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Bugs in software are costly and common
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Formal verification

Alternative: verify software with machine-checked proofs.

Proof AssistantProgram

Spec

Proof

OK?
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Program Verification with a Proof Assistant

Program Proof Assistant

func g() {
x = f();
if x > 0 {

...
}
else {

...
}

}

Theorem gcorrect : ...
Proof.

apply fcorrect.
case (x > 0).
+ ...

...
+ ...

...
Qed.

3



Program Verification with a Proof Assistant

Program Proof Assistant

func g() {
x = f();
if x > 0 {

...
}
else {

...
}

}

Theorem gcorrect : ...
Proof.

apply fcorrect.
case (x > 0).
+ ...

...
+ ...

...
Qed.

3



Verification of Compilers

This methodology has been applied to build verified compilers:

• CompCert – C compiler, verified in Coq

• CakeML – ML compiler, verified in HOL

Proofs show that semantics of programs is preserved by compilation
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ProbCompCert Project

Goal: build a verified compiler for Stan probabilistic programming language

• Modular design to make verification feasible

• Connects to CompCert for end-to-end guarantees

Challenges:

• Randomized behavior

• Complex runtime

• More advanced mathematical foundations
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Specification and Semantics



(Conventional) Compiler Correctness

A compiler C is a function that translates between languages:

C : High Level Language→ Low Level Language

Compiled programs should refine original:

C (e) v e

≈ “ Behaviors of C (e) should be a subset of allowed behaviors of e ”
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What is the “behavior” of a Stan program?

A Stan program can be “run” in several different ways:

• MCMC Sampling

• Automatic Differentiation Variational Inference

• Maximum Likelihood Estimation
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Current focus: MCMC

Samples generated with Markov Chain Monte Carlo (MCMC):

Proposal

Generator

Sampler

Runtime

Density

Compiler

Program

Accept 3

Reject 7

Asymptotically, distribution of samples approximates posterior
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Model Block and Density Compiler

Stan programs are divided into blocks. The core is the model block

model {

alpha ~ normal(0.0, 1.0);

beta ~ normal(0.0, 1.0);

y ~ normal(alpha + beta * x, 1.0);

}

Specifies how to compute log posterior density:

model : data× parameters→ R

Density compiler generates executable code for this function.
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Models are Density Functions

Important: Stan does not restrict to “generative process” modeling.

Special variable called target is modified by sampling:

alpha ~ normal(0.0, 1.0)

is equivalent to

target += normal_lpdf(alpha | 0.0, 1.0);

target is implicitly returned at end of model
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Defining the Semantics

ProbCompCert uses a hybrid semantics, two step process:

1. Operational – small-step rules for computation of expressions/statements,

à la CompCert

2. Denotational – define probability distribution based on model block

(Heavily inspired by Gorinova et al. POPL 2019)
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Integrating the Density

Model block specifies a (log) probability density (up to a constant).

Given data y , obtain a distribution on parameters by integrating + normalizing:

P(A) ∝
∫
A

emodel(y ,p)dµ(p)
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Formalizing Semantics in Coq

Do not want to formalize lots of measure theory in Coq.

Stan requires parameters to be continuous. So improper Riemann integral over

rectangular subsets suffices:

∫
A

emodel(y ,p)dµ(p) =

∫ b1

a1

· · ·
∫ bn

an

emodel(y ,x1,...,xn)dx1 · · · dxn
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Semantic Preservation

Let e = (model, data, parameters) be a Stan program. The denotation JeK is

this function from data to Measure(parameters).

Goal: density compiler should preserve denotation:

JC (e)K = JeK
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Compiler Verification Strategy



How to verify the compiler?

Adopt two important ideas from CompCert:

• Break compilation into many small passes.

• Forward simulation as a proof technique.
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CompCert’s Pipeline

Many small passes between intermediate languages

Advantage: modular proofs of each pass
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ProbCompCert’s Pipeline

Stan
Parsing

Stanlight
Elaborate

IR2
Sampling

IR3

Reparam

IR4
Cify

IR5
Var Alloc

IR6
Target

CompCert Clight

Code Gen
CompCert
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Simulation

Canonical proof technique is backward simulation:

e1

e2

Source:

Compiled:

R

e ′2

e ′1

∗

R

e ′′2

e ′′1

∗

R

· · ·

· · ·
∗

v2

v1

R
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Forward Simulation

If program is deterministic can go other direction:
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Forward Simulation for ProbCompCert?

How can we use forward simulation if MCMC sampler is randomized?

Answer: runtime is randomized, BUT model block code is deterministic
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Forward Simulation Preserves Denotation

Recall: we want JC (e)K = JeK. That is, ∀y ,A:

∫
A

eC(model)(y ,p)dµ(p) ∝
∫
A

emodel(y ,p)dµ(p)

Standard simulation implies C (model)(y , p) = model(y , p) so integral preserved.
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Passes Covered by Standard Simulation

Stan
Parsing

Stanlight
Elaborate

IR2
Sampling

IR3

Reparam

IR4
Cify

IR5
Var Alloc

IR6
Target

CompCert Clight

Code Gen
CompCert
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1. Sample Statement Pass

Sample Statement Pass desugars:

alpha ~ normal(x, y)

into

target += normal_lpdf(alpha | x, y);

BUT Stan also drops addition of constants to target:

target += f(...) + D ⇒ target += f(...)
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Why is dropping additive constants sound?

We get the same distribution after normalizing:

∫
A

emodel(y ,p)+Ddµ(p) =

∫
A

eD · emodel(y ,p)dµ(p)

∝
∫
A

emodel(y ,p)dµ(p)
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2. Reparameterization

Stan allows parameters to have a constrained range:

real<lower=0> alpha;

real<upper=1> beta;

real<lower=0, upper=1> gamma;

However, sampler operates over unconstrained parameter space
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2. Reparameterization

To bridge gap, compiler inserts code to map between constrained and

unconstrained.

E.g. to handle real<lower=b>alpha:

1. Sample unconstrained alpha’

2. Insert prologue in model to set alpha = exp(alpha') + b

3. Add Jacobian offset: target += alpha'

Where does this come from? Integral change of variables:∫ b

a

f (ϕ(x))ϕ′(x)dx =

∫ ϕ(b)

ϕ(a)

f (x)dx
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Using Simulations

These passes change extensional behavior of model, but can still use simulation:

1. Operational Proof: simulation to show that

C (model)(y , p) = g(model(y , p))

2. Denotational Proof: show that∫
A

eg(model(y ,p))dµ(p) ∝
∫
A

emodel(y ,p)dµ(p)
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Challenges and Conclusion



Open Question

Denotational arguments assume exact real arithmetic.

Reality: approximate floating point arithmetic.

∫
A

emodel(y ,p)dµ(p)⇒
∑
p∈A

emodel(y ,p)µ(p)

How to address?

• Don’t?

• Bound floating point error?

• Implement an exact arithmetic backend?
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Conclusion

Goal: build a verified compiler for Stan probabilistic programming language

• Modular design to make verification feasible

• Connects to CompCert for end-to-end guarantees

Phase 1: Density Compilation

• Many intermediate passes

• Leverage forward simulations as much as possible
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