average concentration

c0 ¼
1

L

Z L

0
dxcðx; tÞ (4)

is constant. Therefore, [cðxÞ ¼ c0, v ¼ 0] is the unique
homogeneous steady state.
To determine the nonhomogeneous steady states, we

seek solutions of (1)–(3) with @ tc ¼ 0. Assuming a con-
stant diffusion coefficient, we may integrate (1) to solve for
the flow velocity, giving

v ¼ D@ x lnc þ j0=c; (5)

where j0 is a constant of integration representing a constant
flux through the system. For no-flux boundary conditions,
vð0Þ ¼ @ xcð0Þ ¼ 0 requires that j0 ¼ 0. For periodic
boundary conditions, it is instructive to use (5) in (3) and
integrate with respect to x. Assuming constant %, we obtain
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In his seminal 1952 paper, Turing proposed that reaction-
diffusion mechanisms are responsible for pattern formation
in developing organisms [1]. He remarked that mechanical
stresses affect chemical patterning and should also be
considered. In a biological context, such stresses can, for
example, be generated by motor proteins in the cell cyto-
skeleton, driven by hydrolysis of adenosine triphosphate.
The dynamic reorganization of the cytoskeleton far from
thermal equilibriumhas been identified as an integral part of
many aspects of cell and tissue patterning [2].

It has been argued that the cytoskeleton is an example of
an active fluid [3]. Here, we discuss general phenomena of
pattern formation in active fluids that involves actively
generated hydrodynamic flows which advect chemical
species that control active stresses and may undergo
chemical reactions. We develop a general framework de-
scribing such processes, based on hydrodynamic descrip-
tions of active fluids or gels [3–6]. As a simple example, we
consider pattern formation in a thin film of active fluid of
constant thickness h where movements occur only along
the x axis. This one-dimensional scenario is motivated by
the cell cortex, a thin layer of active gel associated with the
cell membrane which exhibits flows and maintains con-
stant thickness through exchange of material with the
surrounding cytoplasm [6,7]. Here, we ignore viscoelastic-
ity and treat the material as isotropic. A key ingredient is
that the active stress is a function of the concentrations of
regulatory chemical species that obey reaction-diffusion-
advection equations.

We first consider the case where the fluid contains a
single regulator of active stress with concentration cðx; tÞ.
The concentration of the regulator is governed by a one-
dimensional conservation law [8]:

@ tc ¼ $ @ xj; j ¼ $ D@ xc þ vc; (1)

where the flux j of the regulator has a diffusive component
with diffusion coefficient D and an advective component
with bulk flow velocity v. The constitutive equation of the
active fluid is [6,7]

! ¼ "@ xv þ #!$: (2)

The total stress ! consists of viscous stress "@ xv, where "
is the viscosity, and c-dependent active stress #!$ðcÞ,
positive for contraction and dependent on the change in
chemical potential associated with adenosine triphosphate
hydrolysis, !$. Neglecting inertial forces, typically valid
on a cellular scale, we write the force balance as

@ x! ¼ %v; (3)

where we have introduced a friction coefficient % to
account for relative motion against a cell membrane or
substrate. Taken together, (1)–(3) state that advective trans-
port and concentration dependence of the active stress
couple the spatial distribution of the regulator to active
fluid motion.
In characterizing the system, we restrict ourselves to

finite domains with x 2 ½0; L' with periodic or no-flux
boundary conditions. For both types of boundary condi-
tions, the total amount of regulator is conserved and the
average concentration

c0 ¼
1

L

Z L

0
dxcðx; tÞ (4)

is constant. Therefore, [cðxÞ ¼ c0, v ¼ 0] is the unique
homogeneous steady state.
To determine the nonhomogeneous steady states, we

seek solutions of (1)–(3) with @ tc ¼ 0. Assuming a con-
stant diffusion coefficient, we may integrate (1) to solve for
the flow velocity, giving

v ¼ D@ x lnc þ j0=c; (5)

where j0 is a constant of integration representing a constant
flux through the system. For no-flux boundary conditions,
vð0Þ ¼ @ xcð0Þ ¼ 0 requires that j0 ¼ 0. For periodic
boundary conditions, it is instructive to use (5) in (3) and
integrate with respect to x. Assuming constant %, we obtain
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The dynamic reorganization of the cytoskeleton far from
thermal equilibriumhas been identified as an integral part of
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pattern formation in active fluids that involves actively
generated hydrodynamic flows which advect chemical
species that control active stresses and may undergo
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tions of active fluids or gels [3–6]. As a simple example, we
consider pattern formation in a thin film of active fluid of
constant thickness h where movements occur only along
the x axis. This one-dimensional scenario is motivated by
the cell cortex, a thin layer of active gel associated with the
cell membrane which exhibits flows and maintains con-
stant thickness through exchange of material with the
surrounding cytoplasm [6,7]. Here, we ignore viscoelastic-
ity and treat the material as isotropic. A key ingredient is
that the active stress is a function of the concentrations of
regulatory chemical species that obey reaction-diffusion-
advection equations.

We first consider the case where the fluid contains a
single regulator of active stress with concentration cðx; tÞ.
The concentration of the regulator is governed by a one-
dimensional conservation law [8]:
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where the flux j of the regulator has a diffusive component
with diffusion coefficient D and an advective component
with bulk flow velocity v. The constitutive equation of the
active fluid is [6,7]
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The total stress ! consists of viscous stress "@ xv, where "
is the viscosity, and c-dependent active stress #!$ðcÞ,
positive for contraction and dependent on the change in
chemical potential associated with adenosine triphosphate
hydrolysis, !$. Neglecting inertial forces, typically valid
on a cellular scale, we write the force balance as

@ x! ¼ %v; (3)

where we have introduced a friction coefficient % to
account for relative motion against a cell membrane or
substrate. Taken together, (1)–(3) state that advective trans-
port and concentration dependence of the active stress
couple the spatial distribution of the regulator to active
fluid motion.
In characterizing the system, we restrict ourselves to

finite domains with x 2 ½0; L' with periodic or no-flux
boundary conditions. For both types of boundary condi-
tions, the total amount of regulator is conserved and the
average concentration

c0 ¼
1
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dxcðx; tÞ (4)

is constant. Therefore, [cðxÞ ¼ c0, v ¼ 0] is the unique
homogeneous steady state.
To determine the nonhomogeneous steady states, we

seek solutions of (1)–(3) with @ tc ¼ 0. Assuming a con-
stant diffusion coefficient, we may integrate (1) to solve for
the flow velocity, giving

v ¼ D@ x lnc þ j0=c; (5)

where j0 is a constant of integration representing a constant
flux through the system. For no-flux boundary conditions,
vð0Þ ¼ @ xcð0Þ ¼ 0 requires that j0 ¼ 0. For periodic
boundary conditions, it is instructive to use (5) in (3) and
integrate with respect to x. Assuming constant %, we obtain

PRL 106, 028103 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 JANUARY 2011

0031-9007=11=106(2)=028103(4) 028103-1 ! 2011 The American Physical Society

conservation law (species c)

constitutive equation

force balance

diffusion advection
c ¼ c0 þ !c into (2) and (3) and solving for the velocity
gives, to linear order in !c,

vðxÞ ¼ !c
ikð"!#Þ0
$þ %k2

@cfðc0Þ: (11)

Inserting (11) into (1) and considering terms up to linear
order in !c reveals that the (real) eigenvalue, &ðkÞ, of the
linearized system is given by the dispersion relation

&ðkÞ ¼ % k2D
!
1 % Pec0@cfðc0Þ

1þ k2‘2

"
: (12)

As Pe grows, i.e., as the dynamics are more dominated
by advection, instabilities of higher modes may grow, as
shown in Fig. 3(a). The eigenvalue &ðkÞ is positive for
some k, signifying spontaneous formation of a nonhomo-
geneous concentration profile accompanied by flow, when

Pec0@cfðc0Þ
1þ ð'(‘=LÞ2 > 1: (13)

A representative stability diagram is displayed in Fig. 3(b).
Above a critical value of Pe, which is dependent on the
average concentration c0, the homogeneous state is un-
stable and patterns corresponding to the wave number
kmax for which &ðkÞ is maximal grow. Numerical integra-
tion of (1)–(3) demonstrates that, though the dynamics can
initially approach a multipeaked steady state, such steady
states are unstable and the system relaxes to the steady
profile with a single peak, as shown in the example in
Fig. 4. Depending on the parameters, this relaxation may
occur over very long time scales, resulting in long-lived
multipeaked profiles.

The simple scenario described above can be easily gen-
eralized for multiple diffusing species undergoing chemi-
cal reactions. Equation (1), augmented to include chemical
reactions, holds for each species i:

ji ¼ % Di@xci þ vci; @tci ¼ % @xji þ Ri: (14)

Here, Ri is the rate of production of species i by chemical
reaction and can depend on the concentration of any of the

chemical species. The active stress may also depend on the
concentrations: "!# ¼ ð"!#Þ0fðc1; c2; . . .Þ. We perform
linear stability analysis on a homogeneous steady state,
c0 & ðc1;0; c2;0; . . .Þ, in which the concentrations of all
species are constant in space and the fluid is quiescent.
The stability matrix A has entries

Aij ¼ % k2Di!ij þ@cjRiðc0Þ þD1

k2Peci;0@cjfðc0Þ
1þ k2‘2

;

(15)

where Pe is defined in terms of the diffusion coefficient of
species 1 as Pe ¼ ð"!#Þ0=D1$. The homogeneous steady
state is unstable, and the system can spontaneously form
patterns in the chemical species accompanied by flow of
the active fluid if Re½&ðkÞ(> 0 for some nonzero k, where
&ðkÞ is the eigenvalue of A with the largest real part. The
first two terms in (15) comprise the standard expression for
reaction-diffusion systems [10]. The last term is due to
active stress-driven flow and notably depends on the wave
number k, as opposed to reaction-diffusion systems in
which only diffusive terms have k dependence.
As an illustration, we consider the activator-substrate

depletion model (ASDM) [11,12], a classic model which
exhibits a Turing instability. The ASDM consists of an
activator (with concentration a) and a substrate (with con-
centration s) that undergo chemical reactions with the
following properties: (i) The activator is autocatalytic,
consuming substrate in the process; (ii) the activator has
a constant degradation rate; (iii) the substrate has a con-
stant production rate. The simplest form of the chemical
kinetics is Ra ¼ )aða2s % aÞ and Rs ¼ )sð1 % a2sÞ,
where )a and )s are chemical rate constants. The unique
homogeneous steady state is a0 ¼ s0 ¼ 1. When Pe ¼ 0,
or in the absence of active stress, we recover the classic
ASDM, whose linear stability diagram is depicted in
Fig. 5(a). In region I of parameter space, the substrate
acts as a fast-diffusing ‘‘inhibitor’’ (since its depletion
slows the production of the activator), the hallmark of a
Turing instability. In the presence of advection due to
active stress up regulation by the activator, the region of
parameter space in which patterns form grows, as depicted

FIG. 3. (a) Dispersion relation for "!# ¼ ð"!#Þ0c=ð1þ cÞ
and c0 ¼ 1 for Pe ¼ 3, 7, 10, and 25, corresponding to plots
depicted in Figs. 1, 2, and 4. The eigenvalue &ðkÞ is nondimen-
sionalized by the diffusive time scale *D ¼ ‘2=D. For L=‘ ¼ 2(
with periodic boundary conditions, as in Fig. 1, k‘may take only
integer values (vertical gray lines). (b) Linear stability diagram
for the same active stress function.

FIG. 4. Illustration of dynamics for the same system as in
Fig. 1, except with L=‘ ¼ 3(, such that the second mode grows
fastest from the unstable homogeneous steady state. Time is
nondimensionalized by *D ¼ ‘2=D.
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tion of (1)–(3) demonstrates that, though the dynamics can
initially approach a multipeaked steady state, such steady
states are unstable and the system relaxes to the steady
profile with a single peak, as shown in the example in
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occur over very long time scales, resulting in long-lived
multipeaked profiles.

The simple scenario described above can be easily gen-
eralized for multiple diffusing species undergoing chemi-
cal reactions. Equation (1), augmented to include chemical
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where Pe is defined in terms of the diffusion coefficient of
species 1 as Pe ¼ ð"!#Þ0=D1$. The homogeneous steady
state is unstable, and the system can spontaneously form
patterns in the chemical species accompanied by flow of
the active fluid if Re½&ðkÞ(> 0 for some nonzero k, where
&ðkÞ is the eigenvalue of A with the largest real part. The
first two terms in (15) comprise the standard expression for
reaction-diffusion systems [10]. The last term is due to
active stress-driven flow and notably depends on the wave
number k, as opposed to reaction-diffusion systems in
which only diffusive terms have k dependence.
As an illustration, we consider the activator-substrate

depletion model (ASDM) [11,12], a classic model which
exhibits a Turing instability. The ASDM consists of an
activator (with concentration a) and a substrate (with con-
centration s) that undergo chemical reactions with the
following properties: (i) The activator is autocatalytic,
consuming substrate in the process; (ii) the activator has
a constant degradation rate; (iii) the substrate has a con-
stant production rate. The simplest form of the chemical
kinetics is Ra ¼ )aða2s % aÞ and Rs ¼ )sð1 % a2sÞ,
where )a and )s are chemical rate constants. The unique
homogeneous steady state is a0 ¼ s0 ¼ 1. When Pe ¼ 0,
or in the absence of active stress, we recover the classic
ASDM, whose linear stability diagram is depicted in
Fig. 5(a). In region I of parameter space, the substrate
acts as a fast-diffusing ‘‘inhibitor’’ (since its depletion
slows the production of the activator), the hallmark of a
Turing instability. In the presence of advection due to
active stress up regulation by the activator, the region of
parameter space in which patterns form grows, as depicted

FIG. 3. (a) Dispersion relation for "!# ¼ ð"!#Þ0c=ð1þ cÞ
and c0 ¼ 1 for Pe ¼ 3, 7, 10, and 25, corresponding to plots
depicted in Figs. 1, 2, and 4. The eigenvalue &ðkÞ is nondimen-
sionalized by the diffusive time scale *D ¼ ‘2=D. For L=‘ ¼ 2(
with periodic boundary conditions, as in Fig. 1, k‘may take only
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FIG. 4. Illustration of dynamics for the same system as in
Fig. 1, except with L=‘ ¼ 3(, such that the second mode grows
fastest from the unstable homogeneous steady state. Time is
nondimensionalized by *D ¼ ‘2=D.
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Linear stability: Eigen values Flow driven non-homogeneity for 

! ¼ !0 þ "D lncþ "j0
Z x

0

dx0

cðx0Þ ; (6)

where !0 is a constant of integration. Because

j0
Z L

0

dx

cðxÞ ¼
!ðLÞ % !ð0Þ

"
% D ln

cðLÞ
cð0Þ ; (7)

periodic boundary conditions require j0 ¼ 0. Thus, the
steady state velocity for both no-flux and periodic bound-
ary conditions is

v ¼ D@x lnc ¼ D@xu; (8)

where we have defined u & lnc for notational convenience.
We use (6) and (8) in (2) to obtain an ordinary differen-

tial equation describing steady concentration profiles:

@2xu ¼ ‘% 2uþ ðD#Þ% 1½!0 % $!%ðuÞ(: (9)

Here, ‘ &
ffiffiffiffiffiffiffiffiffiffi
#="

p
is the characteristic length over which

fluid velocity decays from a local active stress gradient [7].
The right-hand side may be written as % @uVðuÞ, revealing
that for constant parameters (9) has the form of a conser-
vative anharmonic oscillator in which x is the ‘‘time vari-
able’’ and u is the ‘‘space variable’’ with Hamiltonian

Hðu;@xuÞ ¼
1

2
ð@xuÞ2 þ VðuÞ;

VðuÞ ¼ % u2

2‘2
% 1

D#

"
!0u %

Z u

0
du0$!%ðu0Þ

#
:

(10)

This analogy is instructive in investigating the nature of the
steady states because we can employ known properties of
conservative Hamiltonian systems [9]. In particular, non-
homogeneous steady states featuring a patterned regulator
correspond to ‘‘oscillations’’ of uðxÞ with u varying be-
tween two roots, u1 and u2, of E % VðuÞ ¼ 0, where E is
the conserved value of H along uðxÞ. For oscillations, the
roots satisfy u1 < lnc0 < u2. The trajectory of the oscilla-
tions must satisfy (4) and have period 2L=N with N=& 2
Z>0, where & ¼ 1 for no-flux and & ¼ 2 for periodic
boundary conditions. The resulting regulator concentration
profile consists ofN þ 1 evenly spaced symmetric extrema
with peaks of concentration cmax ¼ eu2 separated by val-
leys of concentration cmin ¼ eu1 . An example is depicted in
Fig. 1, where we have chosen $!%ðcÞ ¼ ð$!%Þ0fðcÞ,
where ð$!%Þ0 is a positive characteristic active stress
and fðcÞ ¼ c=ð1þ cÞ. The steady velocity profile, given
by (8), crosses zero at the extrema of the concentration
profile such that material flows into the peaks and out of the
valleys (Fig. 1). The pattern is maintained by a balance of
advective flux into the peaks and diffusive flux out of them,
thereby creating a concentration pattern together with a
steady state flow profile.

If VðuÞ is strictly concave, i.e., @2uV < 0 for all u, where
@2uV ¼ ‘% 2ðPe@uf % 1Þ, with Pe & ð$!%Þ0=D", then
u1 ¼ u2 ¼ lnc0, allowing only the homogeneous concen-
tration profile. Here, we have defined the Péclet number,

the ratio of diffusive to advective time scales: Pe ¼ U‘=D,
where U ¼ ð$!%Þ0=

ffiffiffiffiffiffiffi
#"

p
is the characteristic velocity,

as evident from (2) and (3). If, however, @cfðc0Þ> 0
(i.e., active stress is up regulated by the regulator) and Pe
is sufficiently large, VðuÞ is locally convex (@2uV > 0) at
lnc0 and may allow oscillations that give nonhomogeneous
steady states satisfying (4) with period 2L=N, as depicted
in Fig. 2. The physical implication is that the active stress
must be strong enough to promote advective flux into
regions of high concentrations to counteract frictional
resistance and diffusive counterflux.
To investigate the spontaneous emergence of flow-

accompanied patterns from a quiescent homogeneous
steady state, we perform linear stability analysis on the
c ¼ c0 steady state. We consider a small perturbation

of 'c ¼ 'c0e
(ðkÞtþikx, where k ¼ ) &n)=L (n 2 Z) is

the wave number of the spatial perturbation. Inserting

FIG. 1. The nonhomogeneous steady states with (a) one maxi-
mum and (b) two maxima for $!%ðcÞ ¼ ð$!%Þ0c=ð1þ cÞ,
Pe ¼ 25, L=‘ ¼ 2), and c0 ¼ 1, with periodic boundary con-
ditions. The total stress ! and active stress $!% are given in
units of ð$!%Þ0.

FIG. 2. (a) ‘‘Potentials’’ VðuÞ for stable steady states with
$!% ¼ ð$!%Þ0c=ð1þ cÞ and c0 ¼ 1. For small Pe, VðuÞ is
concave; for moderate Pe, VðuÞ has a shallow minimum at
lnc0; and for large Pe, VðuÞ has a minimum at a u < lnc0 that
is deep enough to support a nonhomogeneous steady state.
Inset: Detail of the central extremum of VðuÞ. (b) Detail of
relevant portions of potentials corresponding to the steady states
depicted in Fig. 1 (Pe ¼ 25). The thick lines depict the portions
of the potentials explored by the steady state.

PRL 106, 028103 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 JANUARY 2011

028103-2

hydrodynamic length scale

Péclet number (advection rate/diffusion rate)

! ¼ !0 þ "D lncþ "j0
Z x

0

dx0

cðx0Þ ; (6)

where !0 is a constant of integration. Because

j0
Z L

0

dx

cðxÞ ¼
!ðLÞ % !ð0Þ

"
% D ln

cðLÞ
cð0Þ ; (7)

periodic boundary conditions require j0 ¼ 0. Thus, the
steady state velocity for both no-flux and periodic bound-
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where we have defined u & lnc for notational convenience.
We use (6) and (8) in (2) to obtain an ordinary differen-
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steady states because we can employ known properties of
conservative Hamiltonian systems [9]. In particular, non-
homogeneous steady states featuring a patterned regulator
correspond to ‘‘oscillations’’ of uðxÞ with u varying be-
tween two roots, u1 and u2, of E % VðuÞ ¼ 0, where E is
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Z>0, where & ¼ 1 for no-flux and & ¼ 2 for periodic
boundary conditions. The resulting regulator concentration
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(i.e., active stress is up regulated by the regulator) and Pe
is sufficiently large, VðuÞ is locally convex (@2uV > 0) at
lnc0 and may allow oscillations that give nonhomogeneous
steady states satisfying (4) with period 2L=N, as depicted
in Fig. 2. The physical implication is that the active stress
must be strong enough to promote advective flux into
regions of high concentrations to counteract frictional
resistance and diffusive counterflux.
To investigate the spontaneous emergence of flow-

accompanied patterns from a quiescent homogeneous
steady state, we perform linear stability analysis on the
c ¼ c0 steady state. We consider a small perturbation
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mum and (b) two maxima for $!%ðcÞ ¼ ð$!%Þ0c=ð1þ cÞ,
Pe ¼ 25, L=‘ ¼ 2), and c0 ¼ 1, with periodic boundary con-
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concave; for moderate Pe, VðuÞ has a shallow minimum at
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relevant portions of potentials corresponding to the steady states
depicted in Fig. 1 (Pe ¼ 25). The thick lines depict the portions
of the potentials explored by the steady state.
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! ¼ !0 þ "D lncþ "j0
Z x

0

dx0

cðx0Þ ; (6)

where !0 is a constant of integration. Because

j0
Z L

0

dx

cðxÞ ¼
!ðLÞ % !ð0Þ

"
% D ln

cðLÞ
cð0Þ ; (7)

periodic boundary conditions require j0 ¼ 0. Thus, the
steady state velocity for both no-flux and periodic bound-
ary conditions is

v ¼ D@x lnc ¼ D@xu; (8)

where we have defined u & lnc for notational convenience.
We use (6) and (8) in (2) to obtain an ordinary differen-

tial equation describing steady concentration profiles:

@2xu ¼ ‘% 2uþ ðD#Þ% 1½!0 % $!%ðuÞ(: (9)

Here, ‘ &
ffiffiffiffiffiffiffiffiffiffi
#="

p
is the characteristic length over which

fluid velocity decays from a local active stress gradient [7].
The right-hand side may be written as % @uVðuÞ, revealing
that for constant parameters (9) has the form of a conser-
vative anharmonic oscillator in which x is the ‘‘time vari-
able’’ and u is the ‘‘space variable’’ with Hamiltonian

Hðu;@xuÞ ¼
1

2
ð@xuÞ2 þ VðuÞ;

VðuÞ ¼ % u2

2‘2
% 1

D#

"
!0u %

Z u

0
du0$!%ðu0Þ

#
:

(10)

This analogy is instructive in investigating the nature of the
steady states because we can employ known properties of
conservative Hamiltonian systems [9]. In particular, non-
homogeneous steady states featuring a patterned regulator
correspond to ‘‘oscillations’’ of uðxÞ with u varying be-
tween two roots, u1 and u2, of E % VðuÞ ¼ 0, where E is
the conserved value of H along uðxÞ. For oscillations, the
roots satisfy u1 < lnc0 < u2. The trajectory of the oscilla-
tions must satisfy (4) and have period 2L=N with N=& 2
Z>0, where & ¼ 1 for no-flux and & ¼ 2 for periodic
boundary conditions. The resulting regulator concentration
profile consists ofN þ 1 evenly spaced symmetric extrema
with peaks of concentration cmax ¼ eu2 separated by val-
leys of concentration cmin ¼ eu1 . An example is depicted in
Fig. 1, where we have chosen $!%ðcÞ ¼ ð$!%Þ0fðcÞ,
where ð$!%Þ0 is a positive characteristic active stress
and fðcÞ ¼ c=ð1þ cÞ. The steady velocity profile, given
by (8), crosses zero at the extrema of the concentration
profile such that material flows into the peaks and out of the
valleys (Fig. 1). The pattern is maintained by a balance of
advective flux into the peaks and diffusive flux out of them,
thereby creating a concentration pattern together with a
steady state flow profile.

If VðuÞ is strictly concave, i.e., @2uV < 0 for all u, where
@2uV ¼ ‘% 2ðPe@uf % 1Þ, with Pe & ð$!%Þ0=D", then
u1 ¼ u2 ¼ lnc0, allowing only the homogeneous concen-
tration profile. Here, we have defined the Péclet number,

the ratio of diffusive to advective time scales: Pe ¼ U‘=D,
where U ¼ ð$!%Þ0=

ffiffiffiffiffiffiffi
#"

p
is the characteristic velocity,

as evident from (2) and (3). If, however, @cfðc0Þ> 0
(i.e., active stress is up regulated by the regulator) and Pe
is sufficiently large, VðuÞ is locally convex (@2uV > 0) at
lnc0 and may allow oscillations that give nonhomogeneous
steady states satisfying (4) with period 2L=N, as depicted
in Fig. 2. The physical implication is that the active stress
must be strong enough to promote advective flux into
regions of high concentrations to counteract frictional
resistance and diffusive counterflux.
To investigate the spontaneous emergence of flow-

accompanied patterns from a quiescent homogeneous
steady state, we perform linear stability analysis on the
c ¼ c0 steady state. We consider a small perturbation

of 'c ¼ 'c0e
(ðkÞtþikx, where k ¼ ) &n)=L (n 2 Z) is

the wave number of the spatial perturbation. Inserting

FIG. 1. The nonhomogeneous steady states with (a) one maxi-
mum and (b) two maxima for $!%ðcÞ ¼ ð$!%Þ0c=ð1þ cÞ,
Pe ¼ 25, L=‘ ¼ 2), and c0 ¼ 1, with periodic boundary con-
ditions. The total stress ! and active stress $!% are given in
units of ð$!%Þ0.

FIG. 2. (a) ‘‘Potentials’’ VðuÞ for stable steady states with
$!% ¼ ð$!%Þ0c=ð1þ cÞ and c0 ¼ 1. For small Pe, VðuÞ is
concave; for moderate Pe, VðuÞ has a shallow minimum at
lnc0; and for large Pe, VðuÞ has a minimum at a u < lnc0 that
is deep enough to support a nonhomogeneous steady state.
Inset: Detail of the central extremum of VðuÞ. (b) Detail of
relevant portions of potentials corresponding to the steady states
depicted in Fig. 1 (Pe ¼ 25). The thick lines depict the portions
of the potentials explored by the steady state.
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(active stress increases with concentration of co)

c ¼ c0 þ !c into (2) and (3) and solving for the velocity
gives, to linear order in !c,

vðxÞ ¼ !c
ikð"!#Þ0
$þ %k2

@cfðc0Þ: (11)

Inserting (11) into (1) and considering terms up to linear
order in !c reveals that the (real) eigenvalue, &ðkÞ, of the
linearized system is given by the dispersion relation

&ðkÞ ¼ % k2D
!
1 % Pec0@cfðc0Þ

1þ k2‘2

"
: (12)

As Pe grows, i.e., as the dynamics are more dominated
by advection, instabilities of higher modes may grow, as
shown in Fig. 3(a). The eigenvalue &ðkÞ is positive for
some k, signifying spontaneous formation of a nonhomo-
geneous concentration profile accompanied by flow, when

Pec0@cfðc0Þ
1þ ð'(‘=LÞ2 > 1: (13)

A representative stability diagram is displayed in Fig. 3(b).
Above a critical value of Pe, which is dependent on the
average concentration c0, the homogeneous state is un-
stable and patterns corresponding to the wave number
kmax for which &ðkÞ is maximal grow. Numerical integra-
tion of (1)–(3) demonstrates that, though the dynamics can
initially approach a multipeaked steady state, such steady
states are unstable and the system relaxes to the steady
profile with a single peak, as shown in the example in
Fig. 4. Depending on the parameters, this relaxation may
occur over very long time scales, resulting in long-lived
multipeaked profiles.

The simple scenario described above can be easily gen-
eralized for multiple diffusing species undergoing chemi-
cal reactions. Equation (1), augmented to include chemical
reactions, holds for each species i:

ji ¼ % Di@xci þ vci; @tci ¼ % @xji þ Ri: (14)

Here, Ri is the rate of production of species i by chemical
reaction and can depend on the concentration of any of the

chemical species. The active stress may also depend on the
concentrations: "!# ¼ ð"!#Þ0fðc1; c2; . . .Þ. We perform
linear stability analysis on a homogeneous steady state,
c0 & ðc1;0; c2;0; . . .Þ, in which the concentrations of all
species are constant in space and the fluid is quiescent.
The stability matrix A has entries

Aij ¼ % k2Di!ij þ@cjRiðc0Þ þD1

k2Peci;0@cjfðc0Þ
1þ k2‘2

;

(15)

where Pe is defined in terms of the diffusion coefficient of
species 1 as Pe ¼ ð"!#Þ0=D1$. The homogeneous steady
state is unstable, and the system can spontaneously form
patterns in the chemical species accompanied by flow of
the active fluid if Re½&ðkÞ(> 0 for some nonzero k, where
&ðkÞ is the eigenvalue of A with the largest real part. The
first two terms in (15) comprise the standard expression for
reaction-diffusion systems [10]. The last term is due to
active stress-driven flow and notably depends on the wave
number k, as opposed to reaction-diffusion systems in
which only diffusive terms have k dependence.
As an illustration, we consider the activator-substrate

depletion model (ASDM) [11,12], a classic model which
exhibits a Turing instability. The ASDM consists of an
activator (with concentration a) and a substrate (with con-
centration s) that undergo chemical reactions with the
following properties: (i) The activator is autocatalytic,
consuming substrate in the process; (ii) the activator has
a constant degradation rate; (iii) the substrate has a con-
stant production rate. The simplest form of the chemical
kinetics is Ra ¼ )aða2s % aÞ and Rs ¼ )sð1 % a2sÞ,
where )a and )s are chemical rate constants. The unique
homogeneous steady state is a0 ¼ s0 ¼ 1. When Pe ¼ 0,
or in the absence of active stress, we recover the classic
ASDM, whose linear stability diagram is depicted in
Fig. 5(a). In region I of parameter space, the substrate
acts as a fast-diffusing ‘‘inhibitor’’ (since its depletion
slows the production of the activator), the hallmark of a
Turing instability. In the presence of advection due to
active stress up regulation by the activator, the region of
parameter space in which patterns form grows, as depicted

FIG. 3. (a) Dispersion relation for "!# ¼ ð"!#Þ0c=ð1þ cÞ
and c0 ¼ 1 for Pe ¼ 3, 7, 10, and 25, corresponding to plots
depicted in Figs. 1, 2, and 4. The eigenvalue &ðkÞ is nondimen-
sionalized by the diffusive time scale *D ¼ ‘2=D. For L=‘ ¼ 2(
with periodic boundary conditions, as in Fig. 1, k‘may take only
integer values (vertical gray lines). (b) Linear stability diagram
for the same active stress function.

FIG. 4. Illustration of dynamics for the same system as in
Fig. 1, except with L=‘ ¼ 3(, such that the second mode grows
fastest from the unstable homogeneous steady state. Time is
nondimensionalized by *D ¼ ‘2=D.
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Hydrodynamic flow description: 

• Active stress driven flow must overcome 
frictional resistance and diffusive dispersion:
(requires large enough Pe and upregulation of 
active stress by regulator ∂cf(co)>1)

! ¼ !0 þ "D lncþ "j0
Z x

0

dx0

cðx0Þ ; (6)

where !0 is a constant of integration. Because

j0
Z L

0

dx

cðxÞ ¼
!ðLÞ % !ð0Þ

"
% D ln

cðLÞ
cð0Þ ; (7)

periodic boundary conditions require j0 ¼ 0. Thus, the
steady state velocity for both no-flux and periodic bound-
ary conditions is

v ¼ D@x lnc ¼ D@xu; (8)

where we have defined u & lnc for notational convenience.
We use (6) and (8) in (2) to obtain an ordinary differen-

tial equation describing steady concentration profiles:

@2xu ¼ ‘% 2uþ ðD#Þ% 1½!0 % $!%ðuÞ(: (9)

Here, ‘ &
ffiffiffiffiffiffiffiffiffiffi
#="

p
is the characteristic length over which

fluid velocity decays from a local active stress gradient [7].
The right-hand side may be written as % @uVðuÞ, revealing
that for constant parameters (9) has the form of a conser-
vative anharmonic oscillator in which x is the ‘‘time vari-
able’’ and u is the ‘‘space variable’’ with Hamiltonian

Hðu;@xuÞ ¼
1

2
ð@xuÞ2 þ VðuÞ;

VðuÞ ¼ % u2

2‘2
% 1

D#

"
!0u %

Z u

0
du0$!%ðu0Þ

#
:

(10)

This analogy is instructive in investigating the nature of the
steady states because we can employ known properties of
conservative Hamiltonian systems [9]. In particular, non-
homogeneous steady states featuring a patterned regulator
correspond to ‘‘oscillations’’ of uðxÞ with u varying be-
tween two roots, u1 and u2, of E % VðuÞ ¼ 0, where E is
the conserved value of H along uðxÞ. For oscillations, the
roots satisfy u1 < lnc0 < u2. The trajectory of the oscilla-
tions must satisfy (4) and have period 2L=N with N=& 2
Z>0, where & ¼ 1 for no-flux and & ¼ 2 for periodic
boundary conditions. The resulting regulator concentration
profile consists ofN þ 1 evenly spaced symmetric extrema
with peaks of concentration cmax ¼ eu2 separated by val-
leys of concentration cmin ¼ eu1 . An example is depicted in
Fig. 1, where we have chosen $!%ðcÞ ¼ ð$!%Þ0fðcÞ,
where ð$!%Þ0 is a positive characteristic active stress
and fðcÞ ¼ c=ð1þ cÞ. The steady velocity profile, given
by (8), crosses zero at the extrema of the concentration
profile such that material flows into the peaks and out of the
valleys (Fig. 1). The pattern is maintained by a balance of
advective flux into the peaks and diffusive flux out of them,
thereby creating a concentration pattern together with a
steady state flow profile.

If VðuÞ is strictly concave, i.e., @2uV < 0 for all u, where
@2uV ¼ ‘% 2ðPe@uf % 1Þ, with Pe & ð$!%Þ0=D", then
u1 ¼ u2 ¼ lnc0, allowing only the homogeneous concen-
tration profile. Here, we have defined the Péclet number,

the ratio of diffusive to advective time scales: Pe ¼ U‘=D,
where U ¼ ð$!%Þ0=

ffiffiffiffiffiffiffi
#"

p
is the characteristic velocity,

as evident from (2) and (3). If, however, @cfðc0Þ> 0
(i.e., active stress is up regulated by the regulator) and Pe
is sufficiently large, VðuÞ is locally convex (@2uV > 0) at
lnc0 and may allow oscillations that give nonhomogeneous
steady states satisfying (4) with period 2L=N, as depicted
in Fig. 2. The physical implication is that the active stress
must be strong enough to promote advective flux into
regions of high concentrations to counteract frictional
resistance and diffusive counterflux.
To investigate the spontaneous emergence of flow-

accompanied patterns from a quiescent homogeneous
steady state, we perform linear stability analysis on the
c ¼ c0 steady state. We consider a small perturbation

of 'c ¼ 'c0e
(ðkÞtþikx, where k ¼ ) &n)=L (n 2 Z) is

the wave number of the spatial perturbation. Inserting

FIG. 1. The nonhomogeneous steady states with (a) one maxi-
mum and (b) two maxima for $!%ðcÞ ¼ ð$!%Þ0c=ð1þ cÞ,
Pe ¼ 25, L=‘ ¼ 2), and c0 ¼ 1, with periodic boundary con-
ditions. The total stress ! and active stress $!% are given in
units of ð$!%Þ0.

FIG. 2. (a) ‘‘Potentials’’ VðuÞ for stable steady states with
$!% ¼ ð$!%Þ0c=ð1þ cÞ and c0 ¼ 1. For small Pe, VðuÞ is
concave; for moderate Pe, VðuÞ has a shallow minimum at
lnc0; and for large Pe, VðuÞ has a minimum at a u < lnc0 that
is deep enough to support a nonhomogeneous steady state.
Inset: Detail of the central extremum of VðuÞ. (b) Detail of
relevant portions of potentials corresponding to the steady states
depicted in Fig. 1 (Pe ¼ 25). The thick lines depict the portions
of the potentials explored by the steady state.
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Mechanical instabilities

Mechanics

self-organization in 
nonequilibrium 
mechanical systems 

Space: Turing instabilities

• Turing like pattern:  Activator induced active stress drives fluid 
flow that must overcome frictional resistance and diffusion.

• Active stress as « local activator» with autocatalysis (advective 
flow) Friction as « long range inhibitor ».
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• Pulsatory patterns in active fluids (e.g. actomyosin gel)

Pulsatory Patterns in Active Fluids
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We show that pulsatory patterns arise in thin active films in which two chemical species regulate active
stress. The regulating species diffuse within the film and are advected by self-generated flows resulting
from active stress gradients. Spontaneous pulsatory patterns emerge when the following conditions are met:
(i) the fast-diffusing species up-regulates and the slow-diffusing species down-regulates active stress, or
(ii) the active stress up-regulator turns over faster compared to the active stress down-regulator. Our study,
motivated by pulsatory patterns in the actomyosin cortex in cells and tissues, provides a simple generic
mechanism for oscillatory patterns in active fluids.

DOI: 10.1103/PhysRevLett.112.208101 PACS numbers: 87.16.Uv, 87.10.Ca, 87.16.Ln, 89.75.Kd

Pattern formation is an integral part of the development
of living systems. Classically, pattern formation in reaction-
diffusion systems [1–3] results from chemical instabilities
that arise if Turing criteria are satisfied [4]. For example,
the interaction between a slow-diffusing activator and a
fast-diffusing inhibitor can lead to time-independent spa-
tially periodic patterns. In addition to stationary patterns,
bulk oscillations can be generated through specific chemi-
cal reaction networks [5]. With spatial degrees of freedom
such systems typically generate complex waves but not
spatially periodic structures. Spatially periodic oscillatory
patterns can result from the coupling of oscillating chem-
istry with a Turing system [6].
The establishment of patterns in biology generally

involves a tight integration of both chemical signals and
mechanical events [7–10]. Mechanical events in cells and
tissues are typically generated by the cellular cytoskeleton
[11]. An important example is actin networks that are
driven out of equilibrium by force generation through
myosin motor activity. Such networks represent an active
material with unconventional material properties [12–15].
Mechanochemical pattern formation processes can arise
from the interplay between chemical signals and the active
properties of active materials [8]. Recently a general
mechanism for the emergence of stationary patterns in
active fluids was introduced [10]. Here patterns arise
because active stress gradients drive hydrodynamic flows
which advect the stress regulator and counterbalance
diffusive fluxes.
In this Letter, we study the emergence of pulsatory

patterns in a thin active film. Our motivation is the pulsatile
dynamics in the actomyosin cytoskeleton seen in many
morphogenetic processes [16–24]. We consider a system of
two chemical species that actively regulate the hydro-
dynamic stress in a thin film active fluid. Both species

are advected by flows resulting from active stress gradients
while also diffusing in the thin film. We seek the generic
principles underlying the generation of pulsatory patterns in
active fluids. Specifically, we ask if there are criteria
governing the emergence of pulsatile patterns in active
fluids that are analogous to those pertaining to stationary
Turing patterns.
We show that a two-component advection-diffusion

system coupled to an active fluid in a thin-film geometry
leads to the emergence of oscillatory patterns when the fast-
diffusing chemical species up-regulates the active stress
and the slow-diffusing species down-regulates the active
stress. With the inclusion of a simple turn-over reaction for
each of the species, oscillatory patterns can also result when
the fast turn-over species up-regulates the active stress and
the slow turn-over species down-regulates the active stress.
These generic Turing-like criteria for active pulsatory
patterns represent our key finding. Notably, this mechanism
does not require oscillatory chemical instabilities [6,25,26]
nor active nematic descriptions with excitable dynam-
ics [27].
Consider two chemical species confined to move in a

thin film of finite size L, with concentration fields Aðx; tÞ
and Iðx; tÞ at position x and time t, that evolve according to
the following advection-diffusion equations:

∂tA ¼ −∇ · ðvAÞ þ D∇2A; (1)

∂tI ¼ −∇ · ðvIÞ þ αD∇2I; (2)

where D is the diffusion coefficient of species A, α > 0 is
the ratio of the diffusion coefficients of species I and A, ∇
is the spatial gradient operator, and ∂t denotes a partial time
derivative. We consider both periodic and no-flux boundary
conditions. The force-balance condition in the thin film
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Reaction-Diffusion-Advection Model:

Hydrodynamic flow description with 2 chemical species that activate or inhibit active stress 

active fluid leads to a dynamic equation for the hydro-
dynamic velocity field v given by [10,17,28]

∇ · σ ¼ γv; σ ¼ σp þ ζΔμ1: (3)

Here γ is the friction coefficient describing drag on the
substrate (cytosol/plasma membrane). The stress tensor σ is
decomposed in a passive contribution

σp ¼ η

!
∇v þ ð∇vÞT −

2

d
ð∇ · vÞ1

"
þ ηvð∇ · vÞ1; (4)

and an isotropic active stress ζΔμ. The shear and bulk
viscosities are denoted by η and ηv, respectively [29], and d
is the space dimension. We consider the case where the
active stress is regulated by the concentrations c ¼ ðA; IÞ of
both chemical species,

ζΔμ ¼ ðζΔμÞ0fðcÞ: (5)

Here ðζΔμÞ0 is the active stress amplitude and f a
dimensionless function describing active stress regulation.
In this active stress-advection-diffusion system, species

A and I are coupled through the advection term stemming
from active hydrodynamic flow. Note that the total
amounts of A and I are conserved separately. Thus the
average concentrations A0 ¼ L−d R dxAðx; tÞ and I0 ¼
L−d R dxIðx; tÞ are constant, where L is the system size.
The homogeneous state with concentrations c0 ¼

ðA0; I0Þ and vanishing velocity v ¼ 0 is a steady-state
solution of this model. We perform a linear stability
analysis in response to a perturbation of the form δc≡
c − c0 ¼ eik·x with wave vector k [1,2]. The spatial
Fourier-amplitude of the hydrodynamic velocity field reads

v̂k ¼ ikðζΔμÞ0ðÂk∂Af þ Îk∂IfÞ
γð1þ νk2 l2 Þ

; (6)

where we have used Eqs. (3)–(5). The spatial Fourier
amplitudes of the concentration fields are denoted Âk and
Îk and l ¼

ffiffiffiffiffiffiffi
η=γ

p
is a characteristic length scale. The

dimensionless coefficient ν is ν ¼ 1 for d ¼ 1 and ν ¼
1þ ηv=η for d ¼ 2 . Using Eq. (6) in Eqs. (1) and (2) and
keeping only linear terms, we find the linear-stability
matrix L with [10]

τL ¼ −k2 l2

$
1 0

0 α

%
þ Pk2 l2

1þ νk2 l2

$
A0fA A0fI
I0fA I0fI

%
; (7)

where the Péclet number P ¼ ðζΔμÞ0=γD is the ratio of the
diffusive time scale τ ¼ l2 =D to an advective time scale
τa ¼ l=U with U ¼ ðζΔμÞ0=

ffiffiffiffiffi
ηγ

p
, and fA ≡ ∂Afðc0Þ,

fI ≡ ∂Ifðc0Þ. The instabilities of the homogeneous state
are determined by the trace tr L and the discriminant
ΔL ¼ ðtrLÞ2 − 4 detL, where detL is the determinant of
L [2]. We find

tr L ¼ −Dk2 ½ð1þ αÞ − ΠðkÞðA0fA þ I0fIÞ&; (8)

ΔL ¼ D2 k4½ð1 − αÞ2 þ Π2 ðkÞðA0fA þ I0fIÞ2

− 2ΠðkÞð1 − αÞðA0fA − I0fIÞ&; (9)

with ΠðkÞ ¼ P=ð1þ νk2 l2 Þ. The homogeneous state c0 is
unstable at a wave number k for which the leading
eigenvalue λþðkÞ of L is positive. In a system of size L,
the wave numbers are kn ¼ ωnπ=L where n ¼ 0; ' 1;
' 2 ;…, and ω ¼ 1 for no-flux and ω ¼ 2 for periodic
boundary conditions. From Eq. (8), we find that the mode
k1 becomes unstable first at a critical Péclet number Pc as
the Péclet number is increased. From this analysis we
obtain the linear-stability diagram shown in Fig. 1. Note
that the dynamics become slow in the limit of large
systems.
Instabilities can be either stationary or oscillatory. An

oscillatory instability occurs when tr Lðk1Þ > 0 and
ΔLðk1Þ < 0. From Eqs. (8) and (9), it follows that for
increasing Péclet number, the homogeneous state under-
goes an oscillatory instability at

P ¼ Pc ¼
ð1þ αÞð1þ ω2 π2l2 ν=L2 Þ

A0fA þ I0fI
(10)

if fA > 0 and fI < 0 for α < 1, or fA < 0 and fI > 0 for
α > 1. The condition fA > 0 implies that A is a stress up-
regulator, while fI < 0 implies that I is a stress down-
regulator. Therefore the homogeneous state can undergo an
oscillatory instability if the up-regulator of active stress A
diffuses faster than the down-regulator I of active stress
(α < 1) and vice-versa. This criterion for an oscillatory
instability in active fluids is reminiscent of a Turing
criterion for stationary instabilities in reaction-diffusion
systems [4]. However, this instability is mechanochemical
in nature and thus fundamentally different from instabilities
in reaction-diffusion systems.
To numerically investigate the spatiotemporal oscillation

patterns, we choose the active stress regulation function f
of the form

fðcÞ ¼ f0 þ ð1þ βÞ A
Aþ As

þ ð1 − βÞ I
I þ Is

; (11)

where f0 ≥ 0 is the base level and β is an asymmetry
parameter in the regulation of active stress, As and Is are the
saturation values of the active stress for A and I, respec-
tively. Equation (11) implies that (i) when β < −1, A down-
regulates the active stress and I up-regulates, (ii) when
−1 ≤ β ≤ 1, both the species up-regulate the active stress
and finally (iii) when β > 1, A up-regulates and I down-
regulates the active stress. We emphasize that our results are
more general and do not depend on the particular choice of
the function f. The results of the linear-stability analysis

PRL 112, 208101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

208101-2

passive/viscous active
stressstress

III - Mechanical Instabilities

Pulsatory dynamics emerge: 

1. if activator of active stress A 
diffuses faster than inhibitor I

(different diffusive relaxation time 
scale)

depend only on the derivatives of f evaluated at the
homogeneous fixed point c0
Figures 1(a)–(c) display the variation of the real and

imaginary parts of the leading eigenvalues λþ as a function
of wave number k for β ¼ 3. As the Péclet number
increases, the system undergoes an oscillatory instability.
To investigate the oscillating states, we numerically solved
the Eqs. (1)–(5) in a periodic domain of size L ¼ 2π in
d ¼ 1; 2, starting with small random perturbations about
the homogeneous state c0 . We also chose f0 ¼ 0 ,
As ¼ ξA0 , Is ¼ ξI0 , with ξ¼ 3 and multiplied the function
f by a factor ð1þ ξÞ2=ξ. The results of the numerical
simulations, in d ¼ 1 and with α ¼ 0 .1, are shown in
Fig. 1(d). The time period of the oscillation patterns T close
to the instability will be inversely proportional to the
imaginary part of growth rate Im½λþðk1Þ&. Figure 1(e)
compares the time period of the oscillations as determined
in numerical simulations with that from the linear stability
analysis. It is interesting to note that for large enough P
(and β > 1), the oscillatory patterns are unstable and
transition to stationary patterns. Note that when the
diffusivities of A and I are the same, or when both A
and I up-regulate the active stress, the system exhibits
stable steady-state patterns as described in Ref. [10]. We
have verified that results of numerical simulations with no-
flux boundary conditions also agrees with the linear-
stability analysis.

The oscillation mechanism can be understood through
simple arguments: a local decrease in I will drive
convergent flows towards the depleted region,
Figs. 2(a) and 2(b). Flow brings in both A and I,
however, I has a lower diffusivity and thus forms a
sharper peak, Fig. 2(c). This in turn reduces active stress
and the convergent flows, Fig. 2(d). With reduced flow,
both peaks in A and I relax by diffusion, however, the I
peak remains longer due to the reduced diffusivity of I,
Fig. 2(e). This in turn again drives divergent flow away
from the remaining peak in I, Fig. 2(f), which serves to
accumulate A and I at a different location and repeats the
cycle. In summary, the differential regulation of active
stress coupled with different diffusive relaxation time-
scales lead to pulsatory patterns.
Differential relaxation of the concentration fields can

also be achieved by introducing distinct relaxation times for
A and I through linear chemical kinetics. We thus write

∂tA ¼ −∇ · ðvAÞ þD∇2A − κðA − A0 Þ; (12)

∂tI ¼ −∇ · ðvIÞ þD∇2I − ρκðI − I0 Þ; (13)

where κ is the turnover rate of A, ρ > 0 is the ratio of
the turnover rate of I to that of A, and A0 and I0 are the
steady-state values of A and I, respectively, in the homo-
geneous state. For simplicity, we have now chosen the
diffusivities of A and I to be the same. Equations (12) and
(13), together with Eqs. (3)–(5) specify our active stress-
advection-reaction-diffusion system. Again, A and I are

Homogeneous
Stationary
Oscillating

Linear stability

(a)

(b)

(c)

(d)

(e)

FIG. 1 (Color online) (color online). Dispersion relations and
phase diagram for the active stress-advection-diffusion system in
d ¼ 1 with α ¼ 0 .1, and using Eq. (11). (a)–(c) Variation of the
real and imaginary parts of the leading eigenvalue λþ of the linear
stability matrix (7) with k for β ¼ 3, and increasing Péclet
numbers P: (a) P < Pc, (b) P ¼ Pc, and (c) P > Pc, where
Pc is the critical Péclet number for an oscillatory instability.
(d) Phase diagram in the β-P plane. The solid curve is the linear
stability boundary for the homogeneous state. The symbols
indicate the type of patterns obtained at long times in numerical
simulation at different points of the phase diagram (see legend).
Temporal snapshots of the dynamics appear in Fig. 2 for the
parameter value marked by crossed symbol. Inset (e): Time
period of oscillations T determined numerically, for the points
enclosed in the gray shaded rectangle in (d), at P ¼ 1.2. The solid
line is 2π=Im½λþðk1Þ&.

(a) (c) (e)

(b) (d) (f)

FIG. 2 (Color online) (color online). Temporal evolution of the
active stress-advection-diffusion model in d ¼ 1 with parameter
values corresponding to the point marked with crossed symbol,
Fig. 1(d). The top row (a,c,d) shows the evolution of the
concentration profiles of A (thick green curve) and I (thin red
curve) for half a period. Time points are specified above the plots.
The bottom row (b,d,f) shows the corresponding profiles of the
hydrodynamic velocity v (thick blue curve) and the active stress
ζΔμ (thin black curve). The Supplemental Material [30] contains
a movie showing the temporal evolution of these profiles.

PRL 112, 208101 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

208101-3

active stress

hydrodynamic 
velocity

depend only on the derivatives of f evaluated at the
homogeneous fixed point c0
Figures 1(a)–(c) display the variation of the real and

imaginary parts of the leading eigenvalues λþ as a function
of wave number k for β ¼ 3. As the Péclet number
increases, the system undergoes an oscillatory instability.
To investigate the oscillating states, we numerically solved
the Eqs. (1)–(5) in a periodic domain of size L ¼ 2π in
d ¼ 1; 2, starting with small random perturbations about
the homogeneous state c0 . We also chose f0 ¼ 0 ,
As ¼ ξA0 , Is ¼ ξI0 , with ξ¼ 3 and multiplied the function
f by a factor ð1þ ξÞ2=ξ. The results of the numerical
simulations, in d ¼ 1 and with α ¼ 0 .1, are shown in
Fig. 1(d). The time period of the oscillation patterns T close
to the instability will be inversely proportional to the
imaginary part of growth rate Im½λþðk1Þ&. Figure 1(e)
compares the time period of the oscillations as determined
in numerical simulations with that from the linear stability
analysis. It is interesting to note that for large enough P
(and β > 1), the oscillatory patterns are unstable and
transition to stationary patterns. Note that when the
diffusivities of A and I are the same, or when both A
and I up-regulate the active stress, the system exhibits
stable steady-state patterns as described in Ref. [10]. We
have verified that results of numerical simulations with no-
flux boundary conditions also agrees with the linear-
stability analysis.

The oscillation mechanism can be understood through
simple arguments: a local decrease in I will drive
convergent flows towards the depleted region,
Figs. 2(a) and 2(b). Flow brings in both A and I,
however, I has a lower diffusivity and thus forms a
sharper peak, Fig. 2(c). This in turn reduces active stress
and the convergent flows, Fig. 2(d). With reduced flow,
both peaks in A and I relax by diffusion, however, the I
peak remains longer due to the reduced diffusivity of I,
Fig. 2(e). This in turn again drives divergent flow away
from the remaining peak in I, Fig. 2(f), which serves to
accumulate A and I at a different location and repeats the
cycle. In summary, the differential regulation of active
stress coupled with different diffusive relaxation time-
scales lead to pulsatory patterns.
Differential relaxation of the concentration fields can

also be achieved by introducing distinct relaxation times for
A and I through linear chemical kinetics. We thus write

∂tA ¼ −∇ · ðvAÞ þD∇2A − κðA − A0 Þ; (12)

∂tI ¼ −∇ · ðvIÞ þD∇2I − ρκðI − I0 Þ; (13)

where κ is the turnover rate of A, ρ > 0 is the ratio of
the turnover rate of I to that of A, and A0 and I0 are the
steady-state values of A and I, respectively, in the homo-
geneous state. For simplicity, we have now chosen the
diffusivities of A and I to be the same. Equations (12) and
(13), together with Eqs. (3)–(5) specify our active stress-
advection-reaction-diffusion system. Again, A and I are

Homogeneous
Stationary
Oscillating

Linear stability

(a)

(b)

(c)

(d)

(e)

FIG. 1 (Color online) (color online). Dispersion relations and
phase diagram for the active stress-advection-diffusion system in
d ¼ 1 with α ¼ 0 .1, and using Eq. (11). (a)–(c) Variation of the
real and imaginary parts of the leading eigenvalue λþ of the linear
stability matrix (7) with k for β ¼ 3, and increasing Péclet
numbers P: (a) P < Pc, (b) P ¼ Pc, and (c) P > Pc, where
Pc is the critical Péclet number for an oscillatory instability.
(d) Phase diagram in the β-P plane. The solid curve is the linear
stability boundary for the homogeneous state. The symbols
indicate the type of patterns obtained at long times in numerical
simulation at different points of the phase diagram (see legend).
Temporal snapshots of the dynamics appear in Fig. 2 for the
parameter value marked by crossed symbol. Inset (e): Time
period of oscillations T determined numerically, for the points
enclosed in the gray shaded rectangle in (d), at P ¼ 1.2. The solid
line is 2π=Im½λþðk1Þ&.

(a) (c) (e)

(b) (d) (f)

FIG. 2 (Color online) (color online). Temporal evolution of the
active stress-advection-diffusion model in d ¼ 1 with parameter
values corresponding to the point marked with crossed symbol,
Fig. 1(d). The top row (a,c,d) shows the evolution of the
concentration profiles of A (thick green curve) and I (thin red
curve) for half a period. Time points are specified above the plots.
The bottom row (b,d,f) shows the corresponding profiles of the
hydrodynamic velocity v (thick blue curve) and the active stress
ζΔμ (thin black curve). The Supplemental Material [30] contains
a movie showing the temporal evolution of these profiles.
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inhibitor

activatorP: Péclet number

P = v.L/D

active fluid leads to a dynamic equation for the hydro-
dynamic velocity field v given by [10,17,28]

∇ · σ ¼ γv; σ ¼ σp þ ζΔμ1: (3)

Here γ is the friction coefficient describing drag on the
substrate (cytosol/plasma membrane). The stress tensor σ is
decomposed in a passive contribution

σp ¼ η

!
∇v þ ð∇vÞT −

2

d
ð∇ · vÞ1

"
þ ηvð∇ · vÞ1; (4)

and an isotropic active stress ζΔμ. The shear and bulk
viscosities are denoted by η and ηv, respectively [29], and d
is the space dimension. We consider the case where the
active stress is regulated by the concentrations c ¼ ðA; IÞ of
both chemical species,

ζΔμ ¼ ðζΔμÞ0fðcÞ: (5)

Here ðζΔμÞ0 is the active stress amplitude and f a
dimensionless function describing active stress regulation.
In this active stress-advection-diffusion system, species

A and I are coupled through the advection term stemming
from active hydrodynamic flow. Note that the total
amounts of A and I are conserved separately. Thus the
average concentrations A0 ¼ L−d R dxAðx; tÞ and I0 ¼
L−d R dxIðx; tÞ are constant, where L is the system size.
The homogeneous state with concentrations c0 ¼

ðA0; I0Þ and vanishing velocity v ¼ 0 is a steady-state
solution of this model. We perform a linear stability
analysis in response to a perturbation of the form δc≡
c − c0 ¼ eik·x with wave vector k [1,2]. The spatial
Fourier-amplitude of the hydrodynamic velocity field reads

v̂k ¼ ikðζΔμÞ0ðÂk∂Af þ Îk∂IfÞ
γð1þ νk2 l2 Þ

; (6)

where we have used Eqs. (3)–(5). The spatial Fourier
amplitudes of the concentration fields are denoted Âk and
Îk and l ¼

ffiffiffiffiffiffiffi
η=γ

p
is a characteristic length scale. The

dimensionless coefficient ν is ν ¼ 1 for d ¼ 1 and ν ¼
1þ ηv=η for d ¼ 2 . Using Eq. (6) in Eqs. (1) and (2) and
keeping only linear terms, we find the linear-stability
matrix L with [10]

τL ¼ −k2 l2

$
1 0

0 α

%
þ Pk2 l2

1þ νk2 l2

$
A0fA A0fI
I0fA I0fI

%
; (7)

where the Péclet number P ¼ ðζΔμÞ0=γD is the ratio of the
diffusive time scale τ ¼ l2 =D to an advective time scale
τa ¼ l=U with U ¼ ðζΔμÞ0=

ffiffiffiffiffi
ηγ

p
, and fA ≡ ∂Afðc0Þ,

fI ≡ ∂Ifðc0Þ. The instabilities of the homogeneous state
are determined by the trace tr L and the discriminant
ΔL ¼ ðtrLÞ2 − 4 detL, where detL is the determinant of
L [2]. We find

tr L ¼ −Dk2 ½ð1þ αÞ − ΠðkÞðA0fA þ I0fIÞ&; (8)

ΔL ¼ D2 k4½ð1 − αÞ2 þ Π2 ðkÞðA0fA þ I0fIÞ2

− 2ΠðkÞð1 − αÞðA0fA − I0fIÞ&; (9)

with ΠðkÞ ¼ P=ð1þ νk2 l2 Þ. The homogeneous state c0 is
unstable at a wave number k for which the leading
eigenvalue λþðkÞ of L is positive. In a system of size L,
the wave numbers are kn ¼ ωnπ=L where n ¼ 0; ' 1;
' 2 ;…, and ω ¼ 1 for no-flux and ω ¼ 2 for periodic
boundary conditions. From Eq. (8), we find that the mode
k1 becomes unstable first at a critical Péclet number Pc as
the Péclet number is increased. From this analysis we
obtain the linear-stability diagram shown in Fig. 1. Note
that the dynamics become slow in the limit of large
systems.
Instabilities can be either stationary or oscillatory. An

oscillatory instability occurs when tr Lðk1Þ > 0 and
ΔLðk1Þ < 0. From Eqs. (8) and (9), it follows that for
increasing Péclet number, the homogeneous state under-
goes an oscillatory instability at

P ¼ Pc ¼
ð1þ αÞð1þ ω2 π2l2 ν=L2 Þ

A0fA þ I0fI
(10)

if fA > 0 and fI < 0 for α < 1, or fA < 0 and fI > 0 for
α > 1. The condition fA > 0 implies that A is a stress up-
regulator, while fI < 0 implies that I is a stress down-
regulator. Therefore the homogeneous state can undergo an
oscillatory instability if the up-regulator of active stress A
diffuses faster than the down-regulator I of active stress
(α < 1) and vice-versa. This criterion for an oscillatory
instability in active fluids is reminiscent of a Turing
criterion for stationary instabilities in reaction-diffusion
systems [4]. However, this instability is mechanochemical
in nature and thus fundamentally different from instabilities
in reaction-diffusion systems.
To numerically investigate the spatiotemporal oscillation

patterns, we choose the active stress regulation function f
of the form

fðcÞ ¼ f0 þ ð1þ βÞ A
Aþ As

þ ð1 − βÞ I
I þ Is

; (11)

where f0 ≥ 0 is the base level and β is an asymmetry
parameter in the regulation of active stress, As and Is are the
saturation values of the active stress for A and I, respec-
tively. Equation (11) implies that (i) when β < −1, A down-
regulates the active stress and I up-regulates, (ii) when
−1 ≤ β ≤ 1, both the species up-regulate the active stress
and finally (iii) when β > 1, A up-regulates and I down-
regulates the active stress. We emphasize that our results are
more general and do not depend on the particular choice of
the function f. The results of the linear-stability analysis
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active fluid leads to a dynamic equation for the hydro-
dynamic velocity field v given by [10,17,28]

∇ · σ ¼ γv; σ ¼ σp þ ζΔμ1: (3)

Here γ is the friction coefficient describing drag on the
substrate (cytosol/plasma membrane). The stress tensor σ is
decomposed in a passive contribution
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þ ηvð∇ · vÞ1; (4)

and an isotropic active stress ζΔμ. The shear and bulk
viscosities are denoted by η and ηv, respectively [29], and d
is the space dimension. We consider the case where the
active stress is regulated by the concentrations c ¼ ðA; IÞ of
both chemical species,

ζΔμ ¼ ðζΔμÞ0fðcÞ: (5)

Here ðζΔμÞ0 is the active stress amplitude and f a
dimensionless function describing active stress regulation.
In this active stress-advection-diffusion system, species

A and I are coupled through the advection term stemming
from active hydrodynamic flow. Note that the total
amounts of A and I are conserved separately. Thus the
average concentrations A0 ¼ L−d R dxAðx; tÞ and I0 ¼
L−d R dxIðx; tÞ are constant, where L is the system size.
The homogeneous state with concentrations c0 ¼

ðA0; I0Þ and vanishing velocity v ¼ 0 is a steady-state
solution of this model. We perform a linear stability
analysis in response to a perturbation of the form δc≡
c − c0 ¼ eik·x with wave vector k [1,2]. The spatial
Fourier-amplitude of the hydrodynamic velocity field reads

v̂k ¼ ikðζΔμÞ0ðÂk∂Af þ Îk∂IfÞ
γð1þ νk2 l2 Þ

; (6)

where we have used Eqs. (3)–(5). The spatial Fourier
amplitudes of the concentration fields are denoted Âk and
Îk and l ¼

ffiffiffiffiffiffiffi
η=γ

p
is a characteristic length scale. The

dimensionless coefficient ν is ν ¼ 1 for d ¼ 1 and ν ¼
1þ ηv=η for d ¼ 2 . Using Eq. (6) in Eqs. (1) and (2) and
keeping only linear terms, we find the linear-stability
matrix L with [10]

τL ¼ −k2 l2

$
1 0

0 α

%
þ Pk2 l2

1þ νk2 l2

$
A0fA A0fI
I0fA I0fI
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; (7)

where the Péclet number P ¼ ðζΔμÞ0=γD is the ratio of the
diffusive time scale τ ¼ l2 =D to an advective time scale
τa ¼ l=U with U ¼ ðζΔμÞ0=

ffiffiffiffiffi
ηγ

p
, and fA ≡ ∂Afðc0Þ,

fI ≡ ∂Ifðc0Þ. The instabilities of the homogeneous state
are determined by the trace tr L and the discriminant
ΔL ¼ ðtrLÞ2 − 4 detL, where detL is the determinant of
L [2]. We find

tr L ¼ −Dk2 ½ð1þ αÞ − ΠðkÞðA0fA þ I0fIÞ&; (8)

ΔL ¼ D2 k4½ð1 − αÞ2 þ Π2 ðkÞðA0fA þ I0fIÞ2

− 2ΠðkÞð1 − αÞðA0fA − I0fIÞ&; (9)

with ΠðkÞ ¼ P=ð1þ νk2 l2 Þ. The homogeneous state c0 is
unstable at a wave number k for which the leading
eigenvalue λþðkÞ of L is positive. In a system of size L,
the wave numbers are kn ¼ ωnπ=L where n ¼ 0; ' 1;
' 2 ;…, and ω ¼ 1 for no-flux and ω ¼ 2 for periodic
boundary conditions. From Eq. (8), we find that the mode
k1 becomes unstable first at a critical Péclet number Pc as
the Péclet number is increased. From this analysis we
obtain the linear-stability diagram shown in Fig. 1. Note
that the dynamics become slow in the limit of large
systems.
Instabilities can be either stationary or oscillatory. An

oscillatory instability occurs when tr Lðk1Þ > 0 and
ΔLðk1Þ < 0. From Eqs. (8) and (9), it follows that for
increasing Péclet number, the homogeneous state under-
goes an oscillatory instability at

P ¼ Pc ¼
ð1þ αÞð1þ ω2 π2l2 ν=L2 Þ

A0fA þ I0fI
(10)

if fA > 0 and fI < 0 for α < 1, or fA < 0 and fI > 0 for
α > 1. The condition fA > 0 implies that A is a stress up-
regulator, while fI < 0 implies that I is a stress down-
regulator. Therefore the homogeneous state can undergo an
oscillatory instability if the up-regulator of active stress A
diffuses faster than the down-regulator I of active stress
(α < 1) and vice-versa. This criterion for an oscillatory
instability in active fluids is reminiscent of a Turing
criterion for stationary instabilities in reaction-diffusion
systems [4]. However, this instability is mechanochemical
in nature and thus fundamentally different from instabilities
in reaction-diffusion systems.
To numerically investigate the spatiotemporal oscillation

patterns, we choose the active stress regulation function f
of the form

fðcÞ ¼ f0 þ ð1þ βÞ A
Aþ As

þ ð1 − βÞ I
I þ Is

; (11)

where f0 ≥ 0 is the base level and β is an asymmetry
parameter in the regulation of active stress, As and Is are the
saturation values of the active stress for A and I, respec-
tively. Equation (11) implies that (i) when β < −1, A down-
regulates the active stress and I up-regulates, (ii) when
−1 ≤ β ≤ 1, both the species up-regulate the active stress
and finally (iii) when β > 1, A up-regulates and I down-
regulates the active stress. We emphasize that our results are
more general and do not depend on the particular choice of
the function f. The results of the linear-stability analysis
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III - Mechanical Instabilities

• Pulsatory patterns in active fluids (e.g. actomyosin gel)

depend only on the derivatives of f evaluated at the
homogeneous fixed point c0
Figures 1(a)–(c) display the variation of the real and

imaginary parts of the leading eigenvalues λþ as a function
of wave number k for β ¼ 3. As the Péclet number
increases, the system undergoes an oscillatory instability.
To investigate the oscillating states, we numerically solved
the Eqs. (1)–(5) in a periodic domain of size L ¼ 2π in
d ¼ 1; 2, starting with small random perturbations about
the homogeneous state c0 . We also chose f0 ¼ 0 ,
As ¼ ξA0 , Is ¼ ξI0 , with ξ¼ 3 and multiplied the function
f by a factor ð1þ ξÞ2=ξ. The results of the numerical
simulations, in d ¼ 1 and with α ¼ 0 .1, are shown in
Fig. 1(d). The time period of the oscillation patterns T close
to the instability will be inversely proportional to the
imaginary part of growth rate Im½λþðk1Þ&. Figure 1(e)
compares the time period of the oscillations as determined
in numerical simulations with that from the linear stability
analysis. It is interesting to note that for large enough P
(and β > 1), the oscillatory patterns are unstable and
transition to stationary patterns. Note that when the
diffusivities of A and I are the same, or when both A
and I up-regulate the active stress, the system exhibits
stable steady-state patterns as described in Ref. [10]. We
have verified that results of numerical simulations with no-
flux boundary conditions also agrees with the linear-
stability analysis.

The oscillation mechanism can be understood through
simple arguments: a local decrease in I will drive
convergent flows towards the depleted region,
Figs. 2(a) and 2(b). Flow brings in both A and I,
however, I has a lower diffusivity and thus forms a
sharper peak, Fig. 2(c). This in turn reduces active stress
and the convergent flows, Fig. 2(d). With reduced flow,
both peaks in A and I relax by diffusion, however, the I
peak remains longer due to the reduced diffusivity of I,
Fig. 2(e). This in turn again drives divergent flow away
from the remaining peak in I, Fig. 2(f), which serves to
accumulate A and I at a different location and repeats the
cycle. In summary, the differential regulation of active
stress coupled with different diffusive relaxation time-
scales lead to pulsatory patterns.
Differential relaxation of the concentration fields can

also be achieved by introducing distinct relaxation times for
A and I through linear chemical kinetics. We thus write

∂tA ¼ −∇ · ðvAÞ þD∇2A − κðA − A0 Þ; (12)

∂tI ¼ −∇ · ðvIÞ þD∇2I − ρκðI − I0 Þ; (13)

where κ is the turnover rate of A, ρ > 0 is the ratio of
the turnover rate of I to that of A, and A0 and I0 are the
steady-state values of A and I, respectively, in the homo-
geneous state. For simplicity, we have now chosen the
diffusivities of A and I to be the same. Equations (12) and
(13), together with Eqs. (3)–(5) specify our active stress-
advection-reaction-diffusion system. Again, A and I are

Homogeneous
Stationary
Oscillating

Linear stability

(a)

(b)

(c)

(d)

(e)

FIG. 1 (Color online) (color online). Dispersion relations and
phase diagram for the active stress-advection-diffusion system in
d ¼ 1 with α ¼ 0 .1, and using Eq. (11). (a)–(c) Variation of the
real and imaginary parts of the leading eigenvalue λþ of the linear
stability matrix (7) with k for β ¼ 3, and increasing Péclet
numbers P: (a) P < Pc, (b) P ¼ Pc, and (c) P > Pc, where
Pc is the critical Péclet number for an oscillatory instability.
(d) Phase diagram in the β-P plane. The solid curve is the linear
stability boundary for the homogeneous state. The symbols
indicate the type of patterns obtained at long times in numerical
simulation at different points of the phase diagram (see legend).
Temporal snapshots of the dynamics appear in Fig. 2 for the
parameter value marked by crossed symbol. Inset (e): Time
period of oscillations T determined numerically, for the points
enclosed in the gray shaded rectangle in (d), at P ¼ 1.2. The solid
line is 2π=Im½λþðk1Þ&.

(a) (c) (e)

(b) (d) (f)

FIG. 2 (Color online) (color online). Temporal evolution of the
active stress-advection-diffusion model in d ¼ 1 with parameter
values corresponding to the point marked with crossed symbol,
Fig. 1(d). The top row (a,c,d) shows the evolution of the
concentration profiles of A (thick green curve) and I (thin red
curve) for half a period. Time points are specified above the plots.
The bottom row (b,d,f) shows the corresponding profiles of the
hydrodynamic velocity v (thick blue curve) and the active stress
ζΔμ (thin black curve). The Supplemental Material [30] contains
a movie showing the temporal evolution of these profiles.
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Pulsatory dynamics emerge: 

2.  if activator of active stress 
turns over faster than inhibitor

(different kinetic relaxation time 
scales)

coupled only via advection, and any pattern forming
instabilities that may occur are mechanochemical in nature.
We analyzed this system in a manner analogous to the
previous system, and find that it can exhibit pulsatory
patterns when the active stress up-regulator A turns over
faster than the active stress down-regulator I, i.e., ρ < 1.
Figure 3 shows the phase diagram of this system, together
with temporal snapshots of the patterns exhibited. The
patterns display several maxima arranged in hexagonal
patterns for stationary states. In the oscillating phase, we
obtain oscillating square lattice patterns or oscillating
honeycomb lattice patterns at the points indicated in the
phase diagram in Fig. 3. It should be noted that the several
maxima that appear in the patterns come about because the
ratio of the diffusivity D to the the turnover rate κ sets a
length scale, in addition to l.
We have presented a theory for pulsatory patterns in

active thin films with two chemical species regulating the
active stress. Differential relaxation of the concentrations
either via different diffusivities or via different rates of
turnover coupled with active stress regulation generically
leads to pulsatory patterns. The criteria for oscillatory
instabilities are reminiscent of classical Turing criteria for
the formation of stationary patterns in reaction-diffusion
systems. The mechanism of oscillatory instability
involves the chemical regulation of active matter flow
and thus is fundamentally different from those observed
in chemical systems.
For a system that displays pulsatory patterns, it might be

of interest to identify whether pulsation arises due to a
purely chemical instability, due to a purely mechanical
instability, or due to a combination of mechanics and

chemistry. For the first two cases, an analysis of correla-
tions between concentration and flow profiles is adequate
to identify them. For example, there are no flows for a
purely chemical instability. In an experimental situation,
the observed concentration and flow patterns are thus
uncorrelated. In the case where neither chemistry nor
mechanics alone display pulsatory patterns, they are
inseparably coupled to provide the observed dynamic
behavior, and must be analyzed as such. In this case,
perturbing either chemistry or mechanics will affect the
patterns.
Our study was motivated by the pulsatile patterns

observed in the actomyosin cytoskeleton. The system
with distinct turnover rates is more readily applicable to
this case, and the pulsatory patterns that can arise (Fig. 3)
share similarities with those observed [16,17,19–21].
Here, myosin motor proteins represent the up-regulating
species [17], and it is intriguing to speculate which
proteins correspond to the species that down-regulates
the active stress. Possibilities are actin itself, or one of the
many other proteins that associate with the actomyosin
cortex [31]. Although our study was motivated by the
pulsatile patterns observed in the actomyosin cytoskele-
ton, our results are more general and could apply to other
systems, for example biological systems at the scale of
tissues.
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and S. Naganathan for fruitful discussions. K. V. K. and S.
W. G. acknowledge support from the ERC through starting
Grant No. 281903. J. S. B. acknowledges the Human
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FIG. 3 (Color online) (color online). (a) Phase diagram of the active stress-advection-reaction-diffusion model in d ¼ 2 with κτ ¼ 1
and ρ ¼ 0.1. (b)–(i) show representative patterns for the points marked with× in (a). The intensity map represents the concentration field
of the species A and the quiver plot represents the hydrodynamic velocity field v. (b) Stationary hexagonal patterns, (c)–(e) temporal
evolution of the oscillating square lattice pattern, (f) a drifting square lattice pattern that moves without shape distortion in the direction
indicated by the gray arrow, (g)-(i) temporal evolution of the oscillating honeycomb lattice pattern. The Supplemental Material [30]
contains movies for the patterns in (b)–(i).
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depend only on the derivatives of f evaluated at the
homogeneous fixed point c0
Figures 1(a)–(c) display the variation of the real and

imaginary parts of the leading eigenvalues λþ as a function
of wave number k for β ¼ 3. As the Péclet number
increases, the system undergoes an oscillatory instability.
To investigate the oscillating states, we numerically solved
the Eqs. (1)–(5) in a periodic domain of size L ¼ 2π in
d ¼ 1; 2, starting with small random perturbations about
the homogeneous state c0 . We also chose f0 ¼ 0 ,
As ¼ ξA0 , Is ¼ ξI0 , with ξ¼ 3 and multiplied the function
f by a factor ð1þ ξÞ2=ξ. The results of the numerical
simulations, in d ¼ 1 and with α ¼ 0 .1, are shown in
Fig. 1(d). The time period of the oscillation patterns T close
to the instability will be inversely proportional to the
imaginary part of growth rate Im½λþðk1Þ&. Figure 1(e)
compares the time period of the oscillations as determined
in numerical simulations with that from the linear stability
analysis. It is interesting to note that for large enough P
(and β > 1), the oscillatory patterns are unstable and
transition to stationary patterns. Note that when the
diffusivities of A and I are the same, or when both A
and I up-regulate the active stress, the system exhibits
stable steady-state patterns as described in Ref. [10]. We
have verified that results of numerical simulations with no-
flux boundary conditions also agrees with the linear-
stability analysis.

The oscillation mechanism can be understood through
simple arguments: a local decrease in I will drive
convergent flows towards the depleted region,
Figs. 2(a) and 2(b). Flow brings in both A and I,
however, I has a lower diffusivity and thus forms a
sharper peak, Fig. 2(c). This in turn reduces active stress
and the convergent flows, Fig. 2(d). With reduced flow,
both peaks in A and I relax by diffusion, however, the I
peak remains longer due to the reduced diffusivity of I,
Fig. 2(e). This in turn again drives divergent flow away
from the remaining peak in I, Fig. 2(f), which serves to
accumulate A and I at a different location and repeats the
cycle. In summary, the differential regulation of active
stress coupled with different diffusive relaxation time-
scales lead to pulsatory patterns.
Differential relaxation of the concentration fields can

also be achieved by introducing distinct relaxation times for
A and I through linear chemical kinetics. We thus write

∂tA ¼ −∇ · ðvAÞ þD∇2A − κðA − A0 Þ; (12)

∂tI ¼ −∇ · ðvIÞ þD∇2I − ρκðI − I0 Þ; (13)

where κ is the turnover rate of A, ρ > 0 is the ratio of
the turnover rate of I to that of A, and A0 and I0 are the
steady-state values of A and I, respectively, in the homo-
geneous state. For simplicity, we have now chosen the
diffusivities of A and I to be the same. Equations (12) and
(13), together with Eqs. (3)–(5) specify our active stress-
advection-reaction-diffusion system. Again, A and I are

Homogeneous
Stationary
Oscillating

Linear stability
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FIG. 1 (Color online) (color online). Dispersion relations and
phase diagram for the active stress-advection-diffusion system in
d ¼ 1 with α ¼ 0 .1, and using Eq. (11). (a)–(c) Variation of the
real and imaginary parts of the leading eigenvalue λþ of the linear
stability matrix (7) with k for β ¼ 3, and increasing Péclet
numbers P: (a) P < Pc, (b) P ¼ Pc, and (c) P > Pc, where
Pc is the critical Péclet number for an oscillatory instability.
(d) Phase diagram in the β-P plane. The solid curve is the linear
stability boundary for the homogeneous state. The symbols
indicate the type of patterns obtained at long times in numerical
simulation at different points of the phase diagram (see legend).
Temporal snapshots of the dynamics appear in Fig. 2 for the
parameter value marked by crossed symbol. Inset (e): Time
period of oscillations T determined numerically, for the points
enclosed in the gray shaded rectangle in (d), at P ¼ 1.2. The solid
line is 2π=Im½λþðk1Þ&.

(a) (c) (e)

(b) (d) (f)

FIG. 2 (Color online) (color online). Temporal evolution of the
active stress-advection-diffusion model in d ¼ 1 with parameter
values corresponding to the point marked with crossed symbol,
Fig. 1(d). The top row (a,c,d) shows the evolution of the
concentration profiles of A (thick green curve) and I (thin red
curve) for half a period. Time points are specified above the plots.
The bottom row (b,d,f) shows the corresponding profiles of the
hydrodynamic velocity v (thick blue curve) and the active stress
ζΔμ (thin black curve). The Supplemental Material [30] contains
a movie showing the temporal evolution of these profiles.
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depend only on the derivatives of f evaluated at the
homogeneous fixed point c0
Figures 1(a)–(c) display the variation of the real and

imaginary parts of the leading eigenvalues λþ as a function
of wave number k for β ¼ 3. As the Péclet number
increases, the system undergoes an oscillatory instability.
To investigate the oscillating states, we numerically solved
the Eqs. (1)–(5) in a periodic domain of size L ¼ 2π in
d ¼ 1; 2, starting with small random perturbations about
the homogeneous state c0 . We also chose f0 ¼ 0 ,
As ¼ ξA0 , Is ¼ ξI0 , with ξ¼ 3 and multiplied the function
f by a factor ð1þ ξÞ2=ξ. The results of the numerical
simulations, in d ¼ 1 and with α ¼ 0 .1, are shown in
Fig. 1(d). The time period of the oscillation patterns T close
to the instability will be inversely proportional to the
imaginary part of growth rate Im½λþðk1Þ&. Figure 1(e)
compares the time period of the oscillations as determined
in numerical simulations with that from the linear stability
analysis. It is interesting to note that for large enough P
(and β > 1), the oscillatory patterns are unstable and
transition to stationary patterns. Note that when the
diffusivities of A and I are the same, or when both A
and I up-regulate the active stress, the system exhibits
stable steady-state patterns as described in Ref. [10]. We
have verified that results of numerical simulations with no-
flux boundary conditions also agrees with the linear-
stability analysis.

The oscillation mechanism can be understood through
simple arguments: a local decrease in I will drive
convergent flows towards the depleted region,
Figs. 2(a) and 2(b). Flow brings in both A and I,
however, I has a lower diffusivity and thus forms a
sharper peak, Fig. 2(c). This in turn reduces active stress
and the convergent flows, Fig. 2(d). With reduced flow,
both peaks in A and I relax by diffusion, however, the I
peak remains longer due to the reduced diffusivity of I,
Fig. 2(e). This in turn again drives divergent flow away
from the remaining peak in I, Fig. 2(f), which serves to
accumulate A and I at a different location and repeats the
cycle. In summary, the differential regulation of active
stress coupled with different diffusive relaxation time-
scales lead to pulsatory patterns.
Differential relaxation of the concentration fields can

also be achieved by introducing distinct relaxation times for
A and I through linear chemical kinetics. We thus write

∂tA ¼ −∇ · ðvAÞ þD∇2A − κðA − A0 Þ; (12)

∂tI ¼ −∇ · ðvIÞ þD∇2I − ρκðI − I0 Þ; (13)

where κ is the turnover rate of A, ρ > 0 is the ratio of
the turnover rate of I to that of A, and A0 and I0 are the
steady-state values of A and I, respectively, in the homo-
geneous state. For simplicity, we have now chosen the
diffusivities of A and I to be the same. Equations (12) and
(13), together with Eqs. (3)–(5) specify our active stress-
advection-reaction-diffusion system. Again, A and I are

Homogeneous
Stationary
Oscillating

Linear stability

(a)

(b)

(c)

(d)

(e)

FIG. 1 (Color online) (color online). Dispersion relations and
phase diagram for the active stress-advection-diffusion system in
d ¼ 1 with α ¼ 0 .1, and using Eq. (11). (a)–(c) Variation of the
real and imaginary parts of the leading eigenvalue λþ of the linear
stability matrix (7) with k for β ¼ 3, and increasing Péclet
numbers P: (a) P < Pc, (b) P ¼ Pc, and (c) P > Pc, where
Pc is the critical Péclet number for an oscillatory instability.
(d) Phase diagram in the β-P plane. The solid curve is the linear
stability boundary for the homogeneous state. The symbols
indicate the type of patterns obtained at long times in numerical
simulation at different points of the phase diagram (see legend).
Temporal snapshots of the dynamics appear in Fig. 2 for the
parameter value marked by crossed symbol. Inset (e): Time
period of oscillations T determined numerically, for the points
enclosed in the gray shaded rectangle in (d), at P ¼ 1.2. The solid
line is 2π=Im½λþðk1Þ&.

(a) (c) (e)

(b) (d) (f)

FIG. 2 (Color online) (color online). Temporal evolution of the
active stress-advection-diffusion model in d ¼ 1 with parameter
values corresponding to the point marked with crossed symbol,
Fig. 1(d). The top row (a,c,d) shows the evolution of the
concentration profiles of A (thick green curve) and I (thin red
curve) for half a period. Time points are specified above the plots.
The bottom row (b,d,f) shows the corresponding profiles of the
hydrodynamic velocity v (thick blue curve) and the active stress
ζΔμ (thin black curve). The Supplemental Material [30] contains
a movie showing the temporal evolution of these profiles.
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III - Mechanical Instabilities

• Pulsatory patterns in active fluids (e.g. actomyosin gel)

Pulsatory dynamics emerges from coupling between: 

• differential effect of A and I on active stress generation

• differential relaxation modes of A and I (diffusion or turnover)

Active stress regulated by Activator A and Inhibitor I: 

BB46CH16-Grill ARI 21 April 2017 13:46
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Figure 5
Pattern formation via an interplay between cell mechanics and biochemical signaling. (a) Positive feedback
occurs among cell mechanics, transporting signaling molecules, and regulation of the cytoskeleton. (b) Such
feedback can induce advective fluxes into regions of high motor density, which can compensate for the
diffusive tendency to flatten inhomogeneous motor concentration profiles. (c) Nonmotor proteins can also
use mechanochemical feedback to generate steady-state patterns by upregulating motor protein
concentrations.

field c evolves in time under the effects of both advection and diffusion. Diffusion leads to sup-
pression of fluctuations in the concentration field, whereas advection leads to clumping (which
is a result of active stress upregulation). This competition between diffusive smoothing and con-
tractile clumping balances at some point, which is where the steady-state patterns appear (11)
(Figure 5b). Specifically, the control parameter that drives the pattern-forming instability is the
ratio of the strength of the active flows to that of passive diffusion—the Péclet number. Notably,
this instability is essentially mechanical in nature, as there are no local chemical reactions that can
generate any other instabilities à la reaction–diffusion systems.

Kumar et al. (62) studied a particularly interesting case of this kind of mechanochemical in-
stability leading to pulsatile patterns in an active thin film. Consider two species A and I , both of
which regulate active stress σa = σa(cA, cI ). A linear stability analysis shows the existence of Turing-
like criteria for the emergence of spontaneous oscillatory patterns (62). Specifically, it was found
that oscillatory patterns spontaneously emerge when (a) the fast-diffusing species upregulates and
the slow-diffusing species downregulates the active stress or (b) the active stress upregulator turns
over faster compared to the active stress downregulator. The key physical idea for the emergence
of these pulsatile patterns is the coupling between differential regulation of active stress and the
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Active stress also depends on density and orientational order of actin filaments
and MyosinII minifilaments: allows for more complex feedbacks and patterns of 
orientational order of actomyosin network

K. Vijay Kumar, J. Bois, Frank Jülicher and Stephan Grill. PRL.  (2014). 112, 208101
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• Pulsatory patterns in viscoelastic contractile networks 
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Spontaneous Oscillations of Elastic Contractile Materials with Turnover
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Single and collective cellular oscillations driven by the actomyosin cytoskeleton have been observed in
numerous biological systems. Here, we propose that these oscillations can be accounted for by a generic
oscillator model of a material turning over and contracting against an elastic element. As an example, we
show that during dorsal closure of theDrosophila embryo, experimentally observed changes in actomyosin
concentration and oscillatory cell shape changes can, indeed, be captured by the dynamic equations studied
here. We also investigate the collective dynamics of an ensemble of such contractile elements and show that
the relative contribution of viscous and friction losses yields different regimes of collective oscillations.
Taking into account the diffusion of force-producing molecules between contractile elements, our
theoretical framework predicts the appearance of traveling waves, resembling the propagation of
actomyosin waves observed during morphogenesis.

DOI: 10.1103/PhysRevLett.113.148102 PACS numbers: 87.10.-e, 05.45.Xt, 87.16.Ln, 87.17.Pq

The ability of cells and tissues to dynamically adjust
their shapes and morphological organization on time scales
ranging from a few minutes to several hours is crucial for
the proper formation of organs during development [1,2]. A
striking example of such deformations in morphogenesis is
cell area oscillations with periods of several minutes
observed during Drosophila, C. elegans, and Xenopus
development [3–7]. A key player in determining cell shape
is the actomyosin cortex, a thin layer of cross-linked actin
filaments located beneath the plasma membrane of cells
and concentrated on the apical side of tissues [8,9]. Within
the cortex, myosin molecular motors generate stresses,
which can result in flows and deformations occurring at the
cellular and tissue level [8,10,11]. However, while it has
been recognized that periodic shape changes in cells and
tissues are, indeed, accompanied by nearly antiphasic
cycles of cortical actomyosin density [see Figs. 1(b) and
1(c)] [3,4,12–14], the biophysical mechanism underlying
the observed oscillatory instabilities is still elusive.
Although also involving actomyosin dynamics, these
oscillations are much slower than oscillations of sarcomeric
units (of the order of 1–10 s) for which physical descrip-
tions based on the collective dynamics of molecular motors
have been proposed [15–18].
A fundamental property of the actomyosin cortex is the

continuous renewal of its constituents on the time scale of
minutes [Fig. 1(a)]. A recent study highlighted the impor-
tance of this time scale inherent to cortical dynamics for
shape oscillations observed during cytokinesis of individ-
ual cells [12]. Here, we study a minimal, generic descrip-
tion of cell shape changes driven by a continuously
renewing actomyosin cortex, predicting spontaneous oscil-
lations, different patterns of collective oscillations, and

wave propagation. Oscillations arise from the inherent
coupling between the mechanical and chemical degrees
of freedom and do not rely on the presence of a chemical
network [19]. Note that pulsatory patterns can arise in a
fluid when the active stress is regulated by two species [20].
The oscillatory mechanism proposed here is linked to the
elastic properties of the material. We argue that this

(a)

(c)

(b)

(d)

FIG. 1 (color online). (a) Schematic of the apical cortex of an
epithelial cell. Myosin molecular motors accumulate when the
network contracts and exchange with a reservoir with rates kon
and koff . (b) Snapshots of an oscillating amnioserosa cell during
dorsal closure in the Drosophila embryo expressing Tomato E
cadherin (red) [21] and myosin, GFP-sqh (green) [22]. Scale bar,
10 μm. (c) Time series of the normalized area and average
myosin concentration c at the cell apical surface, for a repre-
sentative cell in the amnioserosa. (d) Plot of the rate
ð1=Ac0Þ½dðcAÞ=dt$ vs normalized concentration c=c0 for the
data shown in (c). The points align on a line, in accordance with
Eq. (1). The slope of the line is related to the turnover time scale τ.
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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steady state    , 

description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].

(a)

(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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Hopf bifurcation for:

• Significance: 
Contraction t1 concentrates contractile units 
thereby increasing contraction: Positive Feedback

Viscous damping opposes (and elastic tension 
enhances) this effect. 

Constant turnover tends to restore c to co 
and down regulate contraction: Negative Feedback 

Kai Dierkes, A. Sumi, J. Solon and Guillaume Salbreux. PRL, (2014)113, 148102.

• Pulsatory patterns in viscoelastic contractile networks 

Model: Contractile viscoelastic network with turnover :

µ/k1: relaxation/retardation time scale

description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].
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(c)

(b)

(d)

FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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: turnover time scale

III - Mechanical Instabilities

Oscillatory dynamics emerges when: 
- contraction overcomes viscous resistance and motor turnover

description captures the main features of cell shape
oscillations during Drosophila dorsal closure and consti-
tutes a general framework for understanding periodic shape
changes in developmental contexts.
Minimal contractile unit.—We consider a system con-

sisting of (1) a spatially homogeneous contractile element
whose constituents are turning over, (2) an elastic element,
and (3) a viscous damper, i.e., a dissipative element
[Fig. 2(a)]. The contractile element exchanges force-
producing molecules (e.g., myosins) of concentration c
with a reservoir, such that c follows the dynamic equation

dc
dt

¼ −
1

τ
ðc − c0Þ −

c
l
dl
dt

; ð1Þ

where l is the length of the contractile element. Here, the
dynamics of c arises from two effects: (i) exchange of
force-producing molecules with the reservoir occurring
with binding rate kon ¼ c0=τ and unbinding rate
koffc ¼ c=τ, and (ii) matter conservation, imposing that
in the absence of turnover the product lc is constant, giving
rise to the second term on the right-hand side of Eq. (1).
To verify whether Eq. (1) can account for the dynamics

of the actomyosin cytoskeleton density in a tissue, we have
measured the myosin intensity and cell surface area A in
cells of the amnioserosa during Drosophila dorsal closure

[Figs. 1(b), 1(c), and Supplemental Material Fig. S2 [23]].
Amnioserosa cells have been shown to exhibit oscillations
of their apical surface with a period of ∼230 s [4]. As
predicted by Eq. (1) with l substituted by A, during
oscillations of the apical surface area of the amnioserosa
cell the rate ð1=AÞ½dðcAÞ=dt% is proportional to the myosin
concentration c [see Fig. 1(d) and Supplemental Material
Fig. S2 [23]].
The mechanics of the contractile unit is described by a

dynamic equation for its length l,

μ
dl
dt

¼ Te − TðcÞ − KðlÞ; ð2Þ

where the tension generated by the contractile unit TðcÞ is a
function of the concentration of force-producing molecules
[24,25], while KðlÞ is the elastic restoring force of the
spring element. Both TðcÞ and KðlÞ are assumed to be
monotonic functions of their arguments; μ is a damping
coefficient, and Te is an external tension opposing defor-
mation of the unit [Fig. 2(a)]. At steady state, the external
tension balances the internal tension such that
Te ¼ Tðc0Þ þ Kðl0Þ. Expanding around the steady state,
we write TðcÞ ¼ Tðc0Þ þ t1ðc − c0Þ and KðlÞ ¼ Kðl0Þþ
k1ðl − l0Þ þ k3ðl − l0Þ3. For simplicity, we have assumed
here a symmetric spring response k2 ¼ 0, leaving three
nondimensional parameters determining the dynamics of
the system: ðt1c0Þ=ðk1l0Þ, μ=ðk1τÞ, and k3=ðk1l2

0Þ
(Supplemental Material [23]). A linear stability analysis
shows that the system undergoes a Hopf bifurcation
[26–28] for ðt1c0Þ=ðk1l0Þ ¼ 1 þ μ=ðk1τÞ (Supplemental
Material [23]). The instability occurs as contraction of
the material leads to an increase of its density, leading to an
even larger contractile force [29–31]. Turnover balances
out this effect by attempting to restore the reference
concentration c0. Above the bifurcation, a limit cycle
appears and the system undergoes spontaneous oscillations.
We find that the period at bifurcation is τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
τμ=k1

p
, and

the transition is supercritical for large enough non-
linear elasticity, 3½ðk3l20Þ=k1%½μ=ðk1τÞ þ 1% > 2½μ=ðk1τÞ%2þ
6½μ=ðk1τÞ% þ 4.
Further away from the bifurcation, we turn to numerical

simulations to investigate the dynamics of the contractile
unit. k3 is chosen large enough to ensure that the transition
is supercritical. The complete phase diagram is plotted
in Fig. 2(b) as a function of the reduced parameters
ðt1c0Þ=ðk1l0Þ and μ=ðk1τÞ. On an increase of the tension
t1 away from the Hopf bifurcation, a region appears where
the system collapses to l ¼ 0 within a finite time [see
Figs. 2(c) and 2(d), green lines]. The exact position of the
transition separating stable oscillations from collapse
depends on the nonlinearities in the functions TðcÞ and
KðlÞ and is numerically evaluated for k3l20=k1 ¼ 15 in
Fig. 2(b). This collapsing behavior could possibly be
related to the delamination of cells whose apical area
vanishes [32,33].
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FIG. 2 (color online). (a) Schematic of a minimal model of a
mechanochemical oscillator. A spring and a dashpot are in
parallel with a contractile element whose force-producing mol-
ecules are turning over. The contractile material exerts a tension
TðcÞ, depending on the concentration c. (b) Phase diagram for the
behavior of the unit shown in (a), for k3l20=k1 ¼ 15. The white
line corresponds to a Hopf bifurcation to spontaneous oscilla-
tions. Above the dashed upper line, the unit collapses (l → 0).
The color code corresponds to the variance of the length lðtÞ=l0

in the oscillatory steady state, i.e., to hlðtÞ2=l2
0i − hlðtÞ=l0i2,

where h…i denotes a time average after transients have decayed.
[(c), (d)] Example trajectories of the unit in the three regions of
the phase diagram, in a phase plot (c) and in a time series (d).
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T issue remodeling in diverse developmental contexts such as
apical constriction in Drosophila1–4, or Caenorhabditis
elegans5, cell intercalation during Drosophila germband

extension6–9, and xenopus extension and convergence10 have
been observed to be associated with pulsation and flows of the
medial actomyosin cytoskeleton. For instance, tissue extension in
the Drosophila embryo proceeds by the intercalation of cells, a so-
called T1-process, initiated by the active shrinkage of a subset of
cell junctions called ‘vertical junctions’ (aligned with the dorsal-
ventral axis of the embryo, see Supplementary Fig. 1). The
junctional shrinkage events are associated with medial-apical
actomyosin pulsation and subsequent flow towards this vertical
junction6, 8, 11. In this paper, we develop a general theory for the
dynamics of such spontaneous actomyosin pulsation and sym-
metry breaking flows, which should be applicable not only in the
context of germband elongation, but also during other morpho-
genetic events. In addition, using germband cells in the Droso-
phila embryo as a model system, we provide experimental
justification for the assumptions underlying our theoretical fra-
mework and verify many of its key predictions.
The apically located cortical actomyosin cytoskeleton com-

prises Myosin-II minifilaments, which bind onto a crosslinked
actin filament network. The actin mesh is connected to E-
cadherin adhesion molecules at the cell junctions via molecular
linkers such as α-catenin an actin-binding protein5, 12–14 and β-
catenin, which binds α-catenin and E-cadherin. Here we model
the medial actomyosin mesh as an active elastomer embedded in
a solvent, subject to active contractile stresses arising from the
binding of myosin minifilaments (Fig. 1a)5, 7, 15, 16, and turnover
of all components. Viewing the spatially resolved time-lapse
images and movies (Supplementary Fig. 1 and Supplementary
Movie 1) showing the diversity of dynamical regimes, including
nucleation, growth, coalescence and flow of clusters of labeled
myosin toward the cell junction in a Drosophila germband cell,
should immediately convince one of the need for adopting a
hydrodynamic approach to describe the spatiotemporal evolution
of actomyosin densities.
The hydrodynamic equations for this active elastomer are

derived from very general arguments based on symmetry con-
siderations and conservation laws, and include minimal

phenomenological inputs. When the local contractile stress gen-
erated by bound myosin is not too large, the deformations are
affine. In this regime, we describe the hydrodynamic modes
without inertia and obtain phase diagrams by numerically solving
the hydrodynamic equations. Similar equations have been written
down in17, 18, where the primary focus has been on linear ana-
lysis, together with an analysis of the leading nonlinear effects.
We find that the active affine elastomer exhibits spontaneous
oscillations, contractile instabilities and coarsening of clusters
enriched in actomyosin. The coarsening often leads to stable
actomyosin-dense clusters that, beyond a threshold, acquire a
polarity. This results in spontaneous movement as a spatially
localized traveling front. Such localized traveling front solutions
appear in other excitable systems such as the FitzHugh-Nagumo
model19, to which our affine model bears a close resemblance. On
the other hand, large myosin-induced contractile stresses can lead
to nonaffine deformations due to actin turnover or network
rupture. This results in a transient actin network that exhibits
large intermittent strain fluctuations and intranetwork flow of the
actomyosin-dense regions as a consequence of filament unbind-
ing and rebinding. Interestingly, both the affine and nonaffine
theories predict that the driving force for spontaneous movement
comes from the actomyosin-dense region itself and not the cell
boundary—we provide robust experimental verification of this.
Our hydrodynamic analysis of the affine elastomer could be
viewed as being closely related to the spring model of20, though it
goes far beyond this in the nonlinear analysis of the traveling
front. Our analysis of the nonaffine elastomer, could be viewed as
an active generalization of physical gels21 driven by local con-
tractile force dipoles. Our general perspective reveals several
significantly new aspects and provides a fresh conceptual
understanding of this ubiquitous phenomenon.

Results
Active elastomer with turnover and network remodeling. As
just stated, we model the medial actomyosin crosslinked mesh as
an active elastomer embedded in a solvent, subject to active
contractile stresses arising from the binding of myosin minifila-
ments (Fig. 1a)5, 7, 15, 16, and turnover of all components. We will
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a cell belonging to the tissue. The actin filaments are attached to the cell junctions via E-cadherin (red dots). Myosin minifilaments bind (unbind) with rates
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turnover time and actin turnover time. The affine description is
valid when the actin turnover time is longer than the other times
scales. We will consider the case when the actin mesh density is
“fast” compared to the time scale associated with the Pec′let
number Pe≡ LvV/M (Lv is the characteristic scale on which the
mesh velocity, of typical magnitude V, varies); in this limit, the
mesh density is slaved to the local compressive strain, thus with ρ
= ρ0 + δρ, we arrive at δρ∝ −ϵii, i.e., a local compression of the
mesh leads to an increase in actin density (see “Methods”
section).

The conceptual features of the affine dynamics are captured by
a simple scalar version with one-elastic constant, σe= Bϵ. It helps
to make the equations dimensionless by choosing length and time
in units of the screening length l ¼

ffiffiffiffiffiffiffiffi
η=Γ

p
and inverse binding

rate k"1
b , respectively; in these units, u/l→ u, ρb/ρb0→ ρb,

B/Γkbl2→ B, ζ1Δμρb0/kbΓl2→ ζ1Δμ, D/kbl2→D and ku0/kb→ k
are dimensionless. See “Methods” for parameter values.

Linear analysis. For low levels of bound myosin, the mesh
deformation is small. It is thus appropriate to analyze the linear
stability about the unstrained, homogeneous steady state (u= 0,
ρb= ρb0). To this order, the active stress reduces to
σa= −ζ1Δμ(1 + ζ′ρ)ρb, with ζ1< 0 for contractility and ζ′> 0.

Keeping in mind that −ζ1Δμ, B, and D are the dimensionless
active stress, elastic modulus and myosin diffusion, respectively,
our linear stability analysis demonstrates that: (i) when the
active stress is smaller than the elastic stiffness,
"ζ1Δμ<ðB þ Dð1 þ

ffiffiffiffiffiffiffiffiffi
k=D

p
Þ2Þ=2, the elastic mesh is stable with

dispersion ω & q2, (ii) as the contractile strength exceeds
ðB þ Dð1 þ

ffiffiffiffiffiffiffiffiffi
k=D

p
Þ2Þ=2, the elastomer undergoes unstable oscil-

lations with an amplitude that increases exponentially with time,
(iii) at a threshold boundary, the elastomer supports a traveling
wave solution with a speed v'c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkDB2=4 Þ4

p
, (iv) beyond an

active stress "ζ1Δμ & B, the elastomer contracts indefinitely.The
phase diagrams shown in Fig. 1b reflect these four phases. Since
this kind of linear analysis appears in17 , 18 , we simply state our
results here and refer to Supplementary Note 2 and Supplemen-
tary Fig. 2 for details of calculations and dispersion relations.

In addition, we find that the qualitative features of these
transitions remain unaltered when the strain-dependent unbind-
ing parameter α is varied, as long as α≤ αmax(B,ζ1Δμ). This is
discussed in detail in Supplementary Note 3 and Supplementary
Fig. 3 .

In spite of the simplifying nature of the linear analysis, it
captures some gross features and offers some useful hints: (a)
although unstable, the oscillatory behavior or pulsation (which
will be stabilized by nonlinearities) requires advection and myosin
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turnover time and actin turnover time. The affine description is
valid when the actin turnover time is longer than the other times
scales. We will consider the case when the actin mesh density is
“fast” compared to the time scale associated with the Pec′let
number Pe≡ LvV/M (Lv is the characteristic scale on which the
mesh velocity, of typical magnitude V, varies); in this limit, the
mesh density is slaved to the local compressive strain, thus with ρ
= ρ0 + δρ, we arrive at δρ∝ −ϵii, i.e., a local compression of the
mesh leads to an increase in actin density (see “Methods”
section).

The conceptual features of the affine dynamics are captured by
a simple scalar version with one-elastic constant, σe= Bϵ. It helps
to make the equations dimensionless by choosing length and time
in units of the screening length l ¼

ffiffiffiffiffiffiffiffi
η=Γ

p
and inverse binding

rate k"1
b , respectively; in these units, u/l→ u, ρb/ρb0→ ρb,

B/Γkbl2→ B, ζ1Δμρb0/kbΓl2→ ζ1Δμ, D/kbl2→D and ku0/kb→ k
are dimensionless. See “Methods” for parameter values.

Linear analysis. For low levels of bound myosin, the mesh
deformation is small. It is thus appropriate to analyze the linear
stability about the unstrained, homogeneous steady state (u= 0,
ρb= ρb0). To this order, the active stress reduces to
σa= −ζ1Δμ(1 + ζ′ρ)ρb, with ζ1< 0 for contractility and ζ′> 0.

Keeping in mind that −ζ1Δμ, B, and D are the dimensionless
active stress, elastic modulus and myosin diffusion, respectively,
our linear stability analysis demonstrates that: (i) when the
active stress is smaller than the elastic stiffness,
"ζ1Δμ<ðB þ Dð1 þ

ffiffiffiffiffiffiffiffiffi
k=D

p
Þ2Þ=2, the elastic mesh is stable with

dispersion ω & q2, (ii) as the contractile strength exceeds
ðB þ Dð1 þ

ffiffiffiffiffiffiffiffiffi
k=D

p
Þ2Þ=2, the elastomer undergoes unstable oscil-

lations with an amplitude that increases exponentially with time,
(iii) at a threshold boundary, the elastomer supports a traveling
wave solution with a speed v'c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkDB2=4 Þ4

p
, (iv) beyond an

active stress "ζ1Δμ & B, the elastomer contracts indefinitely.The
phase diagrams shown in Fig. 1b reflect these four phases. Since
this kind of linear analysis appears in17 , 18 , we simply state our
results here and refer to Supplementary Note 2 and Supplemen-
tary Fig. 2 for details of calculations and dispersion relations.

In addition, we find that the qualitative features of these
transitions remain unaltered when the strain-dependent unbind-
ing parameter α is varied, as long as α≤ αmax(B,ζ1Δμ). This is
discussed in detail in Supplementary Note 3 and Supplementary
Fig. 3 .

In spite of the simplifying nature of the linear analysis, it
captures some gross features and offers some useful hints: (a)
although unstable, the oscillatory behavior or pulsation (which
will be stabilized by nonlinearities) requires advection and myosin
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turnover8, 28, (b) the contractile instability is promoted by
lowering elastic stiffness (by reducing levels of β-catenin/
cadherin)5, 7, 15 or reducing myosin unbinding rates8, 28, 29. The
linear analysis, however, fails to capture finite-amplitude
sustained oscillations and the phenomenology of moving
configurations of actomyosin.

Leading order nonlinearities. It is possible that the oscillatory
instability obtained in the linear analysis is tempered by the
nonlinear terms in the dynamics, arising from strain-dependent
unbinding ku(ϵ), advection and active stress. Indeed, we find that
by taking into account the nonlinear contributions to leading
order, we can recast the equations as an excitatory-inhibitory
dynamical system that exhibit sustained spontaneous oscillations.
To see this, we work in 1-dim, and after fourier transforming Eqs.
(1),(2) in a finite domain [0, L] with Neumann boundary con-
ditions, retain only the smallest wavenumber, a 1-mode Galerkin
truncation, which accomodates the strain-dependent unbinding
nonlinearity. The resulting coupled ODEs upon re-scaling
describe a generalized van der Pol oscillator30 with linear
damping and cubic nonlinearities. This admits a limit cycle
through a supercritical-Hopf bifurcation for !ζ1Δμ " B

2 þ
1
π2—a

signature of the appearance of sustained spontaneous oscillations.
At the onset of bifurcation, we use a fluctuation analysis to obtain
the time period of oscillation T= 2π(η/ku0(B + ζ1Δμρb0))1/2. To
see the effects of the advective nonlinearity, we need to extended
the above mode-truncation analysis to 2-modes. The resulting 3-
dimensional dynamical system exhibits, in addition to limit
cycles, temporal chaos as seen by the algebraic decay of the
power-spectrum, positive Lyapunov exponent and denseness of
the Poincare section (D.B., manuscript in preparation). However,
our attempt to include nonlinear effects using low order mode-
truncation, fails to capture the phenomenology of moving con-
figurations of actomyosin.
Note that wave-like dispersion relations obtained from this

truncated model are not a response to an external perturbation,
but are self-generated. This cell-autonomous behavior is con-
sistent with observations of pulsatile dynamics in medial
actomyosin6, 11.

Full nonlinear analysis shows traveling front solutions. We
now study the full nonlinear theory, which includes the effect of
the nonlinearity arising from the active stress. This gives rise to a
new set of solutions, namely the spatially localized traveling front
solutions. To see this, we perform a numerical analysis of the full
nonlinear equations in 1-dim. We first Taylor expand χ(ρ) in Eq.
(4) about ρ0, the mesh density in the unstrained configuration,
and recast the active stress as (see “Methods” section)

σa ¼ !ζ1Δμρb
1þ ζ2ρb

χ ρ0ð Þ ! cχ′ ρ0ð Þϵþ c2χ′′ ρ0ð Þϵ2 þ ¼
! "

; ð5Þ

where c is a positive constant (see “Methods” section). Separating
out the terms dependent on ϵ and only on ρb, and combining the
former with the elastic stress σe= Bϵ in Eq. 1, leads to an effective
“elastic free-energy”,

Φ ϵð Þ ¼ 1
2
K2 ρb; ρ0ð Þϵ2 þ 1

3
K3 ρb; ρ0ð Þϵ3 þ 1

4
K4 ρb; ρ0ð Þϵ4; ð6Þ

where Ki (i= 1, 2, 3) are density dependent coefficients (see
“Methods” section), and the quartic term with K4> 0 ensures that
the local compressive strain does not grow without bound, as a
consequence of steric hinderance, filament rigidity or crosslinking
myosin. The Φ(ϵ) that emerges as a consequence of activity, has 3
new features: (i) for weak active contractile stress, the minima at
ϵ= 0 gets shallower, indicating that the elastic stiffness B

decreases, (ii) as we increase the active stress, there appears
another minimum at ϵ= ϵ0 (iii) for large active stresses, the ϵ=
0 state can be unstable, with the effective B< 0 (Supplementary
Fig. 4). The final 1-dim equations of motion are given by,

Γ _u ¼ ∂xΦ′ ϵð Þ þ ∂xσa ρbð Þ ð7Þ

_ρb ¼ !∂x ρb _uð Þ þ D∂2xρb þ Sm ϵ; ρbð Þ; ð8Þ

where Φ′ ' δΦ
δε , σaðρbÞ ¼

!ζ1Δμρb
1þζ2ρb

χðρ0Þ and myosin turnover
Sm(ϵ,ρb)= −ku0eαϵρb + kb(1 − cϵ).

These equations are numerically solved with either periodic or
Neumann boundary conditions using a finite difference scheme
(see “Methods” section). Initial conditions are small amplitude
random fluctuations about the homogeneous unstrained state.
The numerical phase diagram, displayed in Fig. 2 shows several
new features compared to the linear phase diagram, which we
discuss below.

Steady-state phase diagram. The two features that are expected
to arise from nonlinear effects, namely, the tempering of the
linear instabilities to obtain both finite-amplitude oscillatory and
finite-amplitude contractile collapse phases at intermediate and
high contractile stresses, respectively, show up in the steady-state
phase diagram, Fig. 2a, b. The corresponding kymographs in the
bound myosin density (Fig. 2d, h) show the appearance of these
steady state at late times. The time development of configurations
in these phases can be summarized as follows—starting from a
generic state with small random fluctuations about the homo-
geneous unstrained state, the configuration quickly results in a
spatially heterogenous (un)binding of myosin filaments onto the
actin mesh, transiently generating localized compression. This
will increase the local concentration of actin, which in turn will
facilitate more myosin recruitment and hence more compression.
This local compression will be resisted by an elastic restoring
force, and the resulting strain can lead to an enhanced myosin
unbinding. If it does, this will lead to a relaxation of the com-
pressed region, to be followed by another round of binding-
compression-unbinding, leading to the observed oscillations. In
this spontaneous oscillating phase, the frequency gets smaller
with increasing the active stress or decreasing unbinding rate8.
On the other hand, if myosin unbinding does not occur fast
enough, the elastomer will undergo a contractile instability, to be
eventually stabilized by nonlinear effects such as steric hinderance
and filament rigidity.
Additionally, there is a wholly unexpected feature that emerges

from a numerical solution of the full nonlinear equations. In the
parameter regime between the oscillatory and the contractile
collapse phases, there appears a moving phase (Fig. 2), where
spatially localized actomyosin-dense regions (which we later
identify as traveling fronts) spontaneously move to either the left
or right boundary. In the regimes between the pure moving phase
and the oscillatory and collapse phases lie the coexistence phases
where the moving phase coexists with oscillations and collapse,
respectively. The corresponding kymographs in the bound
myosin density (Fig. 2e–g) show the appearance of these steady
state at late times. We may understand the occurrence of these
phase transitions using a simple argument based on the relative
time scales of these dynamical events, as displayed in Supple-
mentary Fig. 5.
Several qualitative assertions follow immediately from the

affine theory, such as: (i) the existence of bounded (finite-
amplitude) oscillations requires both strain-dependent unbinding
and turnover of myosin, (ii) the coexisting oscillation-moving and
collapse-moving phases cannot be obtained in the absence of
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• Study the effects of non-linearities associated with: 
               - active stress (function of network density, orientational order)
               - elastic energy (function of MyoII and actin densities)
               - turnover (MyoII strain dependent unbinding)
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IV - Mechano-chemical Instabilities

MyoII and Rho1GTP exhibit pulsatile 
dynamics

movement of interrogation areas between two sequential timelapse images (Materials and meth-

ods). The spatial resolution of the velocity field is determined by the spacing of the interrogation

areas which we choose as 1:26 !m. This is sufficiently smaller than the correlation length of cortical

flow (the hydrodynamic length is ~14 mm [Mayer et al., 2010; Saha et al., 2016]), hence, COMBI

can provide information on actomyosin homeostasis by determining the average reaction kinetics on

a timescale of seconds and a length scale of microns.
We visualize the reaction terms determined by COMBI in a vector field that illustrates the average

evolution of concentrations of both species (Figure 1H). This reveals interesting features, for
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Figure 1. COMBI of active RhoA and NMY-2. (A) A representative image of NMY-2::GFP showing the NMY-2 foci

pattern (magenta) in the C. elegans zygote. Anterior is to the left throughout, white box denotes region shown in

B. (B) Myosin focus assembly and disassembly time-course from A in inverted contrast; dashed circle indicates a

myosin focus. Arrows denote the velocity field determined by PIV; thick green line: velocity scale bar 0.4 !m=s. (C)
The temporal dynamics of NMY-2 fluorescence intensity time-rate change (magenta) and cortical flow speed (blue,

obtained by PIV) for the region in (B), arrowheads indicate the time interval shown in (B). (D) Normalized

autocorrelation of NMY-2 intensity change and flow speed timecourses in (C) and (E) respective oscillation

periods. (F) NMY-2::RFP (magenta) and AHPH::GFP (green), a probe for active RhoA, co-localize at myosin foci. (G)

COMBI analysis schematic. (H) Effective reaction terms of NMY-2 and active RhoA in the phase plane of

normalized NMY-2 and active RhoA concentrations (N = 25 embryos). Arrows represent concentration changes,

colors indicate the magnitude of change. Thin solid magenta (NMY-2) and green (RhoA) lines, numerically

determined nullclines. Thick dashed lines, linearized nullclines (see Appendix). Scale bars; 5 !m.

DOI: 10.7554/eLife.19595.002

The following figure supplements are available for figure 1:

Figure supplement 1. Co-localization of active RhoA and myosin.

DOI: 10.7554/eLife.19595.003

Figure supplement 2. Trajectories in the phase plane of AHPH and NMY-2 concentrations.

DOI: 10.7554/eLife.19595.004

Figure supplement 3. COMBI of active RhoA and actin.

DOI: 10.7554/eLife.19595.005
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ods). The spatial resolution of the velocity field is determined by the spacing of the interrogation

areas which we choose as 1:26 !m. This is sufficiently smaller than the correlation length of cortical

flow (the hydrodynamic length is ~14 mm [Mayer et al., 2010; Saha et al., 2016]), hence, COMBI

can provide information on actomyosin homeostasis by determining the average reaction kinetics on

a timescale of seconds and a length scale of microns.
We visualize the reaction terms determined by COMBI in a vector field that illustrates the average

evolution of concentrations of both species (Figure 1H). This reveals interesting features, for
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Figure 1. COMBI of active RhoA and NMY-2. (A) A representative image of NMY-2::GFP showing the NMY-2 foci

pattern (magenta) in the C. elegans zygote. Anterior is to the left throughout, white box denotes region shown in

B. (B) Myosin focus assembly and disassembly time-course from A in inverted contrast; dashed circle indicates a

myosin focus. Arrows denote the velocity field determined by PIV; thick green line: velocity scale bar 0.4 !m=s. (C)
The temporal dynamics of NMY-2 fluorescence intensity time-rate change (magenta) and cortical flow speed (blue,

obtained by PIV) for the region in (B), arrowheads indicate the time interval shown in (B). (D) Normalized

autocorrelation of NMY-2 intensity change and flow speed timecourses in (C) and (E) respective oscillation

periods. (F) NMY-2::RFP (magenta) and AHPH::GFP (green), a probe for active RhoA, co-localize at myosin foci. (G)

COMBI analysis schematic. (H) Effective reaction terms of NMY-2 and active RhoA in the phase plane of

normalized NMY-2 and active RhoA concentrations (N = 25 embryos). Arrows represent concentration changes,

colors indicate the magnitude of change. Thin solid magenta (NMY-2) and green (RhoA) lines, numerically

determined nullclines. Thick dashed lines, linearized nullclines (see Appendix). Scale bars; 5 !m.
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The following figure supplements are available for figure 1:

Figure supplement 1. Co-localization of active RhoA and myosin.
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Figure supplement 2. Trajectories in the phase plane of AHPH and NMY-2 concentrations.
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movement of interrogation areas between two sequential timelapse images (Materials and meth-

ods). The spatial resolution of the velocity field is determined by the spacing of the interrogation

areas which we choose as 1:26 !m. This is sufficiently smaller than the correlation length of cortical

flow (the hydrodynamic length is ~14 mm [Mayer et al., 2010; Saha et al., 2016]), hence, COMBI

can provide information on actomyosin homeostasis by determining the average reaction kinetics on

a timescale of seconds and a length scale of microns.
We visualize the reaction terms determined by COMBI in a vector field that illustrates the average

evolution of concentrations of both species (Figure 1H). This reveals interesting features, for
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Figure 1. COMBI of active RhoA and NMY-2. (A) A representative image of NMY-2::GFP showing the NMY-2 foci

pattern (magenta) in the C. elegans zygote. Anterior is to the left throughout, white box denotes region shown in

B. (B) Myosin focus assembly and disassembly time-course from A in inverted contrast; dashed circle indicates a

myosin focus. Arrows denote the velocity field determined by PIV; thick green line: velocity scale bar 0.4 !m=s. (C)
The temporal dynamics of NMY-2 fluorescence intensity time-rate change (magenta) and cortical flow speed (blue,

obtained by PIV) for the region in (B), arrowheads indicate the time interval shown in (B). (D) Normalized

autocorrelation of NMY-2 intensity change and flow speed timecourses in (C) and (E) respective oscillation

periods. (F) NMY-2::RFP (magenta) and AHPH::GFP (green), a probe for active RhoA, co-localize at myosin foci. (G)

COMBI analysis schematic. (H) Effective reaction terms of NMY-2 and active RhoA in the phase plane of

normalized NMY-2 and active RhoA concentrations (N = 25 embryos). Arrows represent concentration changes,

colors indicate the magnitude of change. Thin solid magenta (NMY-2) and green (RhoA) lines, numerically

determined nullclines. Thick dashed lines, linearized nullclines (see Appendix). Scale bars; 5 !m.
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The following figure supplements are available for figure 1:

Figure supplement 1. Co-localization of active RhoA and myosin.

DOI: 10.7554/eLife.19595.003

Figure supplement 2. Trajectories in the phase plane of AHPH and NMY-2 concentrations.

DOI: 10.7554/eLife.19595.004

Figure supplement 3. COMBI of active RhoA and actin.

DOI: 10.7554/eLife.19595.005

Nishikawa et al. eLife 2017;6:e19595. DOI: 10.7554/eLife.19595 3 of 21

Research article Biophysics and Structural Biology

movement of interrogation areas between two sequential timelapse images (Materials and meth-
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areas which we choose as 1:26 !m. This is sufficiently smaller than the correlation length of cortical

flow (the hydrodynamic length is ~14 mm [Mayer et al., 2010; Saha et al., 2016]), hence, COMBI

can provide information on actomyosin homeostasis by determining the average reaction kinetics on

a timescale of seconds and a length scale of microns.
We visualize the reaction terms determined by COMBI in a vector field that illustrates the average

evolution of concentrations of both species (Figure 1H). This reveals interesting features, for
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Figure 1. COMBI of active RhoA and NMY-2. (A) A representative image of NMY-2::GFP showing the NMY-2 foci

pattern (magenta) in the C. elegans zygote. Anterior is to the left throughout, white box denotes region shown in

B. (B) Myosin focus assembly and disassembly time-course from A in inverted contrast; dashed circle indicates a

myosin focus. Arrows denote the velocity field determined by PIV; thick green line: velocity scale bar 0.4 !m=s. (C)
The temporal dynamics of NMY-2 fluorescence intensity time-rate change (magenta) and cortical flow speed (blue,

obtained by PIV) for the region in (B), arrowheads indicate the time interval shown in (B). (D) Normalized

autocorrelation of NMY-2 intensity change and flow speed timecourses in (C) and (E) respective oscillation

periods. (F) NMY-2::RFP (magenta) and AHPH::GFP (green), a probe for active RhoA, co-localize at myosin foci. (G)

COMBI analysis schematic. (H) Effective reaction terms of NMY-2 and active RhoA in the phase plane of

normalized NMY-2 and active RhoA concentrations (N = 25 embryos). Arrows represent concentration changes,

colors indicate the magnitude of change. Thin solid magenta (NMY-2) and green (RhoA) lines, numerically

determined nullclines. Thick dashed lines, linearized nullclines (see Appendix). Scale bars; 5 !m.
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The following figure supplements are available for figure 1:

Figure supplement 1. Co-localization of active RhoA and myosin.

DOI: 10.7554/eLife.19595.003

Figure supplement 2. Trajectories in the phase plane of AHPH and NMY-2 concentrations.

DOI: 10.7554/eLife.19595.004

Figure supplement 3. COMBI of active RhoA and actin.
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• MyoII activation kinetics is a function of 
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movement of interrogation areas between two sequential timelapse images (Materials and meth-

ods). The spatial resolution of the velocity field is determined by the spacing of the interrogation

areas which we choose as 1:26 !m. This is sufficiently smaller than the correlation length of cortical

flow (the hydrodynamic length is ~14 mm [Mayer et al., 2010; Saha et al., 2016]), hence, COMBI

can provide information on actomyosin homeostasis by determining the average reaction kinetics on

a timescale of seconds and a length scale of microns.
We visualize the reaction terms determined by COMBI in a vector field that illustrates the average

evolution of concentrations of both species (Figure 1H). This reveals interesting features, for
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Figure 1. COMBI of active RhoA and NMY-2. (A) A representative image of NMY-2::GFP showing the NMY-2 foci

pattern (magenta) in the C. elegans zygote. Anterior is to the left throughout, white box denotes region shown in

B. (B) Myosin focus assembly and disassembly time-course from A in inverted contrast; dashed circle indicates a

myosin focus. Arrows denote the velocity field determined by PIV; thick green line: velocity scale bar 0.4 !m=s. (C)
The temporal dynamics of NMY-2 fluorescence intensity time-rate change (magenta) and cortical flow speed (blue,

obtained by PIV) for the region in (B), arrowheads indicate the time interval shown in (B). (D) Normalized

autocorrelation of NMY-2 intensity change and flow speed timecourses in (C) and (E) respective oscillation

periods. (F) NMY-2::RFP (magenta) and AHPH::GFP (green), a probe for active RhoA, co-localize at myosin foci. (G)

COMBI analysis schematic. (H) Effective reaction terms of NMY-2 and active RhoA in the phase plane of

normalized NMY-2 and active RhoA concentrations (N = 25 embryos). Arrows represent concentration changes,

colors indicate the magnitude of change. Thin solid magenta (NMY-2) and green (RhoA) lines, numerically

determined nullclines. Thick dashed lines, linearized nullclines (see Appendix). Scale bars; 5 !m.
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The following figure supplements are available for figure 1:

Figure supplement 1. Co-localization of active RhoA and myosin.

DOI: 10.7554/eLife.19595.003

Figure supplement 2. Trajectories in the phase plane of AHPH and NMY-2 concentrations.

DOI: 10.7554/eLife.19595.004

Figure supplement 3. COMBI of active RhoA and actin.

DOI: 10.7554/eLife.19595.005
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IV - Mechano-chemical Instabilities

Hydrodynamic mechanochemical Model: 

qxs¼ gv : (7)

Equations 6 and 7 provide an equation of motion

lq2xvþ
z0

l
qxf ð!mÞ%

1
l
v¼ 0 ; (8)

where l ¼
ffiffiffiffiffiffiffiffiffi

h=g
p

represents the hydrodynamic length of the cortex, which sets a correlation

length for the velocity field. We determined the parameters l and z0 ¼ z
g
that characterize

the active viscous fluid with a method that compares the relaxation dynamics of the cortex in
response to cortical laser ablation (COLA) between experiment and theoretical predictions

(l ¼ 14:3 "m, z0 ¼ 24:9 "m2=s) (Saha et al., 2016). Note that we ignored the polar or nematic
order of actin filament in the cortex, which can introduce the tension anisotropy. Based on
the recent study by Reymann et al. (Reymann et al., 2016), the alignment is mainly due to
large-scale cortical flow in one-cell stage C. elegans embryo, which has the highest
compressible component and nematic order parameter in the mid-zone of posterior.

Rescaling
We rescale the spatial coordinate with respect to l, and rewrite Equations 5–7 according to

~s¼ q~x~vþ ~sa

q~x~s¼ ~v

qt!i þ q~x~v!i % ~Diq
2
~x!i ¼ Rið!m;!rÞ;

(9)

with the following rescaled quantities

~x ¼ x=l
~v ¼ v

l

~s ¼ s
l2g

~sa ¼ z

l2g
f ð!mÞ

~Di ¼ D
l2
:

We performed numerical integrations of Equation 9 with periodic boundary conditions by
use of the pseudospectral method (Boyd, 2001).

Linear stability analysis
The homogeneous state with the concentrations r0 ¼ ð!r0; !m0Þt and a vanishing flow field
vðx; tÞ ¼ 0 can be a stationary state of the system. To test the stability of this stationary state,

we apply a small perturbation of d! ¼ r0 þ d!0 e2pinxþaðnÞt, where n and a denote spatial

frequency and eigenvalue, respectively. Inserting d! into Equation 9 and retaining linear
terms only, the linear stability matrix A with respect to the perturbation d! becomes

A¼4p2n2
%~Dr 0
0 %~Dm

" #

þ 4p2n2~zq!m f ð!m0Þ
4p2n2þ 1

0 !r0

0 !m0

" #

þV (10)

V¼
q!rRrðr0Þ q!mRrðr0Þ
q!rRmðr0Þ q!mRmðr0Þ

" #

; (11)
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Appendix

Active gel description of the cortex
We described the dynamics of the cortical layer on the surface of the zygote by use of a full
mechanochemically coupled system containing an active gel description for the cortical layer
(Bois et al., 2011; Kumar et al., 2014) together with a reaction-diffusion-advection
equation system for active RhoA and NMY-2. For the latter, the concentrations of active
RhoA and NMY-2 in one dimension are given by !mðx; tÞ and !rðx; tÞ, respectively, where x

denotes position and t denotes time. The dynamics of the 1-D surface concentration vector

rðx; tÞ ¼ !mðx; tÞ; !rðx; tÞ½ %t is given by

qt!iðx; tÞþ qxjiðx; tÞ ¼ Riðrðx; tÞÞ (4)

jiðx; tÞ ¼ vðx; tÞ!iðx; tÞ'Diqx!iðx; tÞ ; (5)

where i 2 fm; rg, with m denoting NMY-2 and r denoting active RhoA. Here, vðx; tÞ
represents the gel velocity field determined by active cortical mechanics, see below.
Rmðrðx; tÞÞ and Rrðrðx; tÞÞ denote the respective fluxes of NMY-2 and active RhoAand from
the cytosol onto the surface via turnover and recruitment. Dm and Dr denote the respective
diffusion coefficients of active RhoA and NMY-2. We estimated the surface diffusion
coefficients of both active RhoA and myosin, by analyzing FRAP recovery in ANI-1::GFP and
NMY-2::GFP by use of a method considers of both turnover and lateral diffusion
(Goehring et al., 2010). This revealed in both cases that lateral (surface) diffusion was below
the detection limit and undistinguishable from zero. Hence, we expect surface diffusion of
myosin and active RhoA to not significantly impact the dynamics of the cortical layer.
However, for the purpose of preventing sharp peaks in concentration fields in our numerical

simulations, we here set Dr ¼ Dm ¼ 0:01 "m2=s. Note that the general results of our
numerical analysis do not change when increasing or decreasing either diffusion constant by
a factor of 10. Importantly, the fastest growing mode occurs for wavelengths of the order of
l in all cases (Figure 2—figure supplement 1).

We describe forces and flows within the cortical layer in the framework of active gel theory
(Bois et al., 2011; Kumar et al., 2014; Kruse et al., 2005; Mayer et al., 2010). We
consider the cortex to be a thin film active viscous fluid in 1D, where NMY-2 generates
active tension (Bois et al., 2011; Kumar et al., 2014; Mayer et al., 2010). Hence, total
tension

sin the layer is given by a sum of viscous tension arising characterized by a bulk viscosity h,
and active tension (or contractility) sa that depends on myosin concentration acording to
sa ¼ zf ð!mÞ, with f ð!mÞ and increasing function of the concentration !m and z a coefficient
that determines the magnitude of active tension.

The constitutive equation for an active viscous fluid is then given by Mayer et al. (2010)

s¼ hqxvðx; tÞþsað!mÞ : (6)

We choose for f ð!mÞ a saturating Hill-function, f ð!mÞ ¼ !mð!m0 þ 1Þ=ð!m þ 1Þ(Bois et al.,
2011; Kumar et al., 2014), to limit the active stress in our numerical simulations. Here, !m0

denotes the stationary concentration of NMY-2. Note that choosing a linear dependence
without saturation does not significantly change the stability diagram, see Figure 2—figure
supplement 2.

The force balance equation for an active viscous fluid in the presence of friction with a
coefficient g between the cortex and its surrounding cytoplasm and cell membrane
(Mayer et al., 2010; Bois et al., 2011; Kumar et al., 2014) is given by
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Figure 2. Linear stability analysis reveals that the actomyosin cortex in C. elegans is unstable. (A) Schematic of the

full mechanochemical patterning system. (B) Stability diagram of the homogeneous state in the plane of

hydrodynamic length l and active tension measure !s (see Appendix). The homogeneous state is unstable within

the red region. Blue dot represents the parameter values of the non-RNAi C. elegans cortex; error bars denote

95% confidence intervals. (C) Stability diagram for a partial model without NMY-2 recruitment by RhoA; inset:

corresponding schematic. The homogeneous state is unstable within the blue region. (D) Dispersion relations of

the full mechanochemical patterning system with (red) and without (blue) RhoA mediated NMY-2 recruitment.

Lighter shared areas represent 95% confidence intervals. (E) let-502 RNAi suppresses RhoA mediated recruitment

of NMY-2. (F) COMBI diagram for let-502 RNAi (30 hr), N = 12 embryos. Thin solid magenta (NMY-2) and green

(RhoA) lines; numerically determined nullclines. Thick solid dashed lines, linearized nullclines. Light dashed lines,

linearized nullclines for the non-RNAi condition (Figure 1H) for comparison. (G) Dispersion relation for let-502

RNAi, lighter blue area indicates the 95% confidence interval. (H) NMY-2 distribution under let-502 RNAi. Scale

bar; 5 !m.

DOI: 10.7554/eLife.19595.007

The following figure supplements are available for figure 2:

Figure supplement 1. The contractile instability is insensitive to changing the diffusion constants over two orders

of magnitude.

DOI: 10.7554/eLife.19595.008

Figure supplement 2. Stability of the homogeneous state with a linear form of f ðcmÞ ¼ cm.

DOI: 10.7554/eLife.19595.009
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Figure 2. Linear stability analysis reveals that the actomyosin cortex in C. elegans is unstable. (A) Schematic of the

full mechanochemical patterning system. (B) Stability diagram of the homogeneous state in the plane of

hydrodynamic length l and active tension measure !s (see Appendix). The homogeneous state is unstable within

the red region. Blue dot represents the parameter values of the non-RNAi C. elegans cortex; error bars denote

95% confidence intervals. (C) Stability diagram for a partial model without NMY-2 recruitment by RhoA; inset:

corresponding schematic. The homogeneous state is unstable within the blue region. (D) Dispersion relations of

the full mechanochemical patterning system with (red) and without (blue) RhoA mediated NMY-2 recruitment.

Lighter shared areas represent 95% confidence intervals. (E) let-502 RNAi suppresses RhoA mediated recruitment

of NMY-2. (F) COMBI diagram for let-502 RNAi (30 hr), N = 12 embryos. Thin solid magenta (NMY-2) and green

(RhoA) lines; numerically determined nullclines. Thick solid dashed lines, linearized nullclines. Light dashed lines,

linearized nullclines for the non-RNAi condition (Figure 1H) for comparison. (G) Dispersion relation for let-502

RNAi, lighter blue area indicates the 95% confidence interval. (H) NMY-2 distribution under let-502 RNAi. Scale

bar; 5 !m.

DOI: 10.7554/eLife.19595.007

The following figure supplements are available for figure 2:

Figure supplement 1. The contractile instability is insensitive to changing the diffusion constants over two orders

of magnitude.

DOI: 10.7554/eLife.19595.008

Figure supplement 2. Stability of the homogeneous state with a linear form of f ðcmÞ ¼ cm.

DOI: 10.7554/eLife.19595.009
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Figure 2. Linear stability analysis reveals that the actomyosin cortex in C. elegans is unstable. (A) Schematic of the

full mechanochemical patterning system. (B) Stability diagram of the homogeneous state in the plane of

hydrodynamic length l and active tension measure !s (see Appendix). The homogeneous state is unstable within

the red region. Blue dot represents the parameter values of the non-RNAi C. elegans cortex; error bars denote

95% confidence intervals. (C) Stability diagram for a partial model without NMY-2 recruitment by RhoA; inset:

corresponding schematic. The homogeneous state is unstable within the blue region. (D) Dispersion relations of

the full mechanochemical patterning system with (red) and without (blue) RhoA mediated NMY-2 recruitment.

Lighter shared areas represent 95% confidence intervals. (E) let-502 RNAi suppresses RhoA mediated recruitment

of NMY-2. (F) COMBI diagram for let-502 RNAi (30 hr), N = 12 embryos. Thin solid magenta (NMY-2) and green

(RhoA) lines; numerically determined nullclines. Thick solid dashed lines, linearized nullclines. Light dashed lines,

linearized nullclines for the non-RNAi condition (Figure 1H) for comparison. (G) Dispersion relation for let-502

RNAi, lighter blue area indicates the 95% confidence interval. (H) NMY-2 distribution under let-502 RNAi. Scale

bar; 5 !m.

DOI: 10.7554/eLife.19595.007

The following figure supplements are available for figure 2:

Figure supplement 1. The contractile instability is insensitive to changing the diffusion constants over two orders

of magnitude.

DOI: 10.7554/eLife.19595.008

Figure supplement 2. Stability of the homogeneous state with a linear form of f ðcmÞ ¼ cm.

DOI: 10.7554/eLife.19595.009
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Figure 2. Linear stability analysis reveals that the actomyosin cortex in C. elegans is unstable. (A) Schematic of the

full mechanochemical patterning system. (B) Stability diagram of the homogeneous state in the plane of

hydrodynamic length l and active tension measure !s (see Appendix). The homogeneous state is unstable within

the red region. Blue dot represents the parameter values of the non-RNAi C. elegans cortex; error bars denote

95% confidence intervals. (C) Stability diagram for a partial model without NMY-2 recruitment by RhoA; inset:

corresponding schematic. The homogeneous state is unstable within the blue region. (D) Dispersion relations of

the full mechanochemical patterning system with (red) and without (blue) RhoA mediated NMY-2 recruitment.

Lighter shared areas represent 95% confidence intervals. (E) let-502 RNAi suppresses RhoA mediated recruitment

of NMY-2. (F) COMBI diagram for let-502 RNAi (30 hr), N = 12 embryos. Thin solid magenta (NMY-2) and green

(RhoA) lines; numerically determined nullclines. Thick solid dashed lines, linearized nullclines. Light dashed lines,

linearized nullclines for the non-RNAi condition (Figure 1H) for comparison. (G) Dispersion relation for let-502

RNAi, lighter blue area indicates the 95% confidence interval. (H) NMY-2 distribution under let-502 RNAi. Scale

bar; 5 !m.
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The following figure supplements are available for figure 2:

Figure supplement 1. The contractile instability is insensitive to changing the diffusion constants over two orders

of magnitude.

DOI: 10.7554/eLife.19595.008

Figure supplement 2. Stability of the homogeneous state with a linear form of f ðcmÞ ¼ cm.

DOI: 10.7554/eLife.19595.009
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Appendix

Active gel description of the cortex
We described the dynamics of the cortical layer on the surface of the zygote by use of a full
mechanochemically coupled system containing an active gel description for the cortical layer
(Bois et al., 2011; Kumar et al., 2014) together with a reaction-diffusion-advection
equation system for active RhoA and NMY-2. For the latter, the concentrations of active
RhoA and NMY-2 in one dimension are given by !mðx; tÞ and !rðx; tÞ, respectively, where x

denotes position and t denotes time. The dynamics of the 1-D surface concentration vector

rðx; tÞ ¼ !mðx; tÞ; !rðx; tÞ½ %t is given by

qt!iðx; tÞþ qxjiðx; tÞ ¼ Riðrðx; tÞÞ (4)

jiðx; tÞ ¼ vðx; tÞ!iðx; tÞ'Diqx!iðx; tÞ ; (5)

where i 2 fm; rg, with m denoting NMY-2 and r denoting active RhoA. Here, vðx; tÞ
represents the gel velocity field determined by active cortical mechanics, see below.
Rmðrðx; tÞÞ and Rrðrðx; tÞÞ denote the respective fluxes of NMY-2 and active RhoAand from
the cytosol onto the surface via turnover and recruitment. Dm and Dr denote the respective
diffusion coefficients of active RhoA and NMY-2. We estimated the surface diffusion
coefficients of both active RhoA and myosin, by analyzing FRAP recovery in ANI-1::GFP and
NMY-2::GFP by use of a method considers of both turnover and lateral diffusion
(Goehring et al., 2010). This revealed in both cases that lateral (surface) diffusion was below
the detection limit and undistinguishable from zero. Hence, we expect surface diffusion of
myosin and active RhoA to not significantly impact the dynamics of the cortical layer.
However, for the purpose of preventing sharp peaks in concentration fields in our numerical

simulations, we here set Dr ¼ Dm ¼ 0:01 "m2=s. Note that the general results of our
numerical analysis do not change when increasing or decreasing either diffusion constant by
a factor of 10. Importantly, the fastest growing mode occurs for wavelengths of the order of
l in all cases (Figure 2—figure supplement 1).

We describe forces and flows within the cortical layer in the framework of active gel theory
(Bois et al., 2011; Kumar et al., 2014; Kruse et al., 2005; Mayer et al., 2010). We
consider the cortex to be a thin film active viscous fluid in 1D, where NMY-2 generates
active tension (Bois et al., 2011; Kumar et al., 2014; Mayer et al., 2010). Hence, total
tension

sin the layer is given by a sum of viscous tension arising characterized by a bulk viscosity h,
and active tension (or contractility) sa that depends on myosin concentration acording to
sa ¼ zf ð!mÞ, with f ð!mÞ and increasing function of the concentration !m and z a coefficient
that determines the magnitude of active tension.

The constitutive equation for an active viscous fluid is then given by Mayer et al. (2010)

s¼ hqxvðx; tÞþsað!mÞ : (6)

We choose for f ð!mÞ a saturating Hill-function, f ð!mÞ ¼ !mð!m0 þ 1Þ=ð!m þ 1Þ(Bois et al.,
2011; Kumar et al., 2014), to limit the active stress in our numerical simulations. Here, !m0

denotes the stationary concentration of NMY-2. Note that choosing a linear dependence
without saturation does not significantly change the stability diagram, see Figure 2—figure
supplement 2.

The force balance equation for an active viscous fluid in the presence of friction with a
coefficient g between the cortex and its surrounding cytoplasm and cell membrane
(Mayer et al., 2010; Bois et al., 2011; Kumar et al., 2014) is given by
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We described the dynamics of the cortical layer on the surface of the zygote by use of a full
mechanochemically coupled system containing an active gel description for the cortical layer
(Bois et al., 2011; Kumar et al., 2014) together with a reaction-diffusion-advection
equation system for active RhoA and NMY-2. For the latter, the concentrations of active
RhoA and NMY-2 in one dimension are given by !mðx; tÞ and !rðx; tÞ, respectively, where x

denotes position and t denotes time. The dynamics of the 1-D surface concentration vector

rðx; tÞ ¼ !mðx; tÞ; !rðx; tÞ½ %t is given by

qt!iðx; tÞþ qxjiðx; tÞ ¼ Riðrðx; tÞÞ (4)

jiðx; tÞ ¼ vðx; tÞ!iðx; tÞ'Diqx!iðx; tÞ ; (5)

where i 2 fm; rg, with m denoting NMY-2 and r denoting active RhoA. Here, vðx; tÞ
represents the gel velocity field determined by active cortical mechanics, see below.
Rmðrðx; tÞÞ and Rrðrðx; tÞÞ denote the respective fluxes of NMY-2 and active RhoAand from
the cytosol onto the surface via turnover and recruitment. Dm and Dr denote the respective
diffusion coefficients of active RhoA and NMY-2. We estimated the surface diffusion
coefficients of both active RhoA and myosin, by analyzing FRAP recovery in ANI-1::GFP and
NMY-2::GFP by use of a method considers of both turnover and lateral diffusion
(Goehring et al., 2010). This revealed in both cases that lateral (surface) diffusion was below
the detection limit and undistinguishable from zero. Hence, we expect surface diffusion of
myosin and active RhoA to not significantly impact the dynamics of the cortical layer.
However, for the purpose of preventing sharp peaks in concentration fields in our numerical

simulations, we here set Dr ¼ Dm ¼ 0:01 "m2=s. Note that the general results of our
numerical analysis do not change when increasing or decreasing either diffusion constant by
a factor of 10. Importantly, the fastest growing mode occurs for wavelengths of the order of
l in all cases (Figure 2—figure supplement 1).

We describe forces and flows within the cortical layer in the framework of active gel theory
(Bois et al., 2011; Kumar et al., 2014; Kruse et al., 2005; Mayer et al., 2010). We
consider the cortex to be a thin film active viscous fluid in 1D, where NMY-2 generates
active tension (Bois et al., 2011; Kumar et al., 2014; Mayer et al., 2010). Hence, total
tension

sin the layer is given by a sum of viscous tension arising characterized by a bulk viscosity h,
and active tension (or contractility) sa that depends on myosin concentration acording to
sa ¼ zf ð!mÞ, with f ð!mÞ and increasing function of the concentration !m and z a coefficient
that determines the magnitude of active tension.

The constitutive equation for an active viscous fluid is then given by Mayer et al. (2010)

s¼ hqxvðx; tÞþsað!mÞ : (6)

We choose for f ð!mÞ a saturating Hill-function, f ð!mÞ ¼ !mð!m0 þ 1Þ=ð!m þ 1Þ(Bois et al.,
2011; Kumar et al., 2014), to limit the active stress in our numerical simulations. Here, !m0

denotes the stationary concentration of NMY-2. Note that choosing a linear dependence
without saturation does not significantly change the stability diagram, see Figure 2—figure
supplement 2.

The force balance equation for an active viscous fluid in the presence of friction with a
coefficient g between the cortex and its surrounding cytoplasm and cell membrane
(Mayer et al., 2010; Bois et al., 2011; Kumar et al., 2014) is given by

Nishikawa et al. eLife 2017;6:e19595. DOI: 10.7554/eLife.19595 18 of 21

Research article Biophysics and Structural Biology

qxs¼ gv : (7)

Equations 6 and 7 provide an equation of motion

lq2xvþ
z0

l
qxf ð!mÞ%

1
l
v¼ 0 ; (8)

where l ¼
ffiffiffiffiffiffiffiffiffi

h=g
p

represents the hydrodynamic length of the cortex, which sets a correlation

length for the velocity field. We determined the parameters l and z0 ¼ z
g
that characterize

the active viscous fluid with a method that compares the relaxation dynamics of the cortex in
response to cortical laser ablation (COLA) between experiment and theoretical predictions

(l ¼ 14:3 "m, z0 ¼ 24:9 "m2=s) (Saha et al., 2016). Note that we ignored the polar or nematic
order of actin filament in the cortex, which can introduce the tension anisotropy. Based on
the recent study by Reymann et al. (Reymann et al., 2016), the alignment is mainly due to
large-scale cortical flow in one-cell stage C. elegans embryo, which has the highest
compressible component and nematic order parameter in the mid-zone of posterior.

Rescaling
We rescale the spatial coordinate with respect to l, and rewrite Equations 5–7 according to

~s¼ q~x~vþ ~sa

q~x~s¼ ~v

qt!i þ q~x~v!i % ~Diq
2
~x!i ¼ Rið!m;!rÞ;

(9)

with the following rescaled quantities

~x ¼ x=l
~v ¼ v

l

~s ¼ s
l2g

~sa ¼ z

l2g
f ð!mÞ

~Di ¼ D
l2
:

We performed numerical integrations of Equation 9 with periodic boundary conditions by
use of the pseudospectral method (Boyd, 2001).

Linear stability analysis
The homogeneous state with the concentrations r0 ¼ ð!r0; !m0Þt and a vanishing flow field
vðx; tÞ ¼ 0 can be a stationary state of the system. To test the stability of this stationary state,

we apply a small perturbation of d! ¼ r0 þ d!0 e2pinxþaðnÞt, where n and a denote spatial

frequency and eigenvalue, respectively. Inserting d! into Equation 9 and retaining linear
terms only, the linear stability matrix A with respect to the perturbation d! becomes

A¼4p2n2
%~Dr 0
0 %~Dm

" #

þ 4p2n2~zq!m f ð!m0Þ
4p2n2þ 1

0 !r0

0 !m0

" #

þV (10)

V¼
q!rRrðr0Þ q!mRrðr0Þ
q!rRmðr0Þ q!mRmðr0Þ

" #

; (11)
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IV - Mechano-chemical Instabilities

negative regulator of RhoA. Note that this does

not exclude the general possibility of negative
feedback between actin and RhoA (Robin et al.,

2016), but suggests that the C. elegans cortex is
normally operating in a regime where no such

negative feedback is accessed. While the detailed
mechanism as well as the kinetic interactions that

underlie RhoA pulsation in C. elegans remain to
be determined, the RhoGEF ect-2 is involved and

the system appears to undergo spatiotemporal
oscillations in the absence of negative feedback

between actin and RhoA.
We next sought to test in our theory if it is

possible that an active RhoA spatiotemporal
oscillator sets the myosin pattern beyond the

contractile instability (Figure 4A, left). To this
end, we described the dynamical behavior of an

active RhoA pacemaker by use of a generic

model of spatiotemporal oscillating patterns, the
complex Swift-Hohenberg Equation (Figure 4—

figure supplement 1A) (Sakaguchi, 1997).
Importantly, coupling in our model this generic

spatiotemporal oscillator (30 ~ s characteristic
timescale, 5 !m characteristic length scale,

Figure 3E,F; see Appendix for detail) to the full
mechanochemical patterning system does not

destroy the active RhoA spatiotemporal oscillator
pattern. Instead our model predicts that the myo-

sin pattern (which in the absence of the generic

oscillator formed a single traveling peak, see Fig-
ure 3—figure supplement 1) now follows that of

the active RhoA spatiotemporal oscillator
(Figure 4B left). Hence, the active RhoA oscillator

can determine the myosin pattern in the unstable
regime (Video 7). As a consequence, controlling

the myosin pattern also results in reduced cortical
flow speeds (peak flow speed: 0:17 !m=s) as com-

pared to the case where the RhoA oscillator is
absent (0:7 !m=s, see above). However, we find

that the ability of the RhoA oscillator to control

the myosin pattern critically depends on the level
of mechanochemical feedback. We demonstrate this by reducing the hydrodynamic length in our

model, which increases overall flow speeds and advection, and thereby increases the mechanochem-
ical feedback strength. We find in our model that this change destroys the pattern of the active

RhoA spatiotemporal oscillator. Both the myosin and active RhoA pattern no longer form a regular
spatiotemporal oscillation (Figure 4—figure supplement 1, l is reduced by 5 !m to 9 !m). Instead,

the system displays a dynamical state that is characterized by an irregular spatiotemporal pattern of
dynamic contracting regions that move rapidly (Figure 4B right; Figure 4—figure supplement 1;

Video 8). In this state, the pattern of active RhoA now depends on myosin and flows and is essen-
tially under control of the contractile instability. Finally, flow speeds are again increased and compa-

rable to the case when the RhoA oscillator is absent (peak flow speed: 0:94 !m=s). In conclusion,
theory indicates that the active RhoA oscillator can act as a pacemaker for the system, to control the

contractile instability and to prevent the formation of large and irregularly moving contracting

regions of myosin.
We next sought to seek experimental evidence that the myosin pattern in the C. elegans zygote

is under control of the RhoA pacemaker. To this end, we tested if increasing the level of mechanical
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Figure 3. Active RhoA exhibits pulsatory dynamics

under conditions of reduced myosin activity. (A,B)
AHPH::GFP (green) and NMY-2::RFP (magenta) in (A) a
representative let-502 RNAi and (B) a representative

nmy-2 RNAi embryo. (C,D) Normalized AHPH::GFP

intensity change autocorrelation (C) for (A) and (D) for
B, obtained within the posterior. (E,F) Characteristic (E)
spacing of AHPH patterns and (F) period of AHPH

intensity change in non-RNAi, nmy-2 RNAi, and let-502

RNAi embryos. Scale bars, 5 !m.

DOI: 10.7554/eLife.19595.013

The following figure supplements are available for

figure 3:

Figure supplement 1. Myosin forms traveling peaks

that are spaced approximately 2l apart.

DOI: 10.7554/eLife.19595.014

Figure supplement 2. Characteristic spacing of AHPH

foci.

DOI: 10.7554/eLife.19595.015
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Rho1GTP pulsations persists following 
inhibition of MyosinII

We have here investigated the mechanisms of pattern formation in an active system that com-
bines the contractile force generation and flow with regulation and advection. For this, we intro-

duced the COMBI method to directly infer reaction kinetics without relying for example on

photobleaching (Sprague et al., 2004). We determined the effective reaction kinetics of myosin and

active RhoA in the actomyosin cortex with COMBI. This allowed us to build a quantitative model of

mechanochemical patterning in the actomyosin layer. By use of linear stability analysis, we found

that the actomyosin cortex is unstable and spontaneously forms a self-organized pattern. We specu-

late that during embryogenesis cells need high cortical contractility to drive morphological changes.

This can lead them near or beyond contractile instabilities, leading to dynamics characterized by

strong fluctuations and irregular behavior, possibly exhibiting active turbulence (Giomi, 2015). We

suggest that such instabilities are inevitable in dynamic systems that are highly contractile. We dis-

covered a spatiotemporal RhoA oscillator that determines the myosin pattern even beyond the con-

tractile instability, thereby controlling the contractile instability. The independent biochemical RhoA
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Figure 4. A RhoA pacemaking oscillator controls the contractile instability. (A) Schematic of a mechanochemical

patterning system under control of a RhoA pacemaker, with (left) normal conditions and (right) with increased

mechanochemical feedback and with faster flows. (B) Numerically obtained space time plots of the myosin

distribution, for normal conditions (l ¼ 14:3 !m; left) and for a weakened cortex with increased mechanochemical

feedback (l ¼ 9 !m; right); see Appendix. (C) Kymographs of NMY-2 intensity under normal conditions (spd-5

RNAi; left) and under conditions of a weakened cortex (pfn-1 RNAi; right) obtained in mid-plane images and from

the yellow region illustrated in the inset image on the right. (D,E) Representative cortical plane images of (D)
NMY-2::tagRFP-T and (E) RhoA::GFP, dotted circles indicate foci. (F) Average cortical flow speed as a function of

direction under conditions of a normal cortex (dark blue: non-RNAi; light blue: spd-5 RNAi) as well as for a

weakened cortex (red: pfn-1 RNAi). (G) Radially averaged velocity orientation correlation function (Materials and

methods) for the same three conditions, note that the pfn-1 RNAi embryo cannot drive coherent flow over large

distances. Scale bars, 5 !m.

DOI: 10.7554/eLife.19595.019

The following figure supplement is available for figure 4:

Figure supplement 1. A RhoA pacemaking oscillator can control the myosin pattern in the model.

DOI: 10.7554/eLife.19595.020
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Pulsatile Rho1 signalling can entrain 
pulsatile contractility

Simulations

We have here investigated the mechanisms of pattern formation in an active system that com-
bines the contractile force generation and flow with regulation and advection. For this, we intro-

duced the COMBI method to directly infer reaction kinetics without relying for example on

photobleaching (Sprague et al., 2004). We determined the effective reaction kinetics of myosin and

active RhoA in the actomyosin cortex with COMBI. This allowed us to build a quantitative model of

mechanochemical patterning in the actomyosin layer. By use of linear stability analysis, we found

that the actomyosin cortex is unstable and spontaneously forms a self-organized pattern. We specu-

late that during embryogenesis cells need high cortical contractility to drive morphological changes.

This can lead them near or beyond contractile instabilities, leading to dynamics characterized by

strong fluctuations and irregular behavior, possibly exhibiting active turbulence (Giomi, 2015). We

suggest that such instabilities are inevitable in dynamic systems that are highly contractile. We dis-

covered a spatiotemporal RhoA oscillator that determines the myosin pattern even beyond the con-

tractile instability, thereby controlling the contractile instability. The independent biochemical RhoA
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The following figure supplement is available for figure 4:

Figure supplement 1. A RhoA pacemaking oscillator can control the myosin pattern in the model.

DOI: 10.7554/eLife.19595.020
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Experiments

We have here investigated the mechanisms of pattern formation in an active system that com-
bines the contractile force generation and flow with regulation and advection. For this, we intro-

duced the COMBI method to directly infer reaction kinetics without relying for example on

photobleaching (Sprague et al., 2004). We determined the effective reaction kinetics of myosin and

active RhoA in the actomyosin cortex with COMBI. This allowed us to build a quantitative model of

mechanochemical patterning in the actomyosin layer. By use of linear stability analysis, we found

that the actomyosin cortex is unstable and spontaneously forms a self-organized pattern. We specu-

late that during embryogenesis cells need high cortical contractility to drive morphological changes.

This can lead them near or beyond contractile instabilities, leading to dynamics characterized by

strong fluctuations and irregular behavior, possibly exhibiting active turbulence (Giomi, 2015). We

suggest that such instabilities are inevitable in dynamic systems that are highly contractile. We dis-

covered a spatiotemporal RhoA oscillator that determines the myosin pattern even beyond the con-

tractile instability, thereby controlling the contractile instability. The independent biochemical RhoA
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The following figure supplement is available for figure 4:

Figure supplement 1. A RhoA pacemaking oscillator can control the myosin pattern in the model.

DOI: 10.7554/eLife.19595.020
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Increasing the mechanical feedback (eg. 
increase advective flow speed via 
reduction of hydrodynamic length) 
causes more irregular instabilities 

M Nishikawa, SR Naganathan, F Jülicher and S. Grill. eLife, (2017) 6:e19595.
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illustration: Nigel Orme. 
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Rho1 positive Feedback is Independent of MyoII activation
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Rho1GAP decorates actin filaments and is recruited to the cell cortex by actin filaments

Michaux, Robin, et al, Figure 9
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delayed negative feedback inhibition

• Pulsatile contraction of actomyosin networks: a mechano-chemical model 
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Figure 2 Cortical F-actin waves in activated frog eggs are Rho-dependent
and are accompanied by Rho activity waves. (a) Kymograph from a control
activated frog egg expressing GFP–UtrCH to label F-actin. (a0) Kymograph
from an activated frog egg expressing GFP–UtrCH and dominant negative
Ect2. (a00) Kymograph from an activated frog egg expressing GFP–
UtrCH and C3 exotransferase to inactivate Rho. Arrowheads indicate
waves. (b) Plot of wave amplitude in controls versus cells expressing
dominant negative Ect2 or C3. Results are mean + s.d.; n = 100
waves; P=0.00012 for C3 versus control and 0.00015 for DN Ect2
versus control; t-test. (c) Activated frog egg expressing 3⇥GFP–rGBD
to label active Rho (see Supplementary Video 4): single frame (top)
and kymograph (bottom), raw (left) and subtracted data (right, t0–t�3),

highlighting rising Rho activity. The kymograph demonstrates that what
otherwise looks like mundane inhomogeneity in the still image actually
reflects regular waves of Rho activity; these are more evident in the
processed half of both the image and kymograph. (d) Activated frog egg
expressing 3⇥GFP–rGBD to label active Rho and subjected to low-level
overexpression of wild-type Xenopus Ect2 (see Supplementary Video 5);
figure processed and presented as in c. Waves are sharper (that is, have
higher amplitude) and more continuous than normal cells (compare with
c) and are clearly evident even without processing. c and d are derived
from average projections of 4 1 µm sections at 10 s intervals. Images are
representative of at least 30 (a), 3 (a0,a00,b), 4 (c) and 6 (d) independent
experiments, respectively.

movement of the cortex, which permitted quantification of wave run
length (maximum run length =25µm; mean=3.7 µm).

Ect2 regulates cortical Rho waves in activated Xenopus eggs
and embryos
C3 exotransferase, a specific Rho inhibitor, eliminated actin waves,
but not other forms of actin assembly, such as comets (Fig. 2a00,b
and Supplementary Fig. 2a). A dominant negative Ect2 (refs 2,13;
the conserved GEF involved in cytokinesis) also eliminated the actin
waves (Fig. 2a0,b and Supplementary Fig. 2b). We therefore sought to
detect concomitant waves of cortical Rho activity. A probe for active
Rho (GFP–rGBD; ref. 14) did not express quickly enough to detect
any Rho patterning other than the cytokinetic Rho zone. However,
Rho activity waves could be detected in activated eggs expressing
3⇥GFP–rGBD protein (c) or in embryos microinjected with recombi-
nant GFP–rGBD protein (Supplementary Fig. 2c). In addition, anillin,
a Rho e�ector protein15, also exhibits cortical waves (Supplementary

Fig. 2d) and low-level overexpression of wild-type Ect2 resulted in a
striking increase in the amplitude and regularity of the Rho waves
(Fig. 2d and Supplementary Fig. 2e and Supplementary Video 5).

Cortical Rho waves in starfish oocytes and embryos
In parallel experiments we discovered that Patiria miniata (starfish)
oocytes and embryos exhibit cortical Rho activity waves that, in
contrast to frog, are clearly visible only during a ⇠10–15min window
post-anaphase. At anaphase of meiosis I, Rho activity spread from
the vegetal pole towards the animal pole, culminating in polar
body emission (Fig. 3a and Supplementary Video 6). Low-level
overexpression of wild-type Ect2 profoundly amplified meiotic Rho
activity and extended its duration, producing extremely regular,
persistent (maximum run length = 55.8 µm; mean = 6.5 µm), high-
amplitude waves kinematically similar to those in frogs, including
overtly spiral repeating patterns (Fig. 3b,c and Supplementary
Video 7). Higher-magnification videos of normal starfish oocytes
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• Rho1 waves amplitude 
increased by RhoGEF
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Figure 2 Cortical F-actin waves in activated frog eggs are Rho-dependent
and are accompanied by Rho activity waves. (a) Kymograph from a control
activated frog egg expressing GFP–UtrCH to label F-actin. (a0) Kymograph
from an activated frog egg expressing GFP–UtrCH and dominant negative
Ect2. (a00) Kymograph from an activated frog egg expressing GFP–
UtrCH and C3 exotransferase to inactivate Rho. Arrowheads indicate
waves. (b) Plot of wave amplitude in controls versus cells expressing
dominant negative Ect2 or C3. Results are mean + s.d.; n = 100
waves; P=0.00012 for C3 versus control and 0.00015 for DN Ect2
versus control; t-test. (c) Activated frog egg expressing 3⇥GFP–rGBD
to label active Rho (see Supplementary Video 4): single frame (top)
and kymograph (bottom), raw (left) and subtracted data (right, t0–t�3),

highlighting rising Rho activity. The kymograph demonstrates that what
otherwise looks like mundane inhomogeneity in the still image actually
reflects regular waves of Rho activity; these are more evident in the
processed half of both the image and kymograph. (d) Activated frog egg
expressing 3⇥GFP–rGBD to label active Rho and subjected to low-level
overexpression of wild-type Xenopus Ect2 (see Supplementary Video 5);
figure processed and presented as in c. Waves are sharper (that is, have
higher amplitude) and more continuous than normal cells (compare with
c) and are clearly evident even without processing. c and d are derived
from average projections of 4 1 µm sections at 10 s intervals. Images are
representative of at least 30 (a), 3 (a0,a00,b), 4 (c) and 6 (d) independent
experiments, respectively.

movement of the cortex, which permitted quantification of wave run
length (maximum run length =25µm; mean=3.7 µm).

Ect2 regulates cortical Rho waves in activated Xenopus eggs
and embryos
C3 exotransferase, a specific Rho inhibitor, eliminated actin waves,
but not other forms of actin assembly, such as comets (Fig. 2a00,b
and Supplementary Fig. 2a). A dominant negative Ect2 (refs 2,13;
the conserved GEF involved in cytokinesis) also eliminated the actin
waves (Fig. 2a0,b and Supplementary Fig. 2b). We therefore sought to
detect concomitant waves of cortical Rho activity. A probe for active
Rho (GFP–rGBD; ref. 14) did not express quickly enough to detect
any Rho patterning other than the cytokinetic Rho zone. However,
Rho activity waves could be detected in activated eggs expressing
3⇥GFP–rGBD protein (c) or in embryos microinjected with recombi-
nant GFP–rGBD protein (Supplementary Fig. 2c). In addition, anillin,
a Rho e�ector protein15, also exhibits cortical waves (Supplementary

Fig. 2d) and low-level overexpression of wild-type Ect2 resulted in a
striking increase in the amplitude and regularity of the Rho waves
(Fig. 2d and Supplementary Fig. 2e and Supplementary Video 5).

Cortical Rho waves in starfish oocytes and embryos
In parallel experiments we discovered that Patiria miniata (starfish)
oocytes and embryos exhibit cortical Rho activity waves that, in
contrast to frog, are clearly visible only during a ⇠10–15min window
post-anaphase. At anaphase of meiosis I, Rho activity spread from
the vegetal pole towards the animal pole, culminating in polar
body emission (Fig. 3a and Supplementary Video 6). Low-level
overexpression of wild-type Ect2 profoundly amplified meiotic Rho
activity and extended its duration, producing extremely regular,
persistent (maximum run length = 55.8 µm; mean = 6.5 µm), high-
amplitude waves kinematically similar to those in frogs, including
overtly spiral repeating patterns (Fig. 3b,c and Supplementary
Video 7). Higher-magnification videos of normal starfish oocytes
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(that is, oocytes not subject to Ect2 overexpression) showed that
much of the meiotic Rho activity comprised low-amplitude, rapidly
damped cortical waves (Fig. 3d and Supplementary Video 8). Rho
activity subsided before onset of meiosis II, reappeared coincident
with anaphase of meiosis II, again spreading from the vegetal to the
animal pole, and culminated in polar body emission (not shown). In
the largest mitotic cells, waves of cortical Rho activity also formed at
anaphase onset, but were rapidly lost from polar regions and instead
were confined to the equatorial cortex (Fig. 3e and Supplementary
Fig. 3a,b). Waves initially dominated the furrow region itself, but
as the furrow ingressed, relatively stable patches of Rho activity
eventually merged into a coherent cytokinetic Rho zone (Fig. 3e
and Supplementary Fig. 3b–d). As cells decreased in size, the time
window in which polar waves were apparent after anaphase onset
became narrower, as did the prominence of waves in the furrow itself
(Supplementary Fig. 3c,d).

Spatio-temporal coordination of Rho and actin waves
Simultaneous imaging of active Rho and F-actin within the cleavage
furrow of control starfish zygotes and frog blastomeres revealed
another surprise: instead of overlapping, F-actin assembly fronts
directly follow Rho activity waves (Fig. 4a,b and Supplementary
Video 9). The same pattern (high-amplitude Rho waves followed by
F-actin waves) was triggered globally in both activated frog eggs and
starfish oocytes or mitotic cells by Ect2 overexpression (Fig. 4c–e and
Supplementary Videos 10–12). In all cases (except once waves cede
to coherent zones, for example, in progressing furrows) peak actin
assembly coincides spatially with decreasing Rho activity, and a latent
period with relatively low cortical Rho and actin follows each cycle.
Although superficially similar to calciumwaves that develop following
expression of exogenous neurotransmitter receptors16, the Rho and
actin waves are ⇠10 times slower than calcium waves and are not
associated with elevated calcium (not shown).

To quantitatively characterize the wave pattern, we performed
spatial and temporal autocorrelation analyses17,18. These analyses
demonstrated that in starfish oocytes both Rho and actin waves
had a wavelength of 18 µm and propagated with the same velocity,
⇠0.225 µms�1 (Fig. 4f,g). In activated frog eggs, thewaveswere slower,
⇠0.18 µms�1, and longer, ⇠21 µm. Importantly, analysis of the cross-
correlation between Rho and F-actin signals showed that F-actin
waves followed Rho with a fixed delay, 18 s in starfish and 48 s in frog.
Thus, Rho and F-actin waves are mutually coordinated parts of the
same wave pattern. Furthermore, such a constant time delay suggests
that F-actin might e�ectively suppress Rho activation.

Rho–actin waves represent cortical excitability leading to spiral
turbulence
Propagating waves that undergo self-annihilation on collision suggest
excitable dynamics19. Excitable media generate waves that travel
without damping because they are generated de novo by rapid local
autoactivation at their front and extinguished at their wake by delayed
negative feedback. Rho is a good candidate for the activator as small
GTPases can indirectly activate themselves autocatalytically20. On
the basis of our kinematic observations, F-actin seemed a promising
candidate for negative feedback. To test this possibility, we exploited
the fact that quantitative relationships between Rho and F-actin can

be directly inferred from imaging data17 (seeMethods). In cortical loci
(image pixels) with low F-actin signal, the rate of Rho signal change
and the value of Rho signal itself are statistically positively correlated
(Fig. 5a). As F-actin concentration is low at the front of the excitable
wave, this correlation implies that, at the wavefront, Rho amplifies
itself in a positive feedback loop, which is the required property of
the activator. Likewise, F-actin assembly positively correlates with
Rho activity at the wavefront (Fig. 5b), and Rho activity negatively
correlates with F-actin accumulation at the wave back (Fig. 5c). We
already established that Rho activity is required for actin assembly
waves and that amplifying Rho activity elicits excess actin assembly;
the correlative image analysis, thus, quantitatively confirms the
dynamic relationship expected for the activator–inhibitor coupling
(see Supplementary Fig. 4a–c).

What factors shape the wave patterns? Random fluctuations in
F-actin density and concentrations of other proteins are necessary to
induce dynamics in excitable cellular systems19. However, occasionally
visible fragments of spiral waves (Fig. 3c and Supplementary
Videos 7, 10 and 11) suggest an underlying behaviour much more
complex than simply uncorrelated spatio-temporal noise. To reveal
it, we reconstructed the phase of the excitable dynamics using
a recently developed procedure21 (Fig. 5d–f and Methods). This
approach revealed multiple spiral waves (normally obscured by noise)
whose cores spontaneously emerge, erratically move and disappear
generating spiral wave turbulence. Although most spiral cores were
very short lived (a few seconds), some persisted for up to ⇠59min
(Supplementary Video 13), reminiscent of the self-sustained spiral
waves that emerge from the ends of broken wavefronts of cardiac
excitation and cause atrial fibrillation in the heart22.

Antagonism of Rho by F-actin
The excitability model predicts that restricting F-actin assembly
would extend the rising phase of Rho activation, resulting in
waves with higher amplitude and crest widths. Treatment of starfish
oocytes overexpressing Ect2 with latrunculin B to reduce F-actin
caused global collapse of cortical F-actin and increased Rho activity
(Supplementary Fig. 5a); conversely, treatment with jasplakinolide to
stabilize F-actin attenuated Rho waves (Supplementary Fig. 4e,e0).
Local F-actin disruption bymeans of latrunculin B-filledmicroneedles
positioned near the cell surface was more informative: high needle
concentrations (>5µM) of latrunculin caused rapid local dissolution
of cortical actin and a parallel burst of Rho activity (Fig. 5g
and Supplementary Video 14), which tapered o� after the entire
cortical actin network dissolved. Lower concentrations (1–0.5 µM;
Fig. 5h and Supplementary Video 15), or greater distance from
the needle (Fig. 5g, lower cell), resulted in slower loss of cortical
F-actin and a corresponding amplification of Rho wave amplitude
and crest width. Importantly, when applied at concentrations that
permitted some residual actin assembly to cells with active waves,
latrunculin induced a sustained shift to higher wave amplitude
and longer period (Fig. 5h). Similar results, albeit less pronounced,
were observed in latrunculin-treated normal cells (Supplementary
Fig. 5). This directly confirms that F-actin assembly somehow
suppresses Rho activation, supporting a model of cortical excitability
in which F-actin-dependent Rho inhibition represents the essential
negative feedback.
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Figure 5 Analysis of Rho and F-actin dynamics reveals cortical excitability and
spiral turbulence. (a) The Rho activation rate (mean± s.d.) increases with Rho
activity signal indicating that Rho activates itself in a positive feedback loop.
Correlation assessed from pixels with low F-actin signal (see Supplementary
Fig. 4a). (b) The F-actin accumulation rate is positively correlated with
Rho activity (assessed from pixels with low F-actin signal). (c) The Rho
activation rate is inversely correlated with F-actin signal, to the point of
switching to inactivation at high F-actin density (assessed from pixels with
high Rho activity signal). Results are mean + s.d.; n=900 cycles. (d) Each
cortical locus (image pixel) can be mapped by its particular values of Rho
activity and F-actin density to a single phase value, an angle between 0
and 2⇡, shown in rainbow colours: Cortical loci at the front of waves appear
green, loci at Rho wave crests as cyan, at F-actin wave crests as dark blue–
magenta, and loci at the back of the wave are red and orange. (e) Phase
reconstruction for a starfish oocyte overexpressing Ect2 (Supplementary
Video 13). Points where all rainbow colours (phase values) merge indicate

spiral cores (arrows). Inset: magnification of spiral wave core neighbourhood
outlined by the dashed line. (f) Phase reconstruction for an activated frog
egg overexpressing Ect2. (g) Meiotic Ect2-overexpressing starfish zygotes
containing GFP–rGBD (Rho activity; malachite) and mCherry–Utr (F-actin;
copper); time-lapse sequence after application of a high concentration of
latrunculin B (10 µM) from an agarose-filled pipette (position indicated by
cartoon); treatment causes rapid cortical F-actin collapse and a corresponding
burst of Rho activation (see Supplementary Video 14). Insets: single-channel
images of cells/stages indicated by numerals: (1) initial response, (2) wave
regime on far side, collapse on near side, (3) total collapse, (4) wave
regime on near side of distant oocyte. (h) Similar to g, but low-dose (1 µM)
latrunculin B induces a shift from the typical Ect2-enhanced wave regime to a
higher-amplitude, longer-period wave regime, in which large-scale Rho waves
propagate away from the site of local F-actin disassembly (see Supplementary
Video 15); rightmost image is a kymocube rendered using ImageJ. Images are
representative of 5 independent experiments.
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magenta, and loci at the back of the wave are red and orange. (e) Phase
reconstruction for a starfish oocyte overexpressing Ect2 (Supplementary
Video 13). Points where all rainbow colours (phase values) merge indicate

spiral cores (arrows). Inset: magnification of spiral wave core neighbourhood
outlined by the dashed line. (f) Phase reconstruction for an activated frog
egg overexpressing Ect2. (g) Meiotic Ect2-overexpressing starfish zygotes
containing GFP–rGBD (Rho activity; malachite) and mCherry–Utr (F-actin;
copper); time-lapse sequence after application of a high concentration of
latrunculin B (10 µM) from an agarose-filled pipette (position indicated by
cartoon); treatment causes rapid cortical F-actin collapse and a corresponding
burst of Rho activation (see Supplementary Video 14). Insets: single-channel
images of cells/stages indicated by numerals: (1) initial response, (2) wave
regime on far side, collapse on near side, (3) total collapse, (4) wave
regime on near side of distant oocyte. (h) Similar to g, but low-dose (1 µM)
latrunculin B induces a shift from the typical Ect2-enhanced wave regime to a
higher-amplitude, longer-period wave regime, in which large-scale Rho waves
propagate away from the site of local F-actin disassembly (see Supplementary
Video 15); rightmost image is a kymocube rendered using ImageJ. Images are
representative of 5 independent experiments.
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switching to inactivation at high F-actin density (assessed from pixels with
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activity and F-actin density to a single phase value, an angle between 0
and 2⇡, shown in rainbow colours: Cortical loci at the front of waves appear
green, loci at Rho wave crests as cyan, at F-actin wave crests as dark blue–
magenta, and loci at the back of the wave are red and orange. (e) Phase
reconstruction for a starfish oocyte overexpressing Ect2 (Supplementary
Video 13). Points where all rainbow colours (phase values) merge indicate

spiral cores (arrows). Inset: magnification of spiral wave core neighbourhood
outlined by the dashed line. (f) Phase reconstruction for an activated frog
egg overexpressing Ect2. (g) Meiotic Ect2-overexpressing starfish zygotes
containing GFP–rGBD (Rho activity; malachite) and mCherry–Utr (F-actin;
copper); time-lapse sequence after application of a high concentration of
latrunculin B (10 µM) from an agarose-filled pipette (position indicated by
cartoon); treatment causes rapid cortical F-actin collapse and a corresponding
burst of Rho activation (see Supplementary Video 14). Insets: single-channel
images of cells/stages indicated by numerals: (1) initial response, (2) wave
regime on far side, collapse on near side, (3) total collapse, (4) wave
regime on near side of distant oocyte. (h) Similar to g, but low-dose (1 µM)
latrunculin B induces a shift from the typical Ect2-enhanced wave regime to a
higher-amplitude, longer-period wave regime, in which large-scale Rho waves
propagate away from the site of local F-actin disassembly (see Supplementary
Video 15); rightmost image is a kymocube rendered using ImageJ. Images are
representative of 5 independent experiments.
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Mechanical Feedbacks:
• Tension dependent MyosinII unbinding kinetics (strain dependent stabilisation)
    

            
• Tension-dependent filament assembly/disassembly

• Tension dependent activation of MyoII

• Advection driven concentration of upstream activators

IV - Mechano-chemical Instabilities

• Mechanical feedbacks:

Y. Ren et al D. Robinson Curr. Biol. 19:1421  2009 (via actin cross linker Cortexilin)
Effler et al D. Robinson Curr. Biol. 16:1962  2006
Luo et al D. Robinson Biophy. J. 102:238  2012

K. Vijay Kumar, J. Bois, Frank Jülicher and Stephan Grill. PRL.  (2014). 112, 208101
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K. Hayakawa et al, M. Sokabe. JCB 195:721  2011 ( tension suppresses Cofilin binding) 
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Pulsation of Myosin-II and its activators Rho1GTP, ROK
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Data Fig. 9c, f). During assembly the ratio of mCherry and GFP chan-
nels remained constant (though at different values) pre- and post-
bleaching, indicating low turnover (Extended Data Fig. 9b–d, h).
During disassembly, however, the ratio recovered to ,50% post-
bleaching, suggesting a higher turnover (Extended Data Fig. 9e–h).
In addition, we found that MyoII advection rates gradually declined
and reached a minimum when MyoII intensity reached a maximum
(Fig. 4m). What causes this reduction of advection? As in junctions

(Extended Data Fig. 3f, g), recruitment and densification of medial
actomyosin networks could increase local friction or tension, thereby
reducing advection. Indeed, the advection velocity was reduced when
medial MyoII concentration was high (Extended Data Fig. 8b and
Fig. 4n), orwhen F-actin networksweremade denser by the expression
of a constitutively active form of a Rho1-activated actin nucleator
termed ‘diaphanous’ (lacking the domains responsible for intramole-
cular inhibition)7 (Supplementary Video 9 and Fig. 4n). Conversely,
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Non-linear amplification of
MyosinII recruitment during
pulse assembly

and Extended Data Fig. 1d, e). A similar distribution was observed for
GFP-tagged phosphomimetic RLC. Phosphomimetic RLC–GFP is not
viable in thepresence of the null allele ofDrosophilaRLC13, andwas thus
co-expressed with mCherry-tagged wild-type RLC (Extended Data Fig.
2a). In these embryos, a pharmacological Rok inhibitor (40mM
Y27632) specifically decreased the recruitment of wild-type RLC, while
phosphomimetic RLC remained at junctions (Extended Data Fig. 2a, b)
and exhibited a dose-dependent reduction of planar polarity (Fig. 1b).
Diminished planar polarity in these conditions was due to higher
recruitment of MyoII at transverse junctions compared to controls
(Extended Data Fig. 2e). Conversely, over expression of a constitutively
active mutant of MBS that lacks the target site regulated by Rok
(MBSN300)11, reduced MyoII levels at junctions (Extended Data Fig.
2c–e) indicative of Rok-dependentMBS inhibition on vertical junctions.
Thus, steady-state levels of MyoII at junctions depend on RLC
phospho-cycling18 suggesting that its polarized distribution requires
Rok-dependent recruitment and MyoII phosphatase-dependent
dissociation.
We tested this hypothesis by fluorescence recovery after photo-

bleaching (FRAP). The mobile fraction from FRAP gives an estimate
of the pool available for exchange (Fig. 1c). Junctional RLC exhibits
lower turnover at vertical compared to transverse junctions19

(Extended Data Fig. 3a, c and Fig. 1c). Expression of the constitutively
active MBS resulted in higher mobile fraction of RLC on all junctions
(Fig. 1c). Mobile fraction was reduced in transverse junctions inMypt-
75d RNAi embryos and was lower than the mobile fraction of vertical
junctions in controls (Extended Data Fig. 3b, c and Fig. 1c). Similarly,
the mobile fraction of phosphomimetic RLC became progressively
lower when the endogenous wild-type RLC was reduced by inhibiting
Rok (Y27632; Extended Data Fig. 3d). Reduced dephosphorylation
resulted in higher tension at the transverse junctions as measured by
focal laser ablation16,19,20(Extended Data Fig. 3e–g). Together these
results show that control over the proportion and cycling of phos-
phorylated RLC determines the polarized stability of MyoII.
We next determined the distribution of MyoII phosphatase at cell

junctions. MBS tagged with GFP21 (MBS–GFP; Fig. 1d) showed 30%
enrichment at vertical compared to transverse junctions (Extended
Data Fig. 4a). We measured the enrichment of MBS–GFP relative to
MyoII and compared it to the enrichment of Rok relative to MyoII
using a GFP-tagged wild-type version22 (overexpression; Extended
Data Fig. 4b) and a kinase-dead version (K116A) which faithfully
recapitulates Rok localization23. Rok, likeMyoII, is enriched on vertical
junctions24, and the ratio of wild-type Rok:RLC (Extended Data
Fig. 4c) and kinase-dead Rok:RLC (Fig. 1e) was 1 at all junctions,
showing positive correlation. The ratio of MBS:RLC was greater than
1 on transverse junctions and less than 1 on vertical junctions (Fig. 1e),
indicative of an inverse correlation. Thus, the respective distributions
of Rok andMBS regulate the stability and dissociation of MyoII at the
junctions to establish planar polarity (Fig. 1f).
We next asked whether this biochemical network underlying

polarity of MyoII also explains the temporal dynamics manifested
in medial pulsatility. It was reported that bypassing upstream regu-
lation of RLC abolishes MyoII pulsatility15. However, how pulses
emerge from the dynamics of MyoII and its upstream regulators
is unclear. Actomyosin pulses consist of two events: assembly, char-
acterized by local increase of apical F-actin (visualized by the actin
binding domain of utrophin, UtrABD–GFP)6 and MyoII mini-
filaments concomitant with coalescence, followed by disassembly
(Supplementary Video 1 and Fig. 2a). Importantly, MyoII pulses
are dominated by recruitment rather than densification of mini-
filaments (85%) (Fig. 2b, h), suggesting that the upstream regulators
could likewise be pulsatile and entrain MyoII pulsatility. Notably,
both Rok (wild-type and kinase-dead) and MBS were pulsatile with
duration comparable to MyoII pulses and amplitude dominated by
incorporation from the cytoplasm (75%) (Supplementary Video 2,
Fig. 2c–i and Extended Data Fig. 4d).

We postulated an upstream pacemaker hypothesis whereby the
pulsatility of Rok and MBS is entrained by the molecular switching
of their regulator Rho1 GTPase between active-GTP and inactive-
GDP forms (Fig. 2j). Indeed, Rho1 is required for MyoII activation.
Injection of the C3 exoenzyme, a Rho1 GTP inhibitor25, significantly
reducedMyoII apical recruitment (ExtendedData Fig. 5a–c). Likewise,
a constitutively active Rho1 (RhoV14) led to precocious accumulation
of MyoII with increased pulse amplitude and duration, and lower fre-
quency (SupplementaryVideo 3 andExtendedData Fig. 5d–h). To view
the activity of Rho1, we constructed a sensor by tagging the Rho1 GTP-
binding domain of anillin26 (AniRBD) to GFP. AniRBD–GFP was pre-
sent at apical junctions, exhibited 20% enrichment on vertical junctions
(data not shown) and was pulsatile (Supplementary Video 4 and
Fig. 2g–l). C3 exoenzyme injection led to a significant reduction of
AniRBD–GFP at junctions and loss of medio-apical pulsatility
(Extended Data Fig. 5a–c) confirming it to be a sensor of Rho1 GTP.
We tested the upstream pacemaker model by doing cross-correla-

tion analysis between medial intensity time traces of RLC–mCherry
and either kinase-dead Rok–GFP, MBS–GFP or AniRBD–GFP
(Fig. 3a). The correlation was strong in all cases (Pearson’s correlation
coefficients were 0.8 for Rok, 0.7 for MBS and 0.5 for AniRBD). While
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Figure 2 | MyoII pulses with its regulators Rok, MBS and Rho1 GTP.
a, Medial F-actin densification, MyoII recruitment, coalescence and
disassembly. b, An example of medial MyoII intensity and apical area time
trace. c, e, Medial pool of kinase-dead Rok (RokKD)–GFP (c) and MBS–GFP
(e) co-expressed with RLC::mCherry respectively. d, f, Corresponding
medial intensity time traces. g, Average pulse amplitude. h, Average per cent
contribution of recruitment to the pulse amplitude. i, Average duration of
pulses. j, Biochemical pathway responsible for RLC activation (-P represents
phosphorylation). k, Medial pool of AniRBD–GFP co-expressed with RLC–
mCherry. l, Corresponding medial intensity time traces. p, number of pulses;
e, number of embryos. Scale bars, 1mm.
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IV - Mechano-chemical Instabilities

• Mechanical feedback in excitable actomyosin networks
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Data Fig. 9c, f). During assembly the ratio of mCherry and GFP chan-
nels remained constant (though at different values) pre- and post-
bleaching, indicating low turnover (Extended Data Fig. 9b–d, h).
During disassembly, however, the ratio recovered to ,50% post-
bleaching, suggesting a higher turnover (Extended Data Fig. 9e–h).
In addition, we found that MyoII advection rates gradually declined
and reached a minimum when MyoII intensity reached a maximum
(Fig. 4m). What causes this reduction of advection? As in junctions

(Extended Data Fig. 3f, g), recruitment and densification of medial
actomyosin networks could increase local friction or tension, thereby
reducing advection. Indeed, the advection velocity was reduced when
medial MyoII concentration was high (Extended Data Fig. 8b and
Fig. 4n), orwhen F-actin networksweremade denser by the expression
of a constitutively active form of a Rho1-activated actin nucleator
termed ‘diaphanous’ (lacking the domains responsible for intramole-
cular inhibition)7 (Supplementary Video 9 and Fig. 4n). Conversely,
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Data Fig. 9c, f). During assembly the ratio of mCherry and GFP chan-
nels remained constant (though at different values) pre- and post-
bleaching, indicating low turnover (Extended Data Fig. 9b–d, h).
During disassembly, however, the ratio recovered to ,50% post-
bleaching, suggesting a higher turnover (Extended Data Fig. 9e–h).
In addition, we found that MyoII advection rates gradually declined
and reached a minimum when MyoII intensity reached a maximum
(Fig. 4m). What causes this reduction of advection? As in junctions

(Extended Data Fig. 3f, g), recruitment and densification of medial
actomyosin networks could increase local friction or tension, thereby
reducing advection. Indeed, the advection velocity was reduced when
medial MyoII concentration was high (Extended Data Fig. 8b and
Fig. 4n), orwhen F-actin networksweremade denser by the expression
of a constitutively active form of a Rho1-activated actin nucleator
termed ‘diaphanous’ (lacking the domains responsible for intramole-
cular inhibition)7 (Supplementary Video 9 and Fig. 4n). Conversely,
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Data Fig. 9c, f). During assembly the ratio of mCherry and GFP chan-
nels remained constant (though at different values) pre- and post-
bleaching, indicating low turnover (Extended Data Fig. 9b–d, h).
During disassembly, however, the ratio recovered to ,50% post-
bleaching, suggesting a higher turnover (Extended Data Fig. 9e–h).
In addition, we found that MyoII advection rates gradually declined
and reached a minimum when MyoII intensity reached a maximum
(Fig. 4m). What causes this reduction of advection? As in junctions

(Extended Data Fig. 3f, g), recruitment and densification of medial
actomyosin networks could increase local friction or tension, thereby
reducing advection. Indeed, the advection velocity was reduced when
medial MyoII concentration was high (Extended Data Fig. 8b and
Fig. 4n), orwhen F-actin networksweremade denser by the expression
of a constitutively active form of a Rho1-activated actin nucleator
termed ‘diaphanous’ (lacking the domains responsible for intramole-
cular inhibition)7 (Supplementary Video 9 and Fig. 4n). Conversely,

0.01

0.02

0.03

0.04

–60 –40 –20 0 20 40

–0.02

–0.01

0
0 1 2 3 4

RLC (n = 15 pulses,4 embryos, P < 0.00005)
AniRBD (n = 10 pulses, 4 embryos, P < 0.005)
MBS (n = 8 pulses, 4 embryos P < 0.05)
RokKD (n = 9 pulses, 4 embryos, P < 0.005)

Radius (μm)

–0.020

–0.015

–0.010

–0.005

0

0.005

0 1 2 3 4 5
Radius (μm)

P < 0.005
P < 0.05

**
***
*

D
iv

er
ge

nc
e 

(s
–1

)

Monomeric MyoII

Kbinding (recruitment) 

MyoII mini-filament

Rok

Kunbinding (dissociation) 

Advection

MyoII phosphatase

F-actin

a

W
T 

R
LC

 +
M
yp
t R

N
A

i 40 s40 s 80 s80 s 120 s120 s0 s0 s

40 s40 s 80 s80 s 120 s120 s0 s0 s

j

m

EE
 R

LC
 +

Y
27

63
2 

40
 m

M 0 s0 s 40 s40 s 80 s80 s 120 s120 s

EE
 R

LC
 +

Y
27

63
2 

10
 m

M

> 1
Recruitment + advection

Dissociation
≈ 1

Recruitment + advection

Dissociation
< 1

Recruitment + advection

Dissociation

Pulse assembly Pulse disassemblyp

1

1.2

1.4

1.6

1

1.2

1.4

–40 –20 0 20 40

Disassembly

M
ean advection velocity
(norm

alized to V
m

in )M
ea

n 
M

yo
II 

in
te

ns
ity

WT RLC: (n = 25 pulses, 4 embryos)

(n
or

m
al

iz
ed

 to
 I m

in
)

R
ad

iu
s 

(μ
m

)

Radius (μm)

W
T 

R
LC

 +
C

A
-M

B
S

0 s0 s 20 s20 s 60 s60 s 80 s80 s

40 s40 s 60 s60 s 120 s120 s0 s0 s

 R
LC

–m
C

he
rr

y 
R

ok
K

D
–G

FP
+ 

D
M

S
O

R
LC

–m
C

he
rr

y 
R

ok
K

D
–G

FP
+ 

cy
to

ch
al

as
in

 D
U

tr
A

B
D

R
LC

Radius (μm)

A
dvection velocity

 (μm
 s

–1)
D

ivergence (s
–1)

D
iv

er
ge

nc
e 

(s
–1

)

θ

3

0

3

3 0 3 3 0 3

0.02

0

–0.02

0.01

–0.01

UtrABD RLC

D
ivergence (s

–1)

3

0

3

0.02

0

–0.02

0.01

–0.01

0 33 0 33 0 33

P
ul

se
 a

m
pl

itu
de

 (a
.u

.)

0

20

40

60

80

RokKD MyoII

DMSO (n = 3 embryos)
cytoD (n = 3 embryos)

45
 p

ul
se

s 41
 p

ul
se

s

45
 p

ul
se

s

41
 p

ul
se

s

P < 0.0005

P < 0.0005

UtrABD + cytoD RLC + cytoD UtrABD + H1152

c

e

f

i

h

k

n o

b

Positive correlationNegative correlation

Cosine similarity with RLC–mCherry

R
el

at
iv

e 
fre

qu
en

cy

–1.0 –0.5 0.0 0.5 1.0
0.0

0.2

0.4

 AniRBD (n = 10 pulses, P < 0.05)
 RokKD (n = 11 pulses, P < 0.005)
 
MBS (n = 8 pulses, P < 0.0005) 
UtrABD (n = 14 pulses, P < 0.0005) 
Control (n = 10 pulses)

rad.rad.

Convergence Divergence

g

M
ed

ia
l i

nt
en

si
ty

 (a
.u

.) 

Time (s) 
0 100 200 300

100

200

300

400

WT + Water
EE + Y27632 10 mM
 WT + Mypt RNAi

  
EE + Y27632 40 mM

l

WT (n = 25 pulses, 4 embryos)
AA (n = 18 pulses, 4 embryos, P < 0.05)
WT + DMSO (n = 22 pulses, 3 embryos)
WT + cytoD (n = 20 pulses,
3 embryos, P < 0.05)

0

0.01

0.02

0.03

–60 –40 –20 0 20 40

A
dvection velocity

 (μm
 s

–1)

WT (n = 25 pulses, 4 embryos)
EE + 10 mM Y27632
(n = 21 pulses, 3 embryos, P < 0.05)
WT + CA-Dia (n = 16 pulses, 
3 embryos, P < 0.05)

Time (s) 

d

R
ad

iu
s 

(μ
m

)

Assembly

Time (s) 

0.04

Time (s) 

UtrABD (n = 14 pulses, 4 embryos, P < 0.00005)
RLC (n = 14 pulses, 4 embryos, P < 0.00005)
UtrABD + cytoD (n = 12 pulses, 4 embryos, P < 0.00005)
RLC + cytoD (n = 12 pulses, 4 embryos, P < 0.00005)
UtrABD + H1152 (n = 14 pulses, 4 embryos, P = 0.12)
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Data Fig. 9c, f). During assembly the ratio of mCherry and GFP chan-
nels remained constant (though at different values) pre- and post-
bleaching, indicating low turnover (Extended Data Fig. 9b–d, h).
During disassembly, however, the ratio recovered to ,50% post-
bleaching, suggesting a higher turnover (Extended Data Fig. 9e–h).
In addition, we found that MyoII advection rates gradually declined
and reached a minimum when MyoII intensity reached a maximum
(Fig. 4m). What causes this reduction of advection? As in junctions

(Extended Data Fig. 3f, g), recruitment and densification of medial
actomyosin networks could increase local friction or tension, thereby
reducing advection. Indeed, the advection velocity was reduced when
medial MyoII concentration was high (Extended Data Fig. 8b and
Fig. 4n), orwhen F-actin networksweremade denser by the expression
of a constitutively active form of a Rho1-activated actin nucleator
termed ‘diaphanous’ (lacking the domains responsible for intramole-
cular inhibition)7 (Supplementary Video 9 and Fig. 4n). Conversely,
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Figure 4 | Pulsatility is an emergent behaviour of a biomechanical network.
a, Vector fields of UtrABD and RLC averaged over pulse assembly. Inset
illustrates the principle of cosine similarity. Dotted box illustrates the
perimeter of a square for calculating divergence as a function of radius (rad.).
b, Distribution of cosine similarity indices from average vector fields. P values
calculated with Kolmogorov–Smirnov test. c, Heat map of average
divergence values. d, Plot shows average divergence values as a function of
radius. P values calculated with one-sample t-test. e, Time snapshots of
embryos co-expressing RLC–mCherry and kinase-dead Rok (RokKD)–GFP
injected either with DMSO or cytochalasin D. f, Average pulse amplitudes in
these conditions. P values calculated with Mann–Whitney U-test. g, Average
divergence values in embryos injected with either cytochalasin D or

H1152. h, Plot shows average divergence values as a function of radius in
various conditions. P values in brackets: one-sample t-test; P values above
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there is appreciable forward progress of the wave, suggesting
that the recruited Hem-1 protein dynamically equilibrates
with the cytosolic pool and that the bulk of wave movement is
generated by recruiting more Hem-1 from the cytosol (Figure
3A and 3C, Video S11). Recruited Hem-1 only transiently
associates with the membrane (half life t1/2¼ 6.4 s, Figure 3C,
second panel). Hem-1 recruitment occurs with high proba-
bility adjacent to existing membrane-bound Hem-1 (99% 6
1% of newly-observed Hem-1 is observed within 0.2 lm of
existing Hem-1 foci and 0.15% 6 .1% is observed greater
than 0.2 lm away. The distribution that would be expected
for random Hem-1 association with the membrane would be
50.3% 6 14% within 0.2 lm of existing Hem-1 foci and
48.5% 6 13% more than 0.2 lm from existing Hem-1 foci).

Actin polymer is required for the rapid equilibration of
Hem-1 with the cytoplasmic pool. When latrunculin is added
to depolymerize filamentous actin, the photobleached Hem-1
spot is stable for at least 10 min, after which the cells detach
from the substrate (Figure 3B). Collectively, these data make
two important points. First, Hem-1 waves move by sequential
rounds of protein recruitment, not by a significant amount of
movement of individual Hem-1 complexes in the plane of the
membrane. Second, the observed rapid recycling of recruited
Hem-1 depends on polymeric actin.

Hem-1 Wavefronts Generate Zones of Inhibition and
Annihilate upon Collision
Particularly in cells with a single strong peripheral Hem-1

wave and multiple interior waves, a gap between waves can be

Figure 1. Hem-1 Component of the WAVE2 Complex Localizes to Multiple Propagating Waves in Chemoattractant-Stimulated HL-60 Cells

(A) HL-60 cells expressing Hem-1-YFP continually exposed to chemoattractant (20 nM fMLP)—see Video S1 and Video S2. Hem-1 initially concentrates in
foci, which form outwardly propagating waves that eventually develop into a polarized accumulation of Hem-1 at the leading edge (denoted by arrow
at 112 s). Panels five and six overlay successive Hem-1 distributions in red, blue, and green successively.
(B) Hem-1 waves concentrate at the ruffled leading edge of polarized cells (leading edge identified by arrow in Nomarski panel). Nomarski (Video S3),
Hem-1-YFP (Video S4), and overlay (Video S5) of polarized HL-60 cell exposed to 20nM fMLP.
(C) Leading edge advance is highly correlatedwith underlyingHem-1waves. The top panel shows positionof leading edge (blue circles andwhite cell outline),
most peripheral Hem-1wave (red triangles), andmore interior Hem-1wave (black squares). As the peripheral wave is extinguished, the leading edge stalls and
resumes movement once the interior wave approaches the leading edge. The lower panel displays distances relative to initial position of leading edge.
(D) TIRF membrane control. C5A receptor-GFP (which is uniformly distributed on the plasma membrane) is uniformly distributed in the TIRF field. An
arrow in the first panel denotes the leading edge.
(E) Hem-1 waves exhibit a spatial gradient in velocity (first panel) and lifetime (second panel) with respect to the leading edge.
(F) HL-60 cells acutely stimulated with chemoattractant (20 nM fMLP) produce a uniform field of Hem-1 spots, which asymmetrically disappear, are
retained at one end of the cell (arrow), and begin generating Hem-1 waves (Video S7).
doi:10.1371/journal.pbio.0050221.g001
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Jun Allard and Alex Mogilner. Current Opinion in Cell Biology 2013, 25:107-115.

slight decreases in material result in a slightly hampered
protrusion (i.e., the protrusive material is linear), then the
cell can uniformly distribute the limited supply and suffer
a slightly hampered migration. If, however, the protrusive

machinery is highly nonlinear and there is a threshold
below which the protrusion is entirely inhibited,
migration requires the cell to concentrate its limited
supply, resulting in a small region of protrusion
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Major questions. (a) Mechanisms of waving: (i) T-waves arising from excitability require an initial trigger, typically above a threshold, to initiate a wave
(a, b). Once one subcellular region is excited, neighboring regions must be coupled for the wave to propagate (b, c). Many cells exhibit transient wave
pulses, after which the region returns to its initial state (c, d). This return is posited to arise because of the depletion of a promoter or replenishment of
an inhibitor. (ii) Three possible spatial couplings. (a) Polymerization of actin with a lateral component could transport the excited state. (b) Diffusion of a
regulator. (c) Transmission of stress to neighboring regions. The stress could be mediated by the membrane or actin(-myosin) gel. (b) Possible
functional roles of waving. (i) Migration in the face of limited resources. Unable to protrude uniformly along the entire leading edge, cells may focus their
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nearby regions of the edge. Waves of protrusion may circumvent this problem since the direction of cell migration is defined locally.
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persists upon actin stabilization (Figure 4A, green arrow), but
interior waves are extinguished (Figure 4A, 40 s time point,
and Figure 4D). The stabilization of the actin cytoskeleton
produced by jasplakinolide decreases the velocity (2.046 0.11
lm /min), intensity, and lifetime (11 6 1.27 s) of the
remaining Hem-1 waves (Figure 4B and 4C). These data
suggest that actin polymer is required for Hem-1 wave
movement as well as the removal of Hem-1 from the plasma
membrane.

Hem-1 Waves Are Extinguished upon Contact with
Mechanical Barriers

As cells migrate, Hem-1 waves propagate with a character-
istic velocity and lifetime toward the cell periphery (Figure
1E). We never observe the Hem-1 waves to stall for more than
a few seconds except when actin is depolymerized. We believe

this is because a standing wave of Hem-1 on the membrane
would be destabilized by locally generated actin polymers
(Figures 3 and 4). However, stalling can be forced to occur
when a cell encounters a physical barrier that prevents
further membrane protrusion. In such a condition, the Hem-
1 waves stall and are extinguished (Figure 5, Video S18). When
this happens, other regions of the cell that are not in contact
with the external barrier continue to propagate Hem-1 waves
and expand in size. The effect of this behavior is that the cell
has effectively restricted actin polymerization and leading
edge organization to domains compatible with productive
movement, potentially accounting for contact inhibition of
movement. As a result, rather than be stymied by physical
barriers, cells tend to flow around them. The integration of
signaling and actin polymerization in Hem-1 waves ensures

Figure 3. Hem-1 Waves Result from Propagated Recruitment and Release of Hem-1, Not a Moving Front of Translocated Protein

(A) Control Hem-1-YFP–expressing cells (pre-polarized in uniform chemoattractant) rapidly recover fluorescence intensity following photobleaching,
indicating rapid exchange of membrane-bound Hem-1 with the cytosolic pool (Video S11).
(B) Depolymerization of the actin cytoskeleton with latrunculin inhibits the recovery of Hem-1-YFP fluorescence intensity following photobleaching
indicating a lack of exchange of Hem-1 in the absence of actin polymers. Cells were first stimulated with uniform fMLP, treated with latrunculin until the
intensity of membrane-bound Hem-1 stabilized (greater than 3 min), and then a 1–2-lm radius spot was photobleached.
(C) Quantitation of Hem-1-YFP intensity following photobleaching of control (black, n¼ 4 cells) or latrunculin-treated cells (red, n¼ 5 cells). The right
panel represents fit of control cell Hem-1 FRAP data (half-life on membrane¼ 6.4 s, obtained from four cells).
(D) Cell with single dominant peripheral Hem-1 wave and multiple interior waves shows a clear refractory region between the most peripheral Hem-1
wave (green dot) and the next wave (red dot)—see Video S12. Final panel is kymograph of the same cell. Vertical axis of the kymograph is time and
horizontal axis is spatial position corresponding to dotted line in first and third panels. The kymograph shows several sets of waves (leading edge green
dot, subsequent waves red dots) with clear gaps between them. The bottom schematic indicates our working model— Hem-1 waves (blue) deposit an
inhibitor in their wake (orange) that transiently inhibits Hem-1 recruitment. We later present data that actin polymer represents a component of this
inhibitor.
(E) Annihilation of two colliding Hem-1 wavefronts (one green dot, one red dot at t¼ 0) in single cell (Video S13). Waves collide at 8 s (red dot) and are
both extinguished by 20 s (red dot). The bottom schematic indicates our interpretation of colliding waves. Hem-1 waves (blue) deposit an inhibitor in
their wake (orange), leading to annihilation of colliding waves. This property could enable cells to focus wave propagation and actin polymerization
toward the cell periphery.
doi:10.1371/journal.pbio.0050221.g003
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persists upon actin stabilization (Figure 4A, green arrow), but
interior waves are extinguished (Figure 4A, 40 s time point,
and Figure 4D). The stabilization of the actin cytoskeleton
produced by jasplakinolide decreases the velocity (2.046 0.11
lm /min), intensity, and lifetime (11 6 1.27 s) of the
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(A) Control Hem-1-YFP–expressing cells (pre-polarized in uniform chemoattractant) rapidly recover fluorescence intensity following photobleaching,
indicating rapid exchange of membrane-bound Hem-1 with the cytosolic pool (Video S11).
(B) Depolymerization of the actin cytoskeleton with latrunculin inhibits the recovery of Hem-1-YFP fluorescence intensity following photobleaching
indicating a lack of exchange of Hem-1 in the absence of actin polymers. Cells were first stimulated with uniform fMLP, treated with latrunculin until the
intensity of membrane-bound Hem-1 stabilized (greater than 3 min), and then a 1–2-lm radius spot was photobleached.
(C) Quantitation of Hem-1-YFP intensity following photobleaching of control (black, n¼ 4 cells) or latrunculin-treated cells (red, n¼ 5 cells). The right
panel represents fit of control cell Hem-1 FRAP data (half-life on membrane¼ 6.4 s, obtained from four cells).
(D) Cell with single dominant peripheral Hem-1 wave and multiple interior waves shows a clear refractory region between the most peripheral Hem-1
wave (green dot) and the next wave (red dot)—see Video S12. Final panel is kymograph of the same cell. Vertical axis of the kymograph is time and
horizontal axis is spatial position corresponding to dotted line in first and third panels. The kymograph shows several sets of waves (leading edge green
dot, subsequent waves red dots) with clear gaps between them. The bottom schematic indicates our working model— Hem-1 waves (blue) deposit an
inhibitor in their wake (orange) that transiently inhibits Hem-1 recruitment. We later present data that actin polymer represents a component of this
inhibitor.
(E) Annihilation of two colliding Hem-1 wavefronts (one green dot, one red dot at t¼ 0) in single cell (Video S13). Waves collide at 8 s (red dot) and are
both extinguished by 20 s (red dot). The bottom schematic indicates our interpretation of colliding waves. Hem-1 waves (blue) deposit an inhibitor in
their wake (orange), leading to annihilation of colliding waves. This property could enable cells to focus wave propagation and actin polymerization
toward the cell periphery.
doi:10.1371/journal.pbio.0050221.g003
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persists upon actin stabilization (Figure 4A, green arrow), but
interior waves are extinguished (Figure 4A, 40 s time point,
and Figure 4D). The stabilization of the actin cytoskeleton
produced by jasplakinolide decreases the velocity (2.046 0.11
lm /min), intensity, and lifetime (11 6 1.27 s) of the
remaining Hem-1 waves (Figure 4B and 4C). These data
suggest that actin polymer is required for Hem-1 wave
movement as well as the removal of Hem-1 from the plasma
membrane.

Hem-1 Waves Are Extinguished upon Contact with
Mechanical Barriers

As cells migrate, Hem-1 waves propagate with a character-
istic velocity and lifetime toward the cell periphery (Figure
1E). We never observe the Hem-1 waves to stall for more than
a few seconds except when actin is depolymerized. We believe

this is because a standing wave of Hem-1 on the membrane
would be destabilized by locally generated actin polymers
(Figures 3 and 4). However, stalling can be forced to occur
when a cell encounters a physical barrier that prevents
further membrane protrusion. In such a condition, the Hem-
1 waves stall and are extinguished (Figure 5, Video S18). When
this happens, other regions of the cell that are not in contact
with the external barrier continue to propagate Hem-1 waves
and expand in size. The effect of this behavior is that the cell
has effectively restricted actin polymerization and leading
edge organization to domains compatible with productive
movement, potentially accounting for contact inhibition of
movement. As a result, rather than be stymied by physical
barriers, cells tend to flow around them. The integration of
signaling and actin polymerization in Hem-1 waves ensures

Figure 3. Hem-1 Waves Result from Propagated Recruitment and Release of Hem-1, Not a Moving Front of Translocated Protein

(A) Control Hem-1-YFP–expressing cells (pre-polarized in uniform chemoattractant) rapidly recover fluorescence intensity following photobleaching,
indicating rapid exchange of membrane-bound Hem-1 with the cytosolic pool (Video S11).
(B) Depolymerization of the actin cytoskeleton with latrunculin inhibits the recovery of Hem-1-YFP fluorescence intensity following photobleaching
indicating a lack of exchange of Hem-1 in the absence of actin polymers. Cells were first stimulated with uniform fMLP, treated with latrunculin until the
intensity of membrane-bound Hem-1 stabilized (greater than 3 min), and then a 1–2-lm radius spot was photobleached.
(C) Quantitation of Hem-1-YFP intensity following photobleaching of control (black, n¼ 4 cells) or latrunculin-treated cells (red, n¼ 5 cells). The right
panel represents fit of control cell Hem-1 FRAP data (half-life on membrane¼ 6.4 s, obtained from four cells).
(D) Cell with single dominant peripheral Hem-1 wave and multiple interior waves shows a clear refractory region between the most peripheral Hem-1
wave (green dot) and the next wave (red dot)—see Video S12. Final panel is kymograph of the same cell. Vertical axis of the kymograph is time and
horizontal axis is spatial position corresponding to dotted line in first and third panels. The kymograph shows several sets of waves (leading edge green
dot, subsequent waves red dots) with clear gaps between them. The bottom schematic indicates our working model— Hem-1 waves (blue) deposit an
inhibitor in their wake (orange) that transiently inhibits Hem-1 recruitment. We later present data that actin polymer represents a component of this
inhibitor.
(E) Annihilation of two colliding Hem-1 wavefronts (one green dot, one red dot at t¼ 0) in single cell (Video S13). Waves collide at 8 s (red dot) and are
both extinguished by 20 s (red dot). The bottom schematic indicates our interpretation of colliding waves. Hem-1 waves (blue) deposit an inhibitor in
their wake (orange), leading to annihilation of colliding waves. This property could enable cells to focus wave propagation and actin polymerization
toward the cell periphery.
doi:10.1371/journal.pbio.0050221.g003
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slight decreases in material result in a slightly hampered
protrusion (i.e., the protrusive material is linear), then the
cell can uniformly distribute the limited supply and suffer
a slightly hampered migration. If, however, the protrusive

machinery is highly nonlinear and there is a threshold
below which the protrusion is entirely inhibited,
migration requires the cell to concentrate its limited
supply, resulting in a small region of protrusion

Traveling waves in actin dynamics and cell motility Allard and Mogilner 111

Figure 2

(b) (i) Limited protrusion
    at fixed site at random sites in traveling wav e

Time

wave-based protrusion
(ii) Obstacle encountered by
     uniform protrusion

What initiates the wave?

What spatially propagates
the wave?

What locally terminates
the wave?

Diffusing regulator

Polymerization

Mechanical stress

(i) Key mechanistic questions (ii) Possible mechanisms for spatial
     propagation of excited state

a

b

c

d

a

b

c

(a)

Time

Current Opinion in Cell Biology

Major questions. (a) Mechanisms of waving: (i) T-waves arising from excitability require an initial trigger, typically above a threshold, to initiate a wave
(a, b). Once one subcellular region is excited, neighboring regions must be coupled for the wave to propagate (b, c). Many cells exhibit transient wave
pulses, after which the region returns to its initial state (c, d). This return is posited to arise because of the depletion of a promoter or replenishment of
an inhibitor. (ii) Three possible spatial couplings. (a) Polymerization of actin with a lateral component could transport the excited state. (b) Diffusion of a
regulator. (c) Transmission of stress to neighboring regions. The stress could be mediated by the membrane or actin(-myosin) gel. (b) Possible
functional roles of waving. (i) Migration in the face of limited resources. Unable to protrude uniformly along the entire leading edge, cells may focus their
protrusive machinery to a limited region. If this region is stationary (a), protrusion may result in fingering and translocation of the cell body will not occur.
(An alternative is narrowing of the migrating cell.) If the protruding region moves randomly (b), cell coherence could be jeopardized. A sequence of
traveling waves (c) results in smooth translocation of the cell body, without affecting cell width. (ii) Avoidance of obstacles. A uniformly protruding
leading edge could become stuck upon encountering an obstacle (black circle) if the stalled region (red) has no effective means of communicating with
nearby regions of the edge. Waves of protrusion may circumvent this problem since the direction of cell migration is defined locally.
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persists upon actin stabilization (Figure 4A, green arrow), but
interior waves are extinguished (Figure 4A, 40 s time point,
and Figure 4D). The stabilization of the actin cytoskeleton
produced by jasplakinolide decreases the velocity (2.046 0.11
lm /min), intensity, and lifetime (11 6 1.27 s) of the
remaining Hem-1 waves (Figure 4B and 4C). These data
suggest that actin polymer is required for Hem-1 wave
movement as well as the removal of Hem-1 from the plasma
membrane.

Hem-1 Waves Are Extinguished upon Contact with
Mechanical Barriers

As cells migrate, Hem-1 waves propagate with a character-
istic velocity and lifetime toward the cell periphery (Figure
1E). We never observe the Hem-1 waves to stall for more than
a few seconds except when actin is depolymerized. We believe

this is because a standing wave of Hem-1 on the membrane
would be destabilized by locally generated actin polymers
(Figures 3 and 4). However, stalling can be forced to occur
when a cell encounters a physical barrier that prevents
further membrane protrusion. In such a condition, the Hem-
1 waves stall and are extinguished (Figure 5, Video S18). When
this happens, other regions of the cell that are not in contact
with the external barrier continue to propagate Hem-1 waves
and expand in size. The effect of this behavior is that the cell
has effectively restricted actin polymerization and leading
edge organization to domains compatible with productive
movement, potentially accounting for contact inhibition of
movement. As a result, rather than be stymied by physical
barriers, cells tend to flow around them. The integration of
signaling and actin polymerization in Hem-1 waves ensures

Figure 3. Hem-1 Waves Result from Propagated Recruitment and Release of Hem-1, Not a Moving Front of Translocated Protein

(A) Control Hem-1-YFP–expressing cells (pre-polarized in uniform chemoattractant) rapidly recover fluorescence intensity following photobleaching,
indicating rapid exchange of membrane-bound Hem-1 with the cytosolic pool (Video S11).
(B) Depolymerization of the actin cytoskeleton with latrunculin inhibits the recovery of Hem-1-YFP fluorescence intensity following photobleaching
indicating a lack of exchange of Hem-1 in the absence of actin polymers. Cells were first stimulated with uniform fMLP, treated with latrunculin until the
intensity of membrane-bound Hem-1 stabilized (greater than 3 min), and then a 1–2-lm radius spot was photobleached.
(C) Quantitation of Hem-1-YFP intensity following photobleaching of control (black, n¼ 4 cells) or latrunculin-treated cells (red, n¼ 5 cells). The right
panel represents fit of control cell Hem-1 FRAP data (half-life on membrane¼ 6.4 s, obtained from four cells).
(D) Cell with single dominant peripheral Hem-1 wave and multiple interior waves shows a clear refractory region between the most peripheral Hem-1
wave (green dot) and the next wave (red dot)—see Video S12. Final panel is kymograph of the same cell. Vertical axis of the kymograph is time and
horizontal axis is spatial position corresponding to dotted line in first and third panels. The kymograph shows several sets of waves (leading edge green
dot, subsequent waves red dots) with clear gaps between them. The bottom schematic indicates our working model— Hem-1 waves (blue) deposit an
inhibitor in their wake (orange) that transiently inhibits Hem-1 recruitment. We later present data that actin polymer represents a component of this
inhibitor.
(E) Annihilation of two colliding Hem-1 wavefronts (one green dot, one red dot at t¼ 0) in single cell (Video S13). Waves collide at 8 s (red dot) and are
both extinguished by 20 s (red dot). The bottom schematic indicates our interpretation of colliding waves. Hem-1 waves (blue) deposit an inhibitor in
their wake (orange), leading to annihilation of colliding waves. This property could enable cells to focus wave propagation and actin polymerization
toward the cell periphery.
doi:10.1371/journal.pbio.0050221.g003
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(A) Control Hem-1-YFP–expressing cells (pre-polarized in uniform chemoattractant) rapidly recover fluorescence intensity following photobleaching,
indicating rapid exchange of membrane-bound Hem-1 with the cytosolic pool (Video S11).
(B) Depolymerization of the actin cytoskeleton with latrunculin inhibits the recovery of Hem-1-YFP fluorescence intensity following photobleaching
indicating a lack of exchange of Hem-1 in the absence of actin polymers. Cells were first stimulated with uniform fMLP, treated with latrunculin until the
intensity of membrane-bound Hem-1 stabilized (greater than 3 min), and then a 1–2-lm radius spot was photobleached.
(C) Quantitation of Hem-1-YFP intensity following photobleaching of control (black, n¼ 4 cells) or latrunculin-treated cells (red, n¼ 5 cells). The right
panel represents fit of control cell Hem-1 FRAP data (half-life on membrane¼ 6.4 s, obtained from four cells).
(D) Cell with single dominant peripheral Hem-1 wave and multiple interior waves shows a clear refractory region between the most peripheral Hem-1
wave (green dot) and the next wave (red dot)—see Video S12. Final panel is kymograph of the same cell. Vertical axis of the kymograph is time and
horizontal axis is spatial position corresponding to dotted line in first and third panels. The kymograph shows several sets of waves (leading edge green
dot, subsequent waves red dots) with clear gaps between them. The bottom schematic indicates our working model— Hem-1 waves (blue) deposit an
inhibitor in their wake (orange) that transiently inhibits Hem-1 recruitment. We later present data that actin polymer represents a component of this
inhibitor.
(E) Annihilation of two colliding Hem-1 wavefronts (one green dot, one red dot at t¼ 0) in single cell (Video S13). Waves collide at 8 s (red dot) and are
both extinguished by 20 s (red dot). The bottom schematic indicates our interpretation of colliding waves. Hem-1 waves (blue) deposit an inhibitor in
their wake (orange), leading to annihilation of colliding waves. This property could enable cells to focus wave propagation and actin polymerization
toward the cell periphery.
doi:10.1371/journal.pbio.0050221.g003
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(key property of trigger wave, 
reflecting refractory period)
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migration requires the cell to concentrate its limited
supply, resulting in a small region of protrusion
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that the cytoskeleton is not simply a passive readout of the
cell polarity but rather has local dynamic properties of its
own that contribute to the overall behavior and give it some
of its most life-like properties.

Discussion

A Heuristic Model for the Hem-1 Wave Generator
Based on the observed in vivo dynamics of Hem-1, we

propose a model for Hem-1 waves that is similar to the
circuitry of other biological waves, such as action potentials
(Figure 6A, first panel). Such biological waves are based on
autoactivation and delayed inhibition. Our photobleaching
experiments (Figure 3A–3C) suggest that Hem-1 waves result
from successive rounds of Hem-1 recruitment and release.

Consistent with this idea, Hem-1 recruitment is observed with
high probability adjacent to existing Hem-1 membrane
distributions. Several pieces of evidence suggest that the
actin polymerization generated downstream of Hem-1 com-
plexes is required to remove Hem-1 from the membrane
(potentially forming the autoinhibitory portion of the cycle).
First, Hem-1 waves normally have characteristic lifetime and
intensity, and actin depolymerization increases both more
than an order of magnitude (Figure 4B and 4C). Second,
Hem-1 normally cycles on and off the membrane, and actin
depolymerization stops this flux (Figure 3A–3C). Third, there
is a gap observed between Hem-1 waves (Figure 3D), and
stabilization of the actin cytoskeleton increases the length of
this gap (Figure 4D). Fourth, stabilization of the actin

Figure 4. Actin Polymers Are Required for Wave Movement and Hem-1 Recycling

(A) Hem-1 waves in control cells (Video S14), cells treated with latrunculin (which sequesters actin monomers, leading to depolymerization of the actin
cytoskeleton, Video S15 and S16), or cells treated with jasplakinolide (which stabilizes actin filaments against disassembly, Video S17). All cells were
allowed to polarize in response to 20 nM fMLP prior to drug treatment. Red dots are included in all panels as fiduciary marks to clarify relative cell
positions between frames. Green arrow at 40 s time point for jasplakinolide-treated cell indicates Hem-1 waves at cell periphery with no significant
interior waves.
(B) Quantitation of Hem-1 wave velocity (left panel) and lifetime (right panel) for control and drug-treated cells. n¼5–8 cells for each condition for (B–D).
(C) Quantitation of Hem-1 wave intensity relative to t¼ 0 for control and drug-treated cells.
(D) Histogram of Hem-1 wave distribution at two different time points in control or jasplakinolide-treated cells.
doi:10.1371/journal.pbio.0050221.g004
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• Actin filaments provide inhibitory signal on Wave2 trigger wave dynamics. 
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slight decreases in material result in a slightly hampered
protrusion (i.e., the protrusive material is linear), then the
cell can uniformly distribute the limited supply and suffer
a slightly hampered migration. If, however, the protrusive

machinery is highly nonlinear and there is a threshold
below which the protrusion is entirely inhibited,
migration requires the cell to concentrate its limited
supply, resulting in a small region of protrusion
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Major questions. (a) Mechanisms of waving: (i) T-waves arising from excitability require an initial trigger, typically above a threshold, to initiate a wave
(a, b). Once one subcellular region is excited, neighboring regions must be coupled for the wave to propagate (b, c). Many cells exhibit transient wave
pulses, after which the region returns to its initial state (c, d). This return is posited to arise because of the depletion of a promoter or replenishment of
an inhibitor. (ii) Three possible spatial couplings. (a) Polymerization of actin with a lateral component could transport the excited state. (b) Diffusion of a
regulator. (c) Transmission of stress to neighboring regions. The stress could be mediated by the membrane or actin(-myosin) gel. (b) Possible
functional roles of waving. (i) Migration in the face of limited resources. Unable to protrude uniformly along the entire leading edge, cells may focus their
protrusive machinery to a limited region. If this region is stationary (a), protrusion may result in fingering and translocation of the cell body will not occur.
(An alternative is narrowing of the migrating cell.) If the protruding region moves randomly (b), cell coherence could be jeopardized. A sequence of
traveling waves (c) results in smooth translocation of the cell body, without affecting cell width. (ii) Avoidance of obstacles. A uniformly protruding
leading edge could become stuck upon encountering an obstacle (black circle) if the stalled region (red) has no effective means of communicating with
nearby regions of the edge. Waves of protrusion may circumvent this problem since the direction of cell migration is defined locally.
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cytoskeleton decreases the velocity, intensity, and lifetime of
Hem-1 waves (Figure 4B and 4C).

Using mathematical simulation, we asked whether a simple
circuit involving auto-activation and transient inhibition
could generate Hem-1 waves with the properties we observed
(Figure 6, Video S19–S21). These simulations (done under a
chosen set of parameters, not experimentally confirmed, and
generally not experimentally accessible at this time) recapit-
ulate most of the basic behaviors of Hem-1 waves (Figure 6B
and 6C). They indicate that Hem-1 wave movement as well as
Hem-1 removal can be explained simply by the inhibitory
role of actin polymers for Hem-1 membrane association. In
the simulations, actin depolymerization not only increases
Hem-1 wave intensity and lifetime but also stops wave
movement due to depletion of cytosolic Hem-1 (Figure 6D,
Video S21). Consistent with this, we observe biochemically
that the majority of Hem-1 translocates to the plasma
membrane in response to latrunculin treatment (unpublished
data). The propagated waves occur over a range of param-
eters where actin polymers are metastable, as they are in the
cell (Figure S1). However, additional components almost
certainly contribute to wave organization, and specific
experimental parameters will need to be evaluated. Yet this
basic circuit indicates that these propagated waves may be
based on simple and general properties of the system.

Oscillatory and wavelike patterns for both actin polymers
and the Arp2/3 complex have been observed in Dictyostelium
and in other systems [33–36]. Furthermore, wavelike protru-
sive activity has been noted from Drosophila cells to
mammalian cells [37]. These activities exhibit different
organization from the Hem-1 waves, although they may be

related to them. Conceptually, however, there is a strong
distinction between actin and the Arp2/3 complex, which are
incorporated into the cytoskeleton and represent the physical
substrate that generates protrusion, and the Hem-1 waves
that represent a moving inductive field that patterns this
substrate. When actin is depolymerized, it and the Arp2/3
complex dissociate from the cortex, whereas Hem-1 contin-
ues to accumulate at the membrane. Yet the behavior of the
Hem-1 waves is closely tied to the actin substrate, and this, in
turn, produces a moving front of actin nucleation. These data
suggest a different view of cell motility as neither a global
process at the level of whole cell organization nor a biasing of
local actin polymerization events organized at the molecular
level. Rather, cell movement may result from the collective
behavior of multiple self-organizing waves, an idea consistent
with the morphological pattern of leukocyte movement
during chemotaxis [38]. The wavelike organization of
protrusion has been observed in cells from flies to mammals
[37], and the WAVE complex plays a conserved role in
morphogenesis throughout plants and metazoans [6–14]. We
propose that these Hem-1/Nap1 waves may also occur in
many cell types and serve as a conserved subcircuit for
cellular morphogenesis and movement.

Materials and Methods

Reagents. The following reagents were used: Latrunculin (Calbio-
chem; http://www.emdbiosciences.com/html/CBC/home.html), jaspla-
kinolide (Calbiochem), formyl met-leu-phe (fMLP; Sigma; http://www.
sigmaaldrich.com), low endotoxin human serum albumin (Sigma),
and human fibronectin (Sigma).

Cell lines. HL-60 cell stably expressing Hem-1-YFP, C5AR-GFP,
and actin-YFP were generated as previously described [6,39,40]. Arp3-

Figure 5. Hem-1 Waves Extinguish at Mechanical Barriers

Hem-1 waves that collide with boundary (cell outlined in red) are extinguished, whereas those that do not continue to propagate (Video S18). The
bottom schematic depicts our hypothesis for barrier avoidance. Hem-1 waves normally propagate just ahead of the actin inhibitory field. Stalling of
waves by external barriers prevents Hem-1 from escaping removal by actin polymer-dependent inhibitory process, causing these waves to be
extinguished. Waves in other regions of the cell continue to expand, enabling the cell to flow around barriers.
doi:10.1371/journal.pbio.0050221.g005
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• Blocking membrane protrusion by mechanical barrier leads to wave collapse

• Induction of new wave in adjacent cell region

• Adaptative strategy for cell motility
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• The leading edge of plated cells shows oscillatory dynamics, and lateral waves. 

shape (see Fig. 1 A). For the next ~250 min, the cells exhibit
continuous protrusions and retractions along the cell
circumference, resembling the Phase 2 (12) and V states
(14) previously reported in different cells systems (see
Fig. 1 B and Movie S2). At longer times, the cells develop
stress fibers and become quiescent.

To determine whether changes in retrograde flow underlie
leading-edge motion, we used single-molecule imaging to
measure retrograde flow rates for EGFP-actin (Fig. 1, C
and D, and see Fig. S1 in the Supporting Material) and
EGFP-p21, a component of the Arp2/3 complex (see
Fig. S2) (26,27). Retrograde flow was approximately
constant throughout each extension cycle (Fig. 1 D, and

see Fig. S1 C, and Fig. S2, B and C), with smaller variations
compared to studies of migrating epithelial cells (28,29).
This is also evident in bright features that present as diag-
onal lines of approximately constant slope in kymographs
(Fig. 1 B). Thus, we hypothesize that fluctuation in actin
polymerization underlies the observed protrusions and
retractions, similar to filopodia in growth cones (30).

To quantify the protrusion and retraction pattern and its
relationship to actin polymerization, we tracked leading-
edge position over time (11–14,17,31) using active contours
(32). The fit also allowed us to measure local LifeAct-
mCherry intensity as a function of angle and time, by
summing the intensity of pixels within a ribbon around

FIGURE 1 Leading-edge velocities and LifeAct intensity measured by fitting active contours to the leading edge. (A) XTC cell expressing LifeAct-
mCherry. (B) Kymograph of leading edge (10 s intervals) for indicated section in panel A. (C) XTC cell expressing EGFP-actin in low concentration.
(D) Actin speckles within 5 mm of the leading edge of the cell in panel C exhibit small variations in retrograde flow rate compared to variations in
leading-edge speed. Bars indicate mean 5 SE. (E) Polar coordinate system indicating the leading edge and the inner boundary of a 4-mm-wide band of
lamellipodium. (F) 4-mm-wide bands of lamellipodium, mapped from a two-dimensional ribbon of lamellipodium. The lines indicate the inside and outside
of the cell as in panel E. (G) Section of XTC cell expressing LifeAct-mCherry with superimposed active contour. Cell has been on the substrate for 40 min.
(H) Normal leading-edge velocity (with respect to fixed substrate) versus angle and time, for cell in panelG. Positive (negative) velocities indicate protrusion
(retraction). The retrograde flow speed for this cell (74 5 3 nm/s, n ¼ 15 measurements of bright features in kymographs) did not vary noticeably during
observation. (I) Total LifeAct-mCherry intensity versus angle and time. LifeAct-mCherry intensity was summed over a 5-mm ribbon of lamellipodium of cell
in panel G for each time point.
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of the cell as in panel E. (G) Section of XTC cell expressing LifeAct-mCherry with superimposed active contour. Cell has been on the substrate for 40 min.
(H) Normal leading-edge velocity (with respect to fixed substrate) versus angle and time, for cell in panelG. Positive (negative) velocities indicate protrusion
(retraction). The retrograde flow speed for this cell (74 5 3 nm/s, n ¼ 15 measurements of bright features in kymographs) did not vary noticeably during
observation. (I) Total LifeAct-mCherry intensity versus angle and time. LifeAct-mCherry intensity was summed over a 5-mm ribbon of lamellipodium of cell
in panel G for each time point.
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the edge (Fig. 1, E and F). Because filopodia protrusions
were typically short (Fig. 1 A), the smooth active contour
captured the leading-edge dynamics. In cases of long filopo-
dia, the active contour cut through them (Fig. 1G). To achieve
better spatial resolution and reduce photodamage we imaged
small sections of cells, as in Fig. 1 G (see Movie S3).

Tracking of the leading edge allowed measurement of the
local normal leading-edge velocity as a function of angle and
time.We observed a relatively regular sequence of protrusion
and retraction events with a period of 130–200 s and typical
protrusion velocities of the order of tens of nm/s (Fig. 1 H).
Some of the protrusions and retractions propagated locally
as waves along the cell circumference (Fig. 1 H), in
both clockwise and counterclockwise orientations. This
pattern was reproducible, with small variations in period,
amplitude, and retrograde flow rates among cells (n ¼ 7).

The dynamics of the LifeAct intensity (integrated over
5 mm) versus angle and time in Fig. 1 I followed the pattern
of the velocity in Fig. 1 H, displaying periodic increases and
decreases in density, as well as wavelike propagation. Large
(small) amount of F-actin correlated with negative (positive)
leading-edge velocities. Intensity values in Fig. 1 I indicate
that the total amount of F-actin approximately doubles
during a protrusion cycle. These measurements reflect the
total amount of F-actin and do not address finer features
such as dependence on distance from the leading edge.
Kymographs such as in Fig. 1 B reveal that F-actin starts
to accumulate close to the leading edge during protrusion.

To quantify the results in Fig. 1, correlation analysis was
performed on the leading-edge velocity and the integrated
LifeAct-mCherry intensity (Fig. 2 and see Fig. S3). In
Fig. 2 Awe plot the autocorrelation of leading-edge velocity,
LifeAct-mCherry intensity, and the cross correlation of
velocity and LifeAct-mCherry, at the same position (arc-
length ¼ 0 in Fig. S3). The oscillatory shape confirms the
periodicity of the protrusion and F-actin assembly. The
peaks of the velocity autocorrelation are sharper than those

of the LifeAct-mCherry, likely as a result of less noise in the
signal (measurement or intrinsic). Thus, the position of the
velocity autocorrelation peaks is a slightly more accurate
measurement of the period (~130 s in this cell). The cross-
correlation function in Fig. 2 A shows that the two signals
are almost exactly out of phase, with an offset ~10 s.
Thus, larger speeds correspond to smaller than average total
F-actin amount and vice versa. Fig. 2 B shows the correla-
tions as a function of arc length, at zero time offset. These
autocorrelation curves indicate that the lateral width with
coordinated protrusion, retraction, and F-actin density is
~5 mm (full width at half-maximum in the figure). The diag-
onal stripe patterns in two-dimensional correlation functions
in Fig. S3 reflect the wavelike propagation.

Diffuse-activator, delayed-local-inhibition model
with noise-induced excitations

Theobserveddynamics are suggestive of excitationsdrivenby
noise (i.e., stochastic concentration fluctuations): Figs. 1 and 2
show cycles of bursts of actin polymerization in a random
pattern around the cell, lateral propagation, followed by
disassembly. Excitability typically involves the interaction
between an activator and an inhibitor: in an excitation, an acti-
vator species self-recruits rapidly; this activator in turn
recruits an inhibitor that causes the activator to slowly dissi-
pate (33). We speculate that the anticorrelation of leading-
edge velocity with total actin intensity suggests that F-actin
acts as an inhibitor. Likely mechanisms for this inhibition
include the formation of actomyosin bundles (34) and adhe-
sions (35,36) and accumulation of mechanical tension
(4,28). Many molecules are activator candidates: actin poly-
merization can be triggered by the Scar/WAVE and WASp
proteins that self-recruit on the cell membrane to activate
the Arp2/3 complex (37–39). Once activated, the Arp2/3
complex generates new barbed ends as branches off preexist-
ing filaments, thought to lead to autocatalytic dendritic
nucleation (8,9). Severing of growing filaments could also
contribute to diffusive autocatalytic generation of barbed ends
(26,40) through transient association of diffuse cofilin and
AIP1 with F-actin (41). Formin-mediated nucleation of new
filaments is another possible activation mechanism (42,43).

In our model, we calculate the concentrations of a diffus-
ible activator, A(x,t), free barbed ends, B(x,t), and F-actin,
F(x,t), at different positions x along the leading edge over
time (Fig. 3 A). The lamellipodium is modeled in one dimen-
sion, each coordinate representing a slice along the arc length
of the leading edge. We assume that protrusions and retrac-
tions stem from underlying concentration fluctuations in
the local actin network and do not explicitly consider cell
membrane displacement. Denoting rate constants by k and
r, the equations governing the concentrations are

vA

vt
¼

!
r0 þ r2A

2
"
e#F=Fs # k#A Aþ DAV

2Aþ sðx; tÞ; (1)

FIGURE 2 Correlation functions of leading-edge velocity and LifeAct-
mCherry intensity (for cell in Fig. 1G). (A) Average correlation coefficients
for leading-edge velocity autocorrelation, LifeAct-mCherry autocorrela-
tion, and LifeAct-mCherry-velocity cross correlation, versus time and
with no positional offset. (B) Same as Fig. 1 D, versus arc length and no
time offset. Arc-length is calculated by multiplying angular positions in
Fig. 1 G by cell radius.
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• Leading edge velocity anti-correlates with F-actin density

slight decreases in material result in a slightly hampered
protrusion (i.e., the protrusive material is linear), then the
cell can uniformly distribute the limited supply and suffer
a slightly hampered migration. If, however, the protrusive

machinery is highly nonlinear and there is a threshold
below which the protrusion is entirely inhibited,
migration requires the cell to concentrate its limited
supply, resulting in a small region of protrusion
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Major questions. (a) Mechanisms of waving: (i) T-waves arising from excitability require an initial trigger, typically above a threshold, to initiate a wave
(a, b). Once one subcellular region is excited, neighboring regions must be coupled for the wave to propagate (b, c). Many cells exhibit transient wave
pulses, after which the region returns to its initial state (c, d). This return is posited to arise because of the depletion of a promoter or replenishment of
an inhibitor. (ii) Three possible spatial couplings. (a) Polymerization of actin with a lateral component could transport the excited state. (b) Diffusion of a
regulator. (c) Transmission of stress to neighboring regions. The stress could be mediated by the membrane or actin(-myosin) gel. (b) Possible
functional roles of waving. (i) Migration in the face of limited resources. Unable to protrude uniformly along the entire leading edge, cells may focus their
protrusive machinery to a limited region. If this region is stationary (a), protrusion may result in fingering and translocation of the cell body will not occur.
(An alternative is narrowing of the migrating cell.) If the protruding region moves randomly (b), cell coherence could be jeopardized. A sequence of
traveling waves (c) results in smooth translocation of the cell body, without affecting cell width. (ii) Avoidance of obstacles. A uniformly protruding
leading edge could become stuck upon encountering an obstacle (black circle) if the stalled region (red) has no effective means of communicating with
nearby regions of the edge. Waves of protrusion may circumvent this problem since the direction of cell migration is defined locally.
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• Excitable dynamics driven by activator diffusion and fluctuations underlies leading 
edge dynamics

the edge (Fig. 1, E and F). Because filopodia protrusions
were typically short (Fig. 1 A), the smooth active contour
captured the leading-edge dynamics. In cases of long filopo-
dia, the active contour cut through them (Fig. 1G). To achieve
better spatial resolution and reduce photodamage we imaged
small sections of cells, as in Fig. 1 G (see Movie S3).

Tracking of the leading edge allowed measurement of the
local normal leading-edge velocity as a function of angle and
time.We observed a relatively regular sequence of protrusion
and retraction events with a period of 130–200 s and typical
protrusion velocities of the order of tens of nm/s (Fig. 1 H).
Some of the protrusions and retractions propagated locally
as waves along the cell circumference (Fig. 1 H), in
both clockwise and counterclockwise orientations. This
pattern was reproducible, with small variations in period,
amplitude, and retrograde flow rates among cells (n ¼ 7).

The dynamics of the LifeAct intensity (integrated over
5 mm) versus angle and time in Fig. 1 I followed the pattern
of the velocity in Fig. 1 H, displaying periodic increases and
decreases in density, as well as wavelike propagation. Large
(small) amount of F-actin correlated with negative (positive)
leading-edge velocities. Intensity values in Fig. 1 I indicate
that the total amount of F-actin approximately doubles
during a protrusion cycle. These measurements reflect the
total amount of F-actin and do not address finer features
such as dependence on distance from the leading edge.
Kymographs such as in Fig. 1 B reveal that F-actin starts
to accumulate close to the leading edge during protrusion.

To quantify the results in Fig. 1, correlation analysis was
performed on the leading-edge velocity and the integrated
LifeAct-mCherry intensity (Fig. 2 and see Fig. S3). In
Fig. 2 Awe plot the autocorrelation of leading-edge velocity,
LifeAct-mCherry intensity, and the cross correlation of
velocity and LifeAct-mCherry, at the same position (arc-
length ¼ 0 in Fig. S3). The oscillatory shape confirms the
periodicity of the protrusion and F-actin assembly. The
peaks of the velocity autocorrelation are sharper than those

of the LifeAct-mCherry, likely as a result of less noise in the
signal (measurement or intrinsic). Thus, the position of the
velocity autocorrelation peaks is a slightly more accurate
measurement of the period (~130 s in this cell). The cross-
correlation function in Fig. 2 A shows that the two signals
are almost exactly out of phase, with an offset ~10 s.
Thus, larger speeds correspond to smaller than average total
F-actin amount and vice versa. Fig. 2 B shows the correla-
tions as a function of arc length, at zero time offset. These
autocorrelation curves indicate that the lateral width with
coordinated protrusion, retraction, and F-actin density is
~5 mm (full width at half-maximum in the figure). The diag-
onal stripe patterns in two-dimensional correlation functions
in Fig. S3 reflect the wavelike propagation.

Diffuse-activator, delayed-local-inhibition model
with noise-induced excitations

Theobserveddynamics are suggestive of excitationsdrivenby
noise (i.e., stochastic concentration fluctuations): Figs. 1 and 2
show cycles of bursts of actin polymerization in a random
pattern around the cell, lateral propagation, followed by
disassembly. Excitability typically involves the interaction
between an activator and an inhibitor: in an excitation, an acti-
vator species self-recruits rapidly; this activator in turn
recruits an inhibitor that causes the activator to slowly dissi-
pate (33). We speculate that the anticorrelation of leading-
edge velocity with total actin intensity suggests that F-actin
acts as an inhibitor. Likely mechanisms for this inhibition
include the formation of actomyosin bundles (34) and adhe-
sions (35,36) and accumulation of mechanical tension
(4,28). Many molecules are activator candidates: actin poly-
merization can be triggered by the Scar/WAVE and WASp
proteins that self-recruit on the cell membrane to activate
the Arp2/3 complex (37–39). Once activated, the Arp2/3
complex generates new barbed ends as branches off preexist-
ing filaments, thought to lead to autocatalytic dendritic
nucleation (8,9). Severing of growing filaments could also
contribute to diffusive autocatalytic generation of barbed ends
(26,40) through transient association of diffuse cofilin and
AIP1 with F-actin (41). Formin-mediated nucleation of new
filaments is another possible activation mechanism (42,43).

In our model, we calculate the concentrations of a diffus-
ible activator, A(x,t), free barbed ends, B(x,t), and F-actin,
F(x,t), at different positions x along the leading edge over
time (Fig. 3 A). The lamellipodium is modeled in one dimen-
sion, each coordinate representing a slice along the arc length
of the leading edge. We assume that protrusions and retrac-
tions stem from underlying concentration fluctuations in
the local actin network and do not explicitly consider cell
membrane displacement. Denoting rate constants by k and
r, the equations governing the concentrations are
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FIGURE 2 Correlation functions of leading-edge velocity and LifeAct-
mCherry intensity (for cell in Fig. 1G). (A) Average correlation coefficients
for leading-edge velocity autocorrelation, LifeAct-mCherry autocorrela-
tion, and LifeAct-mCherry-velocity cross correlation, versus time and
with no positional offset. (B) Same as Fig. 1 D, versus arc length and no
time offset. Arc-length is calculated by multiplying angular positions in
Fig. 1 G by cell radius.
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¼ kþF B# k#F F: (3)

The first term on the right-hand side of Eq. 1 allows for
spontaneous accumulation as well as nonlinear self-recruit-

ment of the activator. We chose a simple quadratic depen-
dence on A (see Section S2.1 of the Supporting Material).
When F-actin exceeds saturation concentration, Fs, the acti-
vator on-rate is reduced. This is the negative feedback in
Fig. 3 B. The second term on the right-hand side in Eq. 1
represents deactivation. Diffusion of the activator (third
term on the right-hand side) along the membrane couples
neighboring sites and allows propagation of actin dynamics
along the leading edge. The last term in Eq. 1 is white noise,

FIGURE 3 Results of model of leading-edge actin dynamics. (A) The model includes F-actin, F, activator A, and free barbed ends, B, as functions of posi-
tion along the arc-length of the membrane. (B) Reaction network diagram. Assembly of F promoted by autocatalytic activator A that generates free barbed
ends. Accumulation of F inhibits A recruitment. (C) F-actin and free barbed end concentrations at a fixed point along the model membrane as a function of
time. (D) Free barbed end concentration versus arc length and time. (E) Same as panel D, for F-actin. (F) Correlation coefficients versus time and with no
positional offset for free barbed end autocorrelation, F-actin autocorrelation, and the cross correlation between panel B and F-actin. (G) Same as panel F, but
as a function of arc length and no time offset.
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The first term on the right-hand side of Eq. 1 allows for
spontaneous accumulation as well as nonlinear self-recruit-

ment of the activator. We chose a simple quadratic depen-
dence on A (see Section S2.1 of the Supporting Material).
When F-actin exceeds saturation concentration, Fs, the acti-
vator on-rate is reduced. This is the negative feedback in
Fig. 3 B. The second term on the right-hand side in Eq. 1
represents deactivation. Diffusion of the activator (third
term on the right-hand side) along the membrane couples
neighboring sites and allows propagation of actin dynamics
along the leading edge. The last term in Eq. 1 is white noise,

FIGURE 3 Results of model of leading-edge actin dynamics. (A) The model includes F-actin, F, activator A, and free barbed ends, B, as functions of posi-
tion along the arc-length of the membrane. (B) Reaction network diagram. Assembly of F promoted by autocatalytic activator A that generates free barbed
ends. Accumulation of F inhibits A recruitment. (C) F-actin and free barbed end concentrations at a fixed point along the model membrane as a function of
time. (D) Free barbed end concentration versus arc length and time. (E) Same as panel D, for F-actin. (F) Correlation coefficients versus time and with no
positional offset for free barbed end autocorrelation, F-actin autocorrelation, and the cross correlation between panel B and F-actin. (G) Same as panel F, but
as a function of arc length and no time offset.
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slight decreases in material result in a slightly hampered
protrusion (i.e., the protrusive material is linear), then the
cell can uniformly distribute the limited supply and suffer
a slightly hampered migration. If, however, the protrusive

machinery is highly nonlinear and there is a threshold
below which the protrusion is entirely inhibited,
migration requires the cell to concentrate its limited
supply, resulting in a small region of protrusion
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Major questions. (a) Mechanisms of waving: (i) T-waves arising from excitability require an initial trigger, typically above a threshold, to initiate a wave
(a, b). Once one subcellular region is excited, neighboring regions must be coupled for the wave to propagate (b, c). Many cells exhibit transient wave
pulses, after which the region returns to its initial state (c, d). This return is posited to arise because of the depletion of a promoter or replenishment of
an inhibitor. (ii) Three possible spatial couplings. (a) Polymerization of actin with a lateral component could transport the excited state. (b) Diffusion of a
regulator. (c) Transmission of stress to neighboring regions. The stress could be mediated by the membrane or actin(-myosin) gel. (b) Possible
functional roles of waving. (i) Migration in the face of limited resources. Unable to protrude uniformly along the entire leading edge, cells may focus their
protrusive machinery to a limited region. If this region is stationary (a), protrusion may result in fingering and translocation of the cell body will not occur.
(An alternative is narrowing of the migrating cell.) If the protruding region moves randomly (b), cell coherence could be jeopardized. A sequence of
traveling waves (c) results in smooth translocation of the cell body, without affecting cell width. (ii) Avoidance of obstacles. A uniformly protruding
leading edge could become stuck upon encountering an obstacle (black circle) if the stalled region (red) has no effective means of communicating with
nearby regions of the edge. Waves of protrusion may circumvent this problem since the direction of cell migration is defined locally.

www.sciencedirect.com Current Opinion in Cell Biology 2013, 25:107 –115



Thomas LECUIT   2018-2019

III - Mechano-chemical Instabilities

A-C Reymann, et al., and Manuel Théry, Laurent Blanchoin. Science, 336:1310-1314

• in vitro evidence of tension dependent spatial coupling in wave progression

• Contraction (eg. Myosin) induced wave of actin disassembly

drome protein pWA domain, an actin-promoting
factor, leads to the formation of a dense mesh-
work on the micropatterned region and parallel
array of filaments with barbed ends oriented
away from the nucleation site out of this re-
gion (11) (movie S1). Addition of myosins to the
polymerization mix—including Arp2/3 complex,
profilin, and actin monomers—allowed us to in-
vestigate the contraction of this network (fig.
S1). We used double-headed (HMM) myosin
VI (12), a processive pointed end–directed mo-
tor that could sustain continuous force and mo-
tility without the need for self-assembly into
minifilaments.

Green fluorescent protein (GFP)–tagged myo-
sins and Alexa 568–labeled actin monomers
allowed real-time tracking of actin growth and
myosin-induced reorganization (Fig. 1). Myosins
associated with the network and induced a clear
two-phase process constituted by the deformation
of actin networks followed by a massive filament
disassembly of the condensed central meshwork
(Fig. 1A and movie S2, short bars). Depending on
the geometry of the pattern, this two-phase process
could lead to the formation of a disassembly wave
(fig. S2, long bars). We then tested if a barbed end–
directed myosin had a similar effect on network
reorganization. Muscle myosin II bipolar filaments
induced a two-phase deformation-disassembly of
the network similar to that caused by myosin VI,
although the extent of deformation before disas-

sembly was local and less pronounced (Fig. 1B
and movie S3), presumably because of resistance
from filament cross-linking (13). Consistent with
this interpretation, the actin filament cross-linker,
a-actinin, also minimized myosin VI–induced mac-
roscopic deformation before network disassembly
(Fig. 1C, fig. S3, and movie S4). Varying myosin
concentration revealed that deformation and dis-
assembly occurred above different concentration
thresholds depending on the reticulated actin net-
work (fig. S3).

Parallel and polarized filaments emerging
from the micropatterned regions with their barbed
ends oriented outward (11) did not contract and
disassemble with either myosin VI or II (Fig. 1,
A and B, and movies S2 and S3). Perhaps net-
works composed of randomly oriented filaments
can contract and disassemble, whereas parallel
filament arrays cannot. To understand the contri-
bution of actin filaments’ polarity during acto-
myosin contraction, we used evanescent wave
microscopy to follow in real time the effect of
myosin on a growing branched network (fig.
S4 and movie S5). Networks did not contract
in the presence of myosin VI when they re-
mained as individual patches of branched and
parallel filaments. When individual subnetworks
interacted in antiparallel orientation, myosin rap-
idly induced a deformation of the network by
its alignment into antiparallel bundles (fig. S4
and movie S5).

This “orientation selection” for selective con-
traction and disassembly of antiparallel fila-
ments by myosin was further tested on networks
of controlled polarity and architecture. Fila-
ments nucleated on an eight-branch radial ar-
ray lead to the formation of all the diversity in
actin organization found in a cell, a meshwork
of branched and randomly oriented actin fila-
ments on the micropattern, bundles of aligned
antiparallel filaments in the most central part
of the array, and bundles of aligned parallel fila-
ments in the distal part of the array (11) (Fig. 2A).
This defined distinction between zones contain-
ing parallel, antiparallel, or branched filament
organizations (Fig. 2G) enabled us to character-
ize the region-selectivity of myosin-induced re-
organization. Myosin VI was chosen to induce
contraction forces on these actin architectures
because it is a pointed end–oriented motor and
can pull on filaments with their barbed ends
pointing out of the micropatterns (fig. S5 and
movie S6). The addition of myosin VI in solu-
tion led to the rapid contraction of the antipar-
allel bundles and branched meshwork, followed
by their disassembly (Fig. 2B, central black
hole after 1640 s; Fig. 2, C and D; and movies
S7 and S8). The parallel bundles remained un-
perturbed and continued to elongate until the
monomers freshly released by central disas-
sembly were consumed (Fig. 2, D and E, and
movie S8), although myosins were present on
these bundles (Fig. 2F) on which they could
move (fig. S6). These processes could also be
monitored on larger structures in which antipar-
allel networks were easier to visualize (fig. S7).
Thus, myosin-induced contraction is specific
to bundles of antiparallel filaments and branched
meshwork, and myosin-induced disassembly
of these structures further supplies actin mono-
mers for the growth of parallel filament bundles
(Fig. 2G).

Next, we further characterized the contrac-
tion properties of bundles of antiparallel fila-
ments and branched meshwork. We compared
the effect of myosins on actin rings in which the
proportion of antiparallel filaments zones were
finely controlled (Fig. 3A). Filaments assemble
into branched meshwork on full rings (Fig. 3A).
On dotted rings, filaments formed branched
meshwork on the dots but specifically formed
bundles of antiparallel filaments between the
dots (Fig. 3A). The proportion of bundles of
antiparallel filaments thus scales inversely with
the number of dots in constant-sized rings. We
monitored actin network contraction and defor-
mation upon the addition of myosin (Fig. 3B
and movie S9). We measured the fluorescence
intensity of actin and myosin in all angular sec-
tors of the rings during contraction (Fig. 3, C
and D). Myosins first accumulated on the actin
network without generating global deformation
(Fig. 3D, green curve before time 0). Above a
critical accumulation of myosins, deformation
started (Fig. 3D, blue curve time 0). Network de-
formation was coupled to network disassembly
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Fig. 1. Myosin-induced actin meshwork contraction and disassembly. (A) Time series of myosin VI–
induced network contraction on a bar-shaped micropattern. Actin filaments were visualized with
fluorescent monomers. “Fire” look-up table color-coding reveals variations in actin network den-
sities, quantified with a line scan along the bar at different time points. Actin density peaks because
of network deformation after 48 min then falls off because of network disassembly. (B) Same as (A)
with muscle myosin II–induced contraction. (C) Same as (A) with 100 nM a-actinin in the polym-
erization mix.
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Fig. S2. Myosin induced actin meshwork contraction and disassembly. 

(A, B) Time-series of the myosin VI-induced deformation of the actin meshwork 

nucleated on long PWA-coated bars. Actin is shown in red, myosin VI in green. (A) 

Parallel filaments growing out of the nucleation bar remained unaffected, while the 

branched meshwork on the bar did contract. Accumulation of myosin-VI (green arrows) 

was coupled to local network disassembly. As the network disassembles, these myosin-

rich spots moved along the meshwork (see green arrows displacements). Scale bar is 20 

µm. (B) Kymographs were obtained by doing fluorescence intensity linescans along the 

meshwork every two minutes for 6 distinct bars. They highlight the displacements of 

myosin-rich spot (green) and the associated network disassembly (red fluorescence 

decrease). Disassembly wave velocities, as revealed by myosin-rich densities 

displacements, appeared to be distributed around 1 micron per minute. 

• Myosin induces actin 
disassembly trigger waves

slight decreases in material result in a slightly hampered
protrusion (i.e., the protrusive material is linear), then the
cell can uniformly distribute the limited supply and suffer
a slightly hampered migration. If, however, the protrusive

machinery is highly nonlinear and there is a threshold
below which the protrusion is entirely inhibited,
migration requires the cell to concentrate its limited
supply, resulting in a small region of protrusion
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Major questions. (a) Mechanisms of waving: (i) T-waves arising from excitability require an initial trigger, typically above a threshold, to initiate a wave
(a, b). Once one subcellular region is excited, neighboring regions must be coupled for the wave to propagate (b, c). Many cells exhibit transient wave
pulses, after which the region returns to its initial state (c, d). This return is posited to arise because of the depletion of a promoter or replenishment of
an inhibitor. (ii) Three possible spatial couplings. (a) Polymerization of actin with a lateral component could transport the excited state. (b) Diffusion of a
regulator. (c) Transmission of stress to neighboring regions. The stress could be mediated by the membrane or actin(-myosin) gel. (b) Possible
functional roles of waving. (i) Migration in the face of limited resources. Unable to protrude uniformly along the entire leading edge, cells may focus their
protrusive machinery to a limited region. If this region is stationary (a), protrusion may result in fingering and translocation of the cell body will not occur.
(An alternative is narrowing of the migrating cell.) If the protruding region moves randomly (b), cell coherence could be jeopardized. A sequence of
traveling waves (c) results in smooth translocation of the cell body, without affecting cell width. (ii) Avoidance of obstacles. A uniformly protruding
leading edge could become stuck upon encountering an obstacle (black circle) if the stalled region (red) has no effective means of communicating with
nearby regions of the edge. Waves of protrusion may circumvent this problem since the direction of cell migration is defined locally.
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Mechano-chemical propagation of trigger waves

III - Mechano-chemical Instabilities

Jun Allard and Alex Mogilner. Current Opinion in Cell Biology 2013, 25:107-115.
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Self-organisation of mechanochemical systems: principles

• Mechano-chemical systems give rise to complex spatial and temporal 
instabilities across biological scales: 

  e.g. spatial patterns, pulsations and trigger waves in actomyosin networks

• Mechanical « Turing-like » instabilities:
autocatalytic amplification of active stress (advection, non linear effects due to stress/strain 
dependent activation of stress, effect of orientational order of actin filaments or ECM, etc)

long range negative feedback: elasticity, friction, diffusion etc.

• Excitability of biochemical network
  autocatalytic amplifications of fluctuations and delayed negative feedback.

spatial coupling (diffusion of molecule) 
e.g. Rho1GTP oscillations and travelling waves:

• Mechanical feedbacks in excitable systems: 
   positive feedback, and/or spatial coupling. 

• Mechano-chemical coupling: advection and turnover of active stress regulators
Length and time scales associated with mechano-chemical 

information govern these dynamics



1. Introduction - phenomenology

2. Chemical Instabilities
    21. Spatial instabilities - Turing patterns
    22. Temporal instabilities - Excitability

23. Spatial-temporal instabilities: waves

3. Mechanical instabilities
31. Cellular aggregates: viscoelastic model
32. Active gel: hydrodynamic and viscoelastic models

4. Mechano-chemical Instabilities
    41. Mechano-chemical coupling: actomyosin dynamics

  42.  Actin based trigger waves

5. Developmental significance: impact on cellular and
tissue morphogenesis
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Gönczy lab, EPFL 

Keller lab, HHMI Janelia Campus

• Embryonic cells exhibit actomyosin pulsations
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• Impact of pulsatile contractility on cellular and tissue morphogenesis:
    tissue invagination, tissue extension.

V - Developmental significance

Keller lab, HHMI Janelia Campus

See Courses 11th and 18th December
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V - Developmental significance

ART ICLES

and opposes the outward force caused by growth. Because the oscilla-
tions occur near the centre of the egg chamber, expansion is directed 
preferentially to the poles. The oscillations are not synchronized; dif-
ferent cells therefore contract at different times and over the course of 
more than 10 h generate a sustained inward force.

These observations raise several questions. For example, what is the 
biochemical mechanism of the oscillation? Myosin activity oscillates in 
many (but not all) biological contexts. For example, cardiomyocytes beat 
in cell culture. However, this oscillation does not show or require cycles 
of myosin assembly and disassembly; it is driven by ion fluxes and is 
much more rapid (150 beats min–1) than the oscillations described here 
(average period 6–7 min). Myosin has intrinsic biochemical properties 
that could in principle lead to oscillating assembly and disassembly on 
this timescale34. Three properties, in combination, could contribute to 
oscillation: the intrinsic mechanochemical cycle of actin binding, power 
stroke, and dissociation from actin; thick filament assembly–disassembly 
dynamics; and actin filament anchoring. Myosin II assembly into thick 
filaments is tension-dependent35,36. That is, as myosin begins to assemble 
on actin filaments, it exerts force on them, generating tension if the fila-
ments are anchored. If the resistance is great enough, myosin will stall 
in the isometric state rather than completing its power stroke and disas-
sociating from the actin filament34. As a consequence, more and more 
myosin filaments assemble over time. In addition, the binding of myosin 
to actin becomes highly cooperative in response to tension. Thus more 
myosin molecules bind and they dissociate more slowly when there is 
tension. For myosin to sense and respond to tension, the actin filaments 
to which it is bound must be prevented from sliding. During cytokinesis 
in Dictyostelium, the critical actin anchor is the actin crosslinker cortexil-
lin37. However, in principle, anchoring to the plasma membrane could 
also serve this purpose. We found in Drosophila follicle cells that myosin 
assembles on F-actin stress fibres that are attached through integrin, talin 
and paxillin to ECM fibres. This probably serves the critical function 
of anchoring actin filaments so that tension is generated when myosin 

binds. So, what causes disassembly and leads to oscillations? When 
enough myosin molecules assemble for the force per myosin head to 
become sufficiently small, the myosins can complete their power strokes 
and disassociate from actin, resulting in disassembly of myosin thick fila-
ments. Stochastically, new myosins bind, exert force, experience tension 
and recruit more myosin, and the cycle repeats.

Increasing the load against which myosin works would be expected 
to increase the number of myosin molecules that assemble as well as 
the length of time until the force per unit molecule has decreased to 
the point of disassembly. In other words, increasing the mechanical 
resistance should increase both the amplitude and the period of myosin 
oscillations. Our results suggest that the actin–integrin–ECM interac-
tion provides the load and explains why decreasing follicle-cell–ECM 
adhesion decreases both the period and amplitude of the oscillation and 
why enhancing cell–ECM interaction increases both. This explanation is 
also consistent with the observation that the assembly–disassembly cycle 
that occurs during ventral furrow formation in the embryo has a shorter 
period (about 1 min). In this case the cycle occurs on the apical side of 
the cell, where there is no basement membrane to provide mechanical 
resistance. Although there may be additional components to the oscilla-
tion mechanism, these elements would in principle be sufficient to cause 
oscillating assembly and disassembly of myosin.

In contrast to most previously studied morphogenetic processes, in 
which cells change the shape of a tissue by altering their own geometry, fol-
licle cells undergoing this basal contraction do not change their own shape 
permanently but instead generate forces that constrain the shape of the 
underlying tissue (Fig. 8). Another morphogenetic process that involves 
two cell layers is branching morphogenesis of the developing mammary 
gland38. In this case, outer myoepithelial cells may help sculpt the underly-
ing glandular epithelium, constraining growth towards the terminal end 
buds. It will be of interest to determine whether basal actomyosin activity 
in the epithelial layer also contributes to the morphogenesis of this or other 
organs and tissues in which expansion is constrained.

Cadherin 

Myosin 

Actin 

Integrin 

ECM 

… ROCK Rho 

Ca2+ 
Myosin contraction 

… 

Figure 8  Model of tissue elongation controlled by basal actomyosin 
contraction. A schematic representation is shown of the distribution of 
molecules controlling oscillating basal contraction in an individual follicle 
cell and the organization of contractile forces into a super cellular band 
within the epithelium. Forces are indicated by red arrows. Local contraction 

force generated by basal myosin (red) transmitted through adhesions (blue) 
to the basal lamina (cyan) constrains tissue growth to the poles. Micrographs 
show a corresponding section through the middle of a stage-10 egg chamber 
labelled with cadherin–GFP and Sqh–mCherry. The Sqh–mCherry channel on 
its own is shown in black and white.
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• Impact of pulsatile contractility on cellular and tissue morphogenesis:
    tissue invagination, tissue extension.
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Jean-Léon Maître, R. Niwayama, H. Turlier, F. Nédélec and, T. Hiragii. Nature Cell Biol, 336:1310-1314 (2015)
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Figure 7 Periodic contractions. (a) Particle image velocimetry (PIV)-tracking
of an 8-cell embryo (Supplementary Video 4). Velocity is colour-coded,
green for positive y-velocity or red for negative. Scale bars, 10 µm. (b) PIV
tracking y-velocity over time of a vector from Supplementary Video 4.
(c) PIV tracking amplitude as a function of the oscillation period for
control (n=23) and Bb (�) (n=19) embryos representative of 6 and 3
independent experiments, respectively. Mean ± s.d. (d) Time-lapse of an

en face optical section through the cortex of a LifeAct–GFP-expressing
embryo (Supplementary Video 6). The red circle indicates the measured
region of interest. Scale bar, 5 µm. (e) LifeAct–GFP intensity over time for
4 blastomeres from 4 embryos representative of 2 independent experiments
(embryo shown in d and Supplementary Video 6 in red). Images in
a are representative of 6 independent experiments, images in d are
representative of 2.
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Supplementary Video 11. (e) Kymographs of curvature (top) and cortical
LifeAct–GFP intensity (bottom) from Supplementary Video 11. Images in a–d
are each representative of 3 independent experiments.
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• Impact of pulsatile contractility on cellular and tissue morphogenesis:
  mouse embryo compaction
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E. Hannezo et al S. Hayashi and J-F. Joanny. PNAS 112:8620–8625  (2015)

• Spatial patterning by mechano-chemical instabilities during tubulogenesis

Theory of Actin Pattern Formation
We first concentrate on understanding the formation of actin
stripes within a single cell and restrict ourselves to patterns dis-
playing radial symmetry. We thus consider the cell cortex as a
finite one-dimensional (1D) (of length L, in the axial direction x),
compressible, viscous, and contractile actomyosin gel, in frictional
contact with a rigid substrate. The conservation equation for the
actin gel of density ρ reads as follows:

∂tρ=
ρ0 − ρ
τ

−∂xðρvÞ+D∂xxρ, [1]

where τ is the turnover time of actin treadmilling around a ref-
erence density ρ0, and D is an effective diffusion coefficient,
whose physical origin we discuss in SI Appendix. This equation
expresses that changes in actin concentration over time (left-
hand term) arise from three contributions (from left to right in
the right-hand term): actin turnover, advection by cortical flows,
and effective diffusion of filaments.
Momentum balance in the gel and constitutive behavior at

linear order in the gel density around the reference state, re-
spectively, read as follows (8):

∂xσ = ξv σ = χ0ρ=ρ0 + η∂xv, [2]

where σ is axial stress in the network and v is velocity. ξ is the
friction coefficient with respect to the substrate; χ0, the con-
tractility arising from myosin motors; and η, the gel viscosity. As
detailed in SI Appendix, we assume that myosin is in excess,
with fast turnover, and therefore simply follows actin concen-
tration. Starting from an initially uniform density ρ, a pattern-
ing instability occurs when myosin contractility reaches a
threshold χc = ð

ffiffiffiffiffiffiffi
η=τ

p
+

ffiffiffiffiffiffi
Dξ

p
Þ2 and forms a stationary pattern

at a wavelength:

λc = 2π
"
Dτη
ξ

#1=4

. [3]

Therefore, as expected, high diffusion, friction, viscosity, or a low
turnover time τ all stabilize a uniform cortex, by increasing the
contractility threshold for pattern formation. The influence of
each parameter on the wavelength is more complex: higher dif-
fusion, viscosity, and turnover time favor large wavelengths,
whereas a higher friction favors small wavelengths. These criteria
are similar to ref. 24, which investigates in a different setting the
temporal size oscillations of apical cell areas. The case τ→∞ has
been studied theoretically previously (10, 11) and yields to actin
accumulation in a single region. We can therefore define two
characteristic length scales crucial for the patterning:

• lh =
ffiffiffiffiffiffiffi
η=ξ

p
is the hydrodynamic wavelength, i.e., it quantifies

the length at which contractile stresses are propagated in the
cortex. For lengths larger (respectively, smaller) than lh, the
flow is dissipated by friction (respectively, viscosity).

• lt =
ffiffiffiffiffiffi
Dτ

p
compares the range at which diffusion and turnover

act. On lengths larger (respectively, smaller) than lt, a change
in concentration is relaxed dominantly through turnover
(respectively, diffusion).

We adimensionalize the equations (SI Appendix). Our model
then involves only three nondimensional parameters: α= l=lh,
which reflects the size of a cell with respect to the hydrodynamic
length scale, χ= ρ0χ

0=ξD, which measures the importance of
contractility-induced flows favoring the localization of the gel and
ϕ= η=Dτξ, which is the ratio of viscous stress created by actin
turnover over frictional stress created by random diffusive motion.
We performed a detailed analysis of the bifurcation diagram (SI
Appendix, Figs. S9–S12) of this system, which demonstrates the
pertinence of the linear analysis, as well as a numerical analysis
confirming our analytical predictions (SI Appendix, Figs. S13–S15).

A B

D

C

Fig. 1. Periodic supracellular actin rings in tracheal tubular system. (A) Live imaging of actin dynamics during the formation of the pattern, using Lifeact-
mEGFP. Actin intensity increases by 70%at the onset of ring formation. (Bottom Right) Enlargement of actin ring structure (phalloidin) at embryonic stage 16.
(B) Actin (phalloidin) and myosin II heavy chain (Zip) in the tracheal tubular system at stage 16. (C) At third-instar larval stage, the actin rings (in green, fixed
sample) are very regularly spaced, as can be seen in the intensity profile and in the Fourier spectrum, with a period of 1.2 μm. (D) Theoretical model of an
actomyosin cortex as a viscous and contractile gel, undergoing turnover and in frictional contact with an ECM. An instability into periodic patterns in actin
concentration is very generically expected due to myosin contractility. (Scale bars: 10 μm.)
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J. Bois, F. Jülicher and SW. Grill. PRL.  2011. 106, 028103see also:

Theory of Actin Pattern Formation
We first concentrate on understanding the formation of actin
stripes within a single cell and restrict ourselves to patterns dis-
playing radial symmetry. We thus consider the cell cortex as a
finite one-dimensional (1D) (of length L, in the axial direction x),
compressible, viscous, and contractile actomyosin gel, in frictional
contact with a rigid substrate. The conservation equation for the
actin gel of density ρ reads as follows:

∂tρ=
ρ0 − ρ
τ

−∂xðρvÞ+D∂xxρ, [1]

where τ is the turnover time of actin treadmilling around a ref-
erence density ρ0, and D is an effective diffusion coefficient,
whose physical origin we discuss in SI Appendix. This equation
expresses that changes in actin concentration over time (left-
hand term) arise from three contributions (from left to right in
the right-hand term): actin turnover, advection by cortical flows,
and effective diffusion of filaments.
Momentum balance in the gel and constitutive behavior at

linear order in the gel density around the reference state, re-
spectively, read as follows (8):

∂xσ = ξv σ = χ0ρ=ρ0 + η∂xv, [2]

where σ is axial stress in the network and v is velocity. ξ is the
friction coefficient with respect to the substrate; χ0, the con-
tractility arising from myosin motors; and η, the gel viscosity. As
detailed in SI Appendix, we assume that myosin is in excess,
with fast turnover, and therefore simply follows actin concen-
tration. Starting from an initially uniform density ρ, a pattern-
ing instability occurs when myosin contractility reaches a
threshold χc = ð
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Therefore, as expected, high diffusion, friction, viscosity, or a low
turnover time τ all stabilize a uniform cortex, by increasing the
contractility threshold for pattern formation. The influence of
each parameter on the wavelength is more complex: higher dif-
fusion, viscosity, and turnover time favor large wavelengths,
whereas a higher friction favors small wavelengths. These criteria
are similar to ref. 24, which investigates in a different setting the
temporal size oscillations of apical cell areas. The case τ→∞ has
been studied theoretically previously (10, 11) and yields to actin
accumulation in a single region. We can therefore define two
characteristic length scales crucial for the patterning:

• lh =
ffiffiffiffiffiffiffi
η=ξ

p
is the hydrodynamic wavelength, i.e., it quantifies

the length at which contractile stresses are propagated in the
cortex. For lengths larger (respectively, smaller) than lh, the
flow is dissipated by friction (respectively, viscosity).

• lt =
ffiffiffiffiffiffi
Dτ

p
compares the range at which diffusion and turnover

act. On lengths larger (respectively, smaller) than lt, a change
in concentration is relaxed dominantly through turnover
(respectively, diffusion).

We adimensionalize the equations (SI Appendix). Our model
then involves only three nondimensional parameters: α= l=lh,
which reflects the size of a cell with respect to the hydrodynamic
length scale, χ= ρ0χ

0=ξD, which measures the importance of
contractility-induced flows favoring the localization of the gel and
ϕ= η=Dτξ, which is the ratio of viscous stress created by actin
turnover over frictional stress created by random diffusive motion.
We performed a detailed analysis of the bifurcation diagram (SI
Appendix, Figs. S9–S12) of this system, which demonstrates the
pertinence of the linear analysis, as well as a numerical analysis
confirming our analytical predictions (SI Appendix, Figs. S13–S15).
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Fig. 1. Periodic supracellular actin rings in tracheal tubular system. (A) Live imaging of actin dynamics during the formation of the pattern, using Lifeact-
mEGFP. Actin intensity increases by 70%at the onset of ring formation. (Bottom Right) Enlargement of actin ring structure (phalloidin) at embryonic stage 16.
(B) Actin (phalloidin) and myosin II heavy chain (Zip) in the tracheal tubular system at stage 16. (C) At third-instar larval stage, the actin rings (in green, fixed
sample) are very regularly spaced, as can be seen in the intensity profile and in the Fourier spectrum, with a period of 1.2 μm. (D) Theoretical model of an
actomyosin cortex as a viscous and contractile gel, undergoing turnover and in frictional contact with an ECM. An instability into periodic patterns in actin
concentration is very generically expected due to myosin contractility. (Scale bars: 10 μm.)
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Theory of Actin Pattern Formation
We first concentrate on understanding the formation of actin
stripes within a single cell and restrict ourselves to patterns dis-
playing radial symmetry. We thus consider the cell cortex as a
finite one-dimensional (1D) (of length L, in the axial direction x),
compressible, viscous, and contractile actomyosin gel, in frictional
contact with a rigid substrate. The conservation equation for the
actin gel of density ρ reads as follows:

∂tρ=
ρ0 − ρ
τ

−∂xðρvÞ+D∂xxρ, [1]

where τ is the turnover time of actin treadmilling around a ref-
erence density ρ0, and D is an effective diffusion coefficient,
whose physical origin we discuss in SI Appendix. This equation
expresses that changes in actin concentration over time (left-
hand term) arise from three contributions (from left to right in
the right-hand term): actin turnover, advection by cortical flows,
and effective diffusion of filaments.
Momentum balance in the gel and constitutive behavior at

linear order in the gel density around the reference state, re-
spectively, read as follows (8):

∂xσ = ξv σ = χ0ρ=ρ0 + η∂xv, [2]

where σ is axial stress in the network and v is velocity. ξ is the
friction coefficient with respect to the substrate; χ0, the con-
tractility arising from myosin motors; and η, the gel viscosity. As
detailed in SI Appendix, we assume that myosin is in excess,
with fast turnover, and therefore simply follows actin concen-
tration. Starting from an initially uniform density ρ, a pattern-
ing instability occurs when myosin contractility reaches a
threshold χc = ð

ffiffiffiffiffiffiffi
η=τ

p
+

ffiffiffiffiffiffi
Dξ

p
Þ2 and forms a stationary pattern

at a wavelength:

λc = 2π
"
Dτη
ξ

#1=4

. [3]

Therefore, as expected, high diffusion, friction, viscosity, or a low
turnover time τ all stabilize a uniform cortex, by increasing the
contractility threshold for pattern formation. The influence of
each parameter on the wavelength is more complex: higher dif-
fusion, viscosity, and turnover time favor large wavelengths,
whereas a higher friction favors small wavelengths. These criteria
are similar to ref. 24, which investigates in a different setting the
temporal size oscillations of apical cell areas. The case τ→∞ has
been studied theoretically previously (10, 11) and yields to actin
accumulation in a single region. We can therefore define two
characteristic length scales crucial for the patterning:

• lh =
ffiffiffiffiffiffiffi
η=ξ

p
is the hydrodynamic wavelength, i.e., it quantifies

the length at which contractile stresses are propagated in the
cortex. For lengths larger (respectively, smaller) than lh, the
flow is dissipated by friction (respectively, viscosity).

• lt =
ffiffiffiffiffiffi
Dτ

p
compares the range at which diffusion and turnover

act. On lengths larger (respectively, smaller) than lt, a change
in concentration is relaxed dominantly through turnover
(respectively, diffusion).

We adimensionalize the equations (SI Appendix). Our model
then involves only three nondimensional parameters: α= l=lh,
which reflects the size of a cell with respect to the hydrodynamic
length scale, χ= ρ0χ

0=ξD, which measures the importance of
contractility-induced flows favoring the localization of the gel and
ϕ= η=Dτξ, which is the ratio of viscous stress created by actin
turnover over frictional stress created by random diffusive motion.
We performed a detailed analysis of the bifurcation diagram (SI
Appendix, Figs. S9–S12) of this system, which demonstrates the
pertinence of the linear analysis, as well as a numerical analysis
confirming our analytical predictions (SI Appendix, Figs. S13–S15).
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Fig. 1. Periodic supracellular actin rings in tracheal tubular system. (A) Live imaging of actin dynamics during the formation of the pattern, using Lifeact-
mEGFP. Actin intensity increases by 70%at the onset of ring formation. (Bottom Right) Enlargement of actin ring structure (phalloidin) at embryonic stage 16.
(B) Actin (phalloidin) and myosin II heavy chain (Zip) in the tracheal tubular system at stage 16. (C) At third-instar larval stage, the actin rings (in green, fixed
sample) are very regularly spaced, as can be seen in the intensity profile and in the Fourier spectrum, with a period of 1.2 μm. (D) Theoretical model of an
actomyosin cortex as a viscous and contractile gel, undergoing turnover and in frictional contact with an ECM. An instability into periodic patterns in actin
concentration is very generically expected due to myosin contractility. (Scale bars: 10 μm.)
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Viscous flow of active gel with 
turnover (of actin):

Theory of Actin Pattern Formation
We first concentrate on understanding the formation of actin
stripes within a single cell and restrict ourselves to patterns dis-
playing radial symmetry. We thus consider the cell cortex as a
finite one-dimensional (1D) (of length L, in the axial direction x),
compressible, viscous, and contractile actomyosin gel, in frictional
contact with a rigid substrate. The conservation equation for the
actin gel of density ρ reads as follows:

∂tρ=
ρ0 − ρ
τ

−∂xðρvÞ+D∂xxρ, [1]

where τ is the turnover time of actin treadmilling around a ref-
erence density ρ0, and D is an effective diffusion coefficient,
whose physical origin we discuss in SI Appendix. This equation
expresses that changes in actin concentration over time (left-
hand term) arise from three contributions (from left to right in
the right-hand term): actin turnover, advection by cortical flows,
and effective diffusion of filaments.
Momentum balance in the gel and constitutive behavior at

linear order in the gel density around the reference state, re-
spectively, read as follows (8):

∂xσ = ξv σ = χ0ρ=ρ0 + η∂xv, [2]

where σ is axial stress in the network and v is velocity. ξ is the
friction coefficient with respect to the substrate; χ0, the con-
tractility arising from myosin motors; and η, the gel viscosity. As
detailed in SI Appendix, we assume that myosin is in excess,
with fast turnover, and therefore simply follows actin concen-
tration. Starting from an initially uniform density ρ, a pattern-
ing instability occurs when myosin contractility reaches a
threshold χc = ð

ffiffiffiffiffiffiffi
η=τ

p
+

ffiffiffiffiffiffi
Dξ

p
Þ2 and forms a stationary pattern

at a wavelength:

λc = 2π
"
Dτη
ξ

#1=4

. [3]

Therefore, as expected, high diffusion, friction, viscosity, or a low
turnover time τ all stabilize a uniform cortex, by increasing the
contractility threshold for pattern formation. The influence of
each parameter on the wavelength is more complex: higher dif-
fusion, viscosity, and turnover time favor large wavelengths,
whereas a higher friction favors small wavelengths. These criteria
are similar to ref. 24, which investigates in a different setting the
temporal size oscillations of apical cell areas. The case τ→∞ has
been studied theoretically previously (10, 11) and yields to actin
accumulation in a single region. We can therefore define two
characteristic length scales crucial for the patterning:

• lh =
ffiffiffiffiffiffiffi
η=ξ

p
is the hydrodynamic wavelength, i.e., it quantifies

the length at which contractile stresses are propagated in the
cortex. For lengths larger (respectively, smaller) than lh, the
flow is dissipated by friction (respectively, viscosity).

• lt =
ffiffiffiffiffiffi
Dτ

p
compares the range at which diffusion and turnover

act. On lengths larger (respectively, smaller) than lt, a change
in concentration is relaxed dominantly through turnover
(respectively, diffusion).

We adimensionalize the equations (SI Appendix). Our model
then involves only three nondimensional parameters: α= l=lh,
which reflects the size of a cell with respect to the hydrodynamic
length scale, χ= ρ0χ

0=ξD, which measures the importance of
contractility-induced flows favoring the localization of the gel and
ϕ= η=Dτξ, which is the ratio of viscous stress created by actin
turnover over frictional stress created by random diffusive motion.
We performed a detailed analysis of the bifurcation diagram (SI
Appendix, Figs. S9–S12) of this system, which demonstrates the
pertinence of the linear analysis, as well as a numerical analysis
confirming our analytical predictions (SI Appendix, Figs. S13–S15).
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Fig. 1. Periodic supracellular actin rings in tracheal tubular system. (A) Live imaging of actin dynamics during the formation of the pattern, using Lifeact-
mEGFP. Actin intensity increases by 70%at the onset of ring formation. (Bottom Right) Enlargement of actin ring structure (phalloidin) at embryonic stage 16.
(B) Actin (phalloidin) and myosin II heavy chain (Zip) in the tracheal tubular system at stage 16. (C) At third-instar larval stage, the actin rings (in green, fixed
sample) are very regularly spaced, as can be seen in the intensity profile and in the Fourier spectrum, with a period of 1.2 μm. (D) Theoretical model of an
actomyosin cortex as a viscous and contractile gel, undergoing turnover and in frictional contact with an ECM. An instability into periodic patterns in actin
concentration is very generically expected due to myosin contractility. (Scale bars: 10 μm.)
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Contractility must 
overcome diffusion and 
frictional resistance to flow

Theory of Actin Pattern Formation
We first concentrate on understanding the formation of actin
stripes within a single cell and restrict ourselves to patterns dis-
playing radial symmetry. We thus consider the cell cortex as a
finite one-dimensional (1D) (of length L, in the axial direction x),
compressible, viscous, and contractile actomyosin gel, in frictional
contact with a rigid substrate. The conservation equation for the
actin gel of density ρ reads as follows:

∂tρ=
ρ0 − ρ
τ

−∂xðρvÞ+D∂xxρ, [1]

where τ is the turnover time of actin treadmilling around a ref-
erence density ρ0, and D is an effective diffusion coefficient,
whose physical origin we discuss in SI Appendix. This equation
expresses that changes in actin concentration over time (left-
hand term) arise from three contributions (from left to right in
the right-hand term): actin turnover, advection by cortical flows,
and effective diffusion of filaments.
Momentum balance in the gel and constitutive behavior at

linear order in the gel density around the reference state, re-
spectively, read as follows (8):

∂xσ = ξv σ = χ0ρ=ρ0 + η∂xv, [2]

where σ is axial stress in the network and v is velocity. ξ is the
friction coefficient with respect to the substrate; χ0, the con-
tractility arising from myosin motors; and η, the gel viscosity. As
detailed in SI Appendix, we assume that myosin is in excess,
with fast turnover, and therefore simply follows actin concen-
tration. Starting from an initially uniform density ρ, a pattern-
ing instability occurs when myosin contractility reaches a
threshold χc = ð

ffiffiffiffiffiffiffi
η=τ

p
+

ffiffiffiffiffiffi
Dξ

p
Þ2 and forms a stationary pattern

at a wavelength:

λc = 2π
"
Dτη
ξ

#1=4

. [3]

Therefore, as expected, high diffusion, friction, viscosity, or a low
turnover time τ all stabilize a uniform cortex, by increasing the
contractility threshold for pattern formation. The influence of
each parameter on the wavelength is more complex: higher dif-
fusion, viscosity, and turnover time favor large wavelengths,
whereas a higher friction favors small wavelengths. These criteria
are similar to ref. 24, which investigates in a different setting the
temporal size oscillations of apical cell areas. The case τ→∞ has
been studied theoretically previously (10, 11) and yields to actin
accumulation in a single region. We can therefore define two
characteristic length scales crucial for the patterning:

• lh =
ffiffiffiffiffiffiffi
η=ξ

p
is the hydrodynamic wavelength, i.e., it quantifies

the length at which contractile stresses are propagated in the
cortex. For lengths larger (respectively, smaller) than lh, the
flow is dissipated by friction (respectively, viscosity).

• lt =
ffiffiffiffiffiffi
Dτ

p
compares the range at which diffusion and turnover

act. On lengths larger (respectively, smaller) than lt, a change
in concentration is relaxed dominantly through turnover
(respectively, diffusion).

We adimensionalize the equations (SI Appendix). Our model
then involves only three nondimensional parameters: α= l=lh,
which reflects the size of a cell with respect to the hydrodynamic
length scale, χ= ρ0χ

0=ξD, which measures the importance of
contractility-induced flows favoring the localization of the gel and
ϕ= η=Dτξ, which is the ratio of viscous stress created by actin
turnover over frictional stress created by random diffusive motion.
We performed a detailed analysis of the bifurcation diagram (SI
Appendix, Figs. S9–S12) of this system, which demonstrates the
pertinence of the linear analysis, as well as a numerical analysis
confirming our analytical predictions (SI Appendix, Figs. S13–S15).
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Fig. 1. Periodic supracellular actin rings in tracheal tubular system. (A) Live imaging of actin dynamics during the formation of the pattern, using Lifeact-
mEGFP. Actin intensity increases by 70%at the onset of ring formation. (Bottom Right) Enlargement of actin ring structure (phalloidin) at embryonic stage 16.
(B) Actin (phalloidin) and myosin II heavy chain (Zip) in the tracheal tubular system at stage 16. (C) At third-instar larval stage, the actin rings (in green, fixed
sample) are very regularly spaced, as can be seen in the intensity profile and in the Fourier spectrum, with a period of 1.2 μm. (D) Theoretical model of an
actomyosin cortex as a viscous and contractile gel, undergoing turnover and in frictional contact with an ECM. An instability into periodic patterns in actin
concentration is very generically expected due to myosin contractility. (Scale bars: 10 μm.)
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Threshold for Myosin2 contractility leading to instabilities:

Wavelength of stationary pattern:
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V - Developmental significance

E. Hannezo et al S. Hayashi and J-F. Joanny. PNAS 112:8620–8625  (2015)

• Spatial patterning by mechano-chemical instabilities during tubulogenesis

E-Cadherin and β-catenin, being important for adhesion turnover
and homeostasis. Src42A and its associated protein, formin family
F-actin nucleator DAAM1, have also been shown to affect axial
cortical tension and to induce aberrant phenotypes in tracheal
development (26, 27, 33). In Src42 mutants, the ring structure is
still clearly visible (Fig. 3A), but the period is 0.8± 0.2 μm, a 70%
increase compared with the wild type (Fig. 3B; n> 110 rings for
each; P< 10−10; counted on at least five different tracheas).
Moreover, we examined the effect of down-regulation of moesin,
the key linker between cortex and membrane in Drosophila (34),
by expressing moesin RNAi in trachea. Actin patterns are severely
in embryos and larvae (SI Appendix, Fig. S1 A and B). Because
taenidial folds are precisely complementary with actin pattern (SI
Appendix, Fig. S2), we measured the wavelength of taenidial folds
in moesin RNAi larvae and found a 25% increase compared with
wild type (1.8± 0.5 μm vs. 1.45± 0.3 μm; P< 10−10; n> 250 pat-
terns for at least four trachea in each condition), in agreement
again with a decreased friction in moesin RNAi.
Moreover, the friction is dependent, not only on linkage mole-

cules, but crucially on the presence of a solid ECM substrate to
adhere on. In a previous work, we have indeed shown that, at that
stage, a chitin/Dumpy matrix core is assembled at the center of the
tube and behaved like an elastic solid on timescales of hours (25). In
the absence of a solid ECM, we expect the friction coefficient to be
drastically reduced, as only a small effective friction remains, arising
from the viscous flow of the cytosol permeating through the gel, as
discussed extensively in ref. 35. Moreover, for a finite-size system
(i.e., one cell length L), the wavelength cannot be infinite, so as
soon as it is larger than the cell size ðλ>LÞ, we expect that actin
should accumulate in one single spot (i.e., one actin ring per cell).

To verify this prediction, we investigate the chitin synthase
Krotzkopf verkehrt kkv1 mutants, where the formation of the
chitin/Dumpy matrix core is impaired (36) (Fig. 3). At stage 15,
where rings should normally form, the tube develops an aberrant
“pearling” phenotype, characterized by a series of large con-
strictions. We displayed on Fig. 3C examples of this phenotype,
stained for phalloidin and DE-cadherin. The constrictions
colocalize with rings containing both actin (Fig. 3C) and myosin
II (SI Appendix, Fig. S3). We can therefore hypothesize that the
actomyosin-generated stress in this region is large enough to
locally constrict the tube, in a very similar manner to a cytoki-
netic ring in dividing cells (17) and nondividing notochord cells
(37). This effect is amplified by the fact that there is no elastic
chitin anymore in the center to resist the constriction. To test this
quantitatively, we measure simultaneously along the length of
the tube the local diameter, as well as the local average actin
density (Fig. 3C). This reveals a robust anticorrelation between
the two: constricted regions have large actin densities, whereas
enlarged regions have low actin densities. Moreover, we in-
cubated kkv mutant embryos in 250 μM Y-27632. The tube
uniformly dilated, which is expected from Laplace law by re-
ducing the tension (Fig. 3D). As expected, we also observed that
most of the constriction disappears (except at the fusion points
between the main trunk and the side branches), proving that the
actomyosin rings we observe are contractile as assumed in the
model. Although the actin rings are no longer as periodically
arranged, we can still measure a characteristic distance of 4.5± 2 μm
between each ring (n > 40; Fig. 3B) and observed that this
corresponds indeed on average to one ring per cell (Fig. 3C).

A

B

C

D

Fig. 3. Model predictions tested through pharmacological perturbation and fly genetics. (A) The period of the ring pattern increased by 70% in Src42
mutants, and 10-fold by genetic removal of the extracellular matrix inside the tube (kkv mutant). One of our model’s core predictions is that decreasing
friction should increase the wavelength of the pattern. (B) Wavelength increases in Src42 and kkv mutant ðP < 10−10Þ, compared with wild type. (C) Local
constrictions are observed in kkv mutants lacking an ECM substrate and colocalize with actin (phalloidin staining), and high actin concentration correlates
with small tube radius, showing that the rings are contractile. (Bottom Right) Cadherin (green) and actin (purple) stating, showing that only one actin ring is
present per cell on average. (D) Actomyosin constrictions in kkvmutant disappeared by lowering contractility through Y-27632 treatment. (Scale bars: 10 μm.)

Hannezo et al. PNAS | July 14, 2015 | vol. 112 | no. 28 | 8623

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S
SE

E
CO

M
M
EN

TA
RY

Experimental tests of the model using mutants that are expected to affect 
friction of the actin network with the cell boundaries:

Defects in E-cadherin
adhesion complexes

Defects in ECM linkages:
chitine synthase

Theory of Actin Pattern Formation
We first concentrate on understanding the formation of actin
stripes within a single cell and restrict ourselves to patterns dis-
playing radial symmetry. We thus consider the cell cortex as a
finite one-dimensional (1D) (of length L, in the axial direction x),
compressible, viscous, and contractile actomyosin gel, in frictional
contact with a rigid substrate. The conservation equation for the
actin gel of density ρ reads as follows:

∂tρ=
ρ0 − ρ
τ

−∂xðρvÞ+D∂xxρ, [1]

where τ is the turnover time of actin treadmilling around a ref-
erence density ρ0, and D is an effective diffusion coefficient,
whose physical origin we discuss in SI Appendix. This equation
expresses that changes in actin concentration over time (left-
hand term) arise from three contributions (from left to right in
the right-hand term): actin turnover, advection by cortical flows,
and effective diffusion of filaments.
Momentum balance in the gel and constitutive behavior at

linear order in the gel density around the reference state, re-
spectively, read as follows (8):

∂xσ = ξv σ = χ0ρ=ρ0 + η∂xv, [2]

where σ is axial stress in the network and v is velocity. ξ is the
friction coefficient with respect to the substrate; χ0, the con-
tractility arising from myosin motors; and η, the gel viscosity. As
detailed in SI Appendix, we assume that myosin is in excess,
with fast turnover, and therefore simply follows actin concen-
tration. Starting from an initially uniform density ρ, a pattern-
ing instability occurs when myosin contractility reaches a
threshold χc = ð

ffiffiffiffiffiffiffi
η=τ

p
+

ffiffiffiffiffiffi
Dξ

p
Þ2 and forms a stationary pattern

at a wavelength:

λc = 2π
"
Dτη
ξ

#1=4

. [3]

Therefore, as expected, high diffusion, friction, viscosity, or a low
turnover time τ all stabilize a uniform cortex, by increasing the
contractility threshold for pattern formation. The influence of
each parameter on the wavelength is more complex: higher dif-
fusion, viscosity, and turnover time favor large wavelengths,
whereas a higher friction favors small wavelengths. These criteria
are similar to ref. 24, which investigates in a different setting the
temporal size oscillations of apical cell areas. The case τ→∞ has
been studied theoretically previously (10, 11) and yields to actin
accumulation in a single region. We can therefore define two
characteristic length scales crucial for the patterning:

• lh =
ffiffiffiffiffiffiffi
η=ξ

p
is the hydrodynamic wavelength, i.e., it quantifies

the length at which contractile stresses are propagated in the
cortex. For lengths larger (respectively, smaller) than lh, the
flow is dissipated by friction (respectively, viscosity).

• lt =
ffiffiffiffiffiffi
Dτ

p
compares the range at which diffusion and turnover

act. On lengths larger (respectively, smaller) than lt, a change
in concentration is relaxed dominantly through turnover
(respectively, diffusion).

We adimensionalize the equations (SI Appendix). Our model
then involves only three nondimensional parameters: α= l=lh,
which reflects the size of a cell with respect to the hydrodynamic
length scale, χ= ρ0χ

0=ξD, which measures the importance of
contractility-induced flows favoring the localization of the gel and
ϕ= η=Dτξ, which is the ratio of viscous stress created by actin
turnover over frictional stress created by random diffusive motion.
We performed a detailed analysis of the bifurcation diagram (SI
Appendix, Figs. S9–S12) of this system, which demonstrates the
pertinence of the linear analysis, as well as a numerical analysis
confirming our analytical predictions (SI Appendix, Figs. S13–S15).

A B

D

C

Fig. 1. Periodic supracellular actin rings in tracheal tubular system. (A) Live imaging of actin dynamics during the formation of the pattern, using Lifeact-
mEGFP. Actin intensity increases by 70%at the onset of ring formation. (Bottom Right) Enlargement of actin ring structure (phalloidin) at embryonic stage 16.
(B) Actin (phalloidin) and myosin II heavy chain (Zip) in the tracheal tubular system at stage 16. (C) At third-instar larval stage, the actin rings (in green, fixed
sample) are very regularly spaced, as can be seen in the intensity profile and in the Fourier spectrum, with a period of 1.2 μm. (D) Theoretical model of an
actomyosin cortex as a viscous and contractile gel, undergoing turnover and in frictional contact with an ECM. An instability into periodic patterns in actin
concentration is very generically expected due to myosin contractility. (Scale bars: 10 μm.)
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Theory of Actin Pattern Formation
We first concentrate on understanding the formation of actin
stripes within a single cell and restrict ourselves to patterns dis-
playing radial symmetry. We thus consider the cell cortex as a
finite one-dimensional (1D) (of length L, in the axial direction x),
compressible, viscous, and contractile actomyosin gel, in frictional
contact with a rigid substrate. The conservation equation for the
actin gel of density ρ reads as follows:

∂tρ=
ρ0 − ρ
τ

−∂xðρvÞ+D∂xxρ, [1]

where τ is the turnover time of actin treadmilling around a ref-
erence density ρ0, and D is an effective diffusion coefficient,
whose physical origin we discuss in SI Appendix. This equation
expresses that changes in actin concentration over time (left-
hand term) arise from three contributions (from left to right in
the right-hand term): actin turnover, advection by cortical flows,
and effective diffusion of filaments.
Momentum balance in the gel and constitutive behavior at

linear order in the gel density around the reference state, re-
spectively, read as follows (8):

∂xσ = ξv σ = χ0ρ=ρ0 + η∂xv, [2]

where σ is axial stress in the network and v is velocity. ξ is the
friction coefficient with respect to the substrate; χ0, the con-
tractility arising from myosin motors; and η, the gel viscosity. As
detailed in SI Appendix, we assume that myosin is in excess,
with fast turnover, and therefore simply follows actin concen-
tration. Starting from an initially uniform density ρ, a pattern-
ing instability occurs when myosin contractility reaches a
threshold χc = ð

ffiffiffiffiffiffiffi
η=τ

p
+

ffiffiffiffiffiffi
Dξ

p
Þ2 and forms a stationary pattern

at a wavelength:

λc = 2π
"
Dτη
ξ

#1=4

. [3]

Therefore, as expected, high diffusion, friction, viscosity, or a low
turnover time τ all stabilize a uniform cortex, by increasing the
contractility threshold for pattern formation. The influence of
each parameter on the wavelength is more complex: higher dif-
fusion, viscosity, and turnover time favor large wavelengths,
whereas a higher friction favors small wavelengths. These criteria
are similar to ref. 24, which investigates in a different setting the
temporal size oscillations of apical cell areas. The case τ→∞ has
been studied theoretically previously (10, 11) and yields to actin
accumulation in a single region. We can therefore define two
characteristic length scales crucial for the patterning:

• lh =
ffiffiffiffiffiffiffi
η=ξ

p
is the hydrodynamic wavelength, i.e., it quantifies

the length at which contractile stresses are propagated in the
cortex. For lengths larger (respectively, smaller) than lh, the
flow is dissipated by friction (respectively, viscosity).

• lt =
ffiffiffiffiffiffi
Dτ

p
compares the range at which diffusion and turnover

act. On lengths larger (respectively, smaller) than lt, a change
in concentration is relaxed dominantly through turnover
(respectively, diffusion).

We adimensionalize the equations (SI Appendix). Our model
then involves only three nondimensional parameters: α= l=lh,
which reflects the size of a cell with respect to the hydrodynamic
length scale, χ= ρ0χ

0=ξD, which measures the importance of
contractility-induced flows favoring the localization of the gel and
ϕ= η=Dτξ, which is the ratio of viscous stress created by actin
turnover over frictional stress created by random diffusive motion.
We performed a detailed analysis of the bifurcation diagram (SI
Appendix, Figs. S9–S12) of this system, which demonstrates the
pertinence of the linear analysis, as well as a numerical analysis
confirming our analytical predictions (SI Appendix, Figs. S13–S15).
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Fig. 1. Periodic supracellular actin rings in tracheal tubular system. (A) Live imaging of actin dynamics during the formation of the pattern, using Lifeact-
mEGFP. Actin intensity increases by 70%at the onset of ring formation. (Bottom Right) Enlargement of actin ring structure (phalloidin) at embryonic stage 16.
(B) Actin (phalloidin) and myosin II heavy chain (Zip) in the tracheal tubular system at stage 16. (C) At third-instar larval stage, the actin rings (in green, fixed
sample) are very regularly spaced, as can be seen in the intensity profile and in the Fourier spectrum, with a period of 1.2 μm. (D) Theoretical model of an
actomyosin cortex as a viscous and contractile gel, undergoing turnover and in frictional contact with an ECM. An instability into periodic patterns in actin
concentration is very generically expected due to myosin contractility. (Scale bars: 10 μm.)
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Wavelength of stationary pattern:
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• Pulsatory and wave of cell contractions reveal the out of equilibrium nature 
of cell and tissue morphogenesis. 

e.g. apical cell constriction during tissue internalisation and invagination.  
     cell intercalation during tissue flow and extension. 

• Biological function: 
1. Pulsations prevent geometrical trap and favour exploration of cellular 

configurations (active noise).
 

2. Tissue viscoelasticity: time scale of deformations (set by pulses period) vs 
timescale of dissipation

3. Enables collective dynamics: non synchronous behaviour
4. Trigger waves enable rapid, long range communications
5. Trigger waves confer adaptation to environment (cell motility)

• Implication of self-organisation: high complexity of behaviours from low level 
developmental information. 
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Self-organization 

• few rules and parameters
• local and direct interactions

Complexity emerges from very simple rules
The amount of information required to model/encode
is very small
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Next Course

Tissue curvature: control and self-organisation

their elastic properties and the relative strain mismatch at different
stages of chick gut development; we chose three stages: E8, E12 and
E16 (Fig. 3). The mesentery has a time-varying thickness, h, which is
evaluated from histological cross-section (Supplementary Fig. 2).
The inner and outer radii of the gut tube were extracted from 49,6-
diamidino-2-phenylindole (DAPI)-stained tube cross-sections (Fig. 3b).
The length of the gut tube, Lt, was measured on the dissected gut. The
natural rest length of the periphery ofmesentery, Lm, wasmeasured by
cutting out thin strips along the junction with the gut and aligning
themunstretchedwith a ruler (Fig. 3c). The bending stiffness of the gut
tube and the stretching stiffness of themesenteryweremeasured using
in vitro, uniaxial, low-rate tensile tests, where the load was generated
by a magnet applying a calibrated force on a millimetre-size steel ball,
attached to one end of a tissue sample thatwas pinned at the other end.
The extension of the sample under load was tracked using video-
microscopy to extract its stress (s)/strain (e) response curve (see
Fig. 3d, e, insets, Methods and Supplementary Information).
For the mesentery, we observed a nonlinear response curve with a

sharp break at a strain eƒep, where ep5 Lt/Lm2 1 is the physiological
strain mismatch, typical of the strain-stiffening seen in biological
soft tissues16. We define an effective modulus, Em~(ds=de)e~ep ,
and strain, e0~(s{1ds=de){1

e~ep
, by locally linearizing the response

(Fig. 3d) and noting that the membrane has negligible stiffness
when 0vevep{e0. For the gut, we measured the modulus,
Et5 s/e, from the linear, low-strain response curve (e, 10%;
Fig. 3e). In Fig. 3f, g, we summarize the variation of Em, Et and e0 as
functions of developmental time. Measurements of the mesentery
stiffness at various locations and in various directions did not show
significant differences (Supplementary Fig. 4). This confirms the
validity of modelling the mesentery and the gut as isotropic, homo-
geneous material.
The measured biophysical parameters allowed us to create a

detailed numerical simulation of gut looping. Because the gut and
mesentery grow slowly, inertial effects are unimportant and the com-
posite system is always in mechanical equilibrium. This equilibrium
configuration was calculated as follows. The mesentery was modelled
as a discrete elastic membrane consisting of a hexagonal lattice of
springs with a discrete energy associated with in-plane stretching/
shearing deformations as well as out-of-plane bending deforma-
tions17, relative to the rest length of the springs. The gut was modelled
as an equivalentmembrane strip (two elementswide)with a discretized
energy associated with bending and stretching deformations, and
elastic stiffnesses different from those of themembrane. The geometry,
mechanical properties and relative growth of the tissues parameterized
by h, It, Em, Et and e0 were all experimentallymeasured at different time
points during development. Given these input parameters, energy
minimization for different relative growth strains, e0, yielded predic-
tions for the loopingmorphology of the gut (Methods and Supplemen-
tary Information).
In Fig. 4a, we compare the results of our observation at E16 with

numerical simulations. In Fig. 4b, c, we compare our quantitative
measurements of the wavelength and radius of curvature of the chick
gut at the different measured stages of development (see also
Supplementary Fig. 8) with those of both the rubber simulacrum
and numerical simulations, as functions of the geometry and elastic
moduli of the tube and sheet. Over the strain ranges e0[½0, 1" in the
simulation (Supplementary Movie 1) and e0[½0:5, 1" for the various
rubber models, we plot the wavelength, l, and radius, R, of the loop
and find that they follow the relations

l<36
EtIt
Emh

! "1=3

ð3Þ

R<4
EtIt

Emhe20

! "1=3

ð4Þ

in accord with our simple scaling laws (equations (1) and (2)). In
Table 1, we compare the values of these parameters for the chick
gut with the expressions given in equations (3) and (4), and confirm
that our model captures the salient properties of the looping patterns
with no adjustable parameters, strongly suggesting that the main
features of the chick gut looping pattern are established by the simple
balance of forces induced by the relative growth between the gut and
the mesentery.

Comparative study of gut looping across species
To test our theory in cases other than the development of the chick
gut, we took advantage of the distinct gut looping patterns observed in
different avian taxa, which have served as criteria for phylogenetic
classification and are thought of as having adaptive significance, inde-
pendent of bird size.
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Figure 4 | Predictions for loop shape, size and number at three stages in
chick gut development. a, Comparisons of the chick gut at E16 (top) with its
simulated counterpart (bottom). b, Scaled loop contour length, l/ro, plotted
versus the equivalently scaled expression from equation (3) for the chick gut
(black squares), the rubber model (green triangles) and numerical simulations
(blue circles). The results are consistent with the scaling law in equation (1).
c, Scaled loop radius, R/ro, plotted versus the equivalently scaled expression
from equation (4) for the chick gut, the rubber model, and numerical
simulations (symbols are as in b). The results are consistent with the scaling law
in equation (2). Error bars, s.d.

Table 1 | Morphometry of chick gut looping pattern
Stage n l (mm) R (mm)

E8 Experimental observation 2.460.4 4.661.0 1.460.2
Computational model* 1.860.3 6.161.5 1.660.3

E12 Experimental observation 9.060.5 5.661.2 1.560.1
Computational model{ 7.361.6 6.861.6 1.760.3

E16 Experimental observation 15.060.5 9.560.5 1.960.1
Computational model{ 17.562.4 8.161.9 1.960.5

The observed number of loops (n), loop wavelength (l) and radius (R) for the chick at different stages of
gut development, for given geometrical and physical parameters associated with the gut and the
mesentery, show that the model predictions are quantitatively consistent with observations.
*Lt511.060.5mm, h513.061.5 mm, ro515568 mm, ri54465mm, Em535614kPa,
Et54.861.4 kPa, ep53867% and e052865%.
{Lt550.068.3mm, h58.061.5mm, ro5209612 mm, ri57269mm, Em5156678kPa,
Et55.661.7 kPa, ep5116619% and e053065%.
{Lt5142.163.3mm, h57.161.4 mm, ro5391627 mm, ri5232631 mm, Em58616344kPa,
Et54.261.3 kPa, ep5218615% and e053368%.
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