
Formally Verified Compilation of

Probabilistic Programs

Joseph Tassarotti (Boston College ⇒ New York University)

Joint work with:

Jean-Baptiste Tristan (Boston College)

Sam Stites (Northeastern University)



Bugs in software are costly and common

1



Formal verification

Alternative: verify software with machine-checked proofs.

Proof AssistantProgram

Spec

Proof

OK?

2



Formal verification

Alternative: verify software with machine-checked proofs.

Proof AssistantProgram

Spec

Proof

OK?

2



Program Verification with a Proof Assistant

Program Proof Assistant

func g() {
x = f();
if x > 0 {

...
}
else {

...
}

}

Theorem gcorrect : ...
Proof.

apply fcorrect.
case (x > 0).
+ ...

...
+ ...

...
Qed.

3



Program Verification with a Proof Assistant

Program Proof Assistant

func g() {
x = f();
if x > 0 {

...
}
else {

...
}

}

Theorem gcorrect : ...
Proof.

apply fcorrect.
case (x > 0).
+ ...

...
+ ...

...
Qed.

3



Verification of Compilers

This methodology has been applied to build verified compilers:

• CompCert – C compiler, verified in Coq

• CakeML – ML compiler, verified in HOL

Proofs show that semantics of programs is preserved by compilation

4



ProbCompCert Project

Goal: build a verified compiler for Stan probabilistic programming language

• Modular design to make verification feasible

• Connects to CompCert for end-to-end guarantees

Challenges:

• Randomized behavior

• Complex runtime

• More advanced mathematical foundations

5



ProbCompCert Project

Goal: build a verified compiler for Stan probabilistic programming language

• Modular design to make verification feasible

• Connects to CompCert for end-to-end guarantees

Challenges:

• Randomized behavior

• Complex runtime

• More advanced mathematical foundations

5



Specification and Semantics



(Conventional) Compiler Correctness

A compiler C is a function that translates between languages:

C : High Level Language→ Low Level Language

Compiled programs should refine original:

C (e) v e

≈ “ Behaviors of C (e) should be a subset of allowed behaviors of e ”

6



(Conventional) Compiler Correctness

A compiler C is a function that translates between languages:

C : High Level Language→ Low Level Language

Compiled programs should refine original:

C (e) v e

≈ “ Behaviors of C (e) should be a subset of allowed behaviors of e ”

6



What is the “behavior” of a Stan program?

A Stan program can be “run” in several different ways:

• MCMC Sampling

• Automatic Differentiation Variational Inference

• Maximum Likelihood Estimation

7



What is the “behavior” of a Stan program?

A Stan program can be “run” in several different ways:

• MCMC Sampling

• Automatic Differentiation Variational Inference

• Maximum Likelihood Estimation

7



Current focus: MCMC

Samples generated with Markov Chain Monte Carlo (MCMC):

Proposal

Generator

Sampler

Runtime

Density

Compiler

Program

Accept 3

Reject 7

Asymptotically, distribution of samples approximates posterior
8



Current focus: MCMC

Samples generated with Markov Chain Monte Carlo (MCMC):

Proposal

Generator

Sampler

Runtime

Density

Compiler

Program

Accept 3

Reject 7

Asymptotically, distribution of samples approximates posterior
8



Model Block and Density Compiler

Stan programs are divided into blocks. The core is the model block

model {

alpha ~ normal(0.0, 1.0);

beta ~ normal(0.0, 1.0);

y ~ normal(alpha + beta * x, 1.0);

}

Specifies how to compute log posterior density:

model : data× parameters→ R

Density compiler generates executable code for this function.

9



Models are Density Functions

Important: Stan does not restrict to “generative process” modeling.

Special variable called target is modified by sampling:

alpha ~ normal(0.0, 1.0)

is equivalent to

target += normal_lpdf(alpha | 0.0, 1.0);

target is implicitly returned at end of model

10



Defining the Semantics

ProbCompCert uses a hybrid semantics, two step process:

1. Operational – small-step rules for computation of expressions/statements,

à la CompCert

2. Denotational – define probability distribution based on model block

(Heavily inspired by Gorinova et al. POPL 2019)

11



Defining the Semantics

ProbCompCert uses a hybrid semantics, two step process:

1. Operational – small-step rules for computation of expressions/statements,

à la CompCert

2. Denotational – define probability distribution based on model block

(Heavily inspired by Gorinova et al. POPL 2019)

11



Integrating the Density

Model block specifies a (log) probability density (up to a constant).

Given data y , obtain a distribution on parameters by integrating + normalizing:

P(A) ∝
∫
A

emodel(y ,p)dµ(p)

12



Formalizing Semantics in Coq

Do not want to formalize lots of measure theory in Coq.

Stan requires parameters to be continuous. So improper Riemann integral over

rectangular subsets suffices:

∫
A

emodel(y ,p)dµ(p) =

∫ b1

a1

· · ·
∫ bn

an

emodel(y ,x1,...,xn)dx1 · · · dxn

13



Semantic Preservation

Let e = (model, data, parameters) be a Stan program. The denotation JeK is

this function from data to Measure(parameters).

Goal: density compiler should preserve denotation:

JC (e)K = JeK

14



Compiler Verification Strategy



How to verify the compiler?

Adopt two important ideas from CompCert:

• Break compilation into many small passes.

• Forward simulation as a proof technique.

15



CompCert’s Pipeline

Many small passes between intermediate languages

Advantage: modular proofs of each pass

16



ProbCompCert’s Pipeline

Stan
Parsing

Stanlight
Elaborate

IR2
Sampling

IR3

Reparam

IR4
Cify

IR5
Var Alloc

IR6
Target

CompCert Clight

Code Gen
CompCert

17



Simulation

Canonical proof technique is backward simulation:

e1

e2

Source:

Compiled:

R

e ′2

e ′1

∗

R

e ′′2

e ′′1

∗

R

· · ·

· · ·
∗

v2

v1

R

18



Simulation

Canonical proof technique is backward simulation:

e1

e2

Source:

Compiled:

R

e ′2

e ′1

∗

R

e ′′2

e ′′1

∗

R

· · ·

· · ·
∗

v2

v1

R

18



Simulation

Canonical proof technique is backward simulation:

e1

e2

Source:

Compiled:

R

e ′2

e ′1

∗

R

e ′′2

e ′′1

∗

R

· · ·

· · ·
∗

v2

v1

R

18



Simulation

Canonical proof technique is backward simulation:

e1

e2

Source:

Compiled:

R

e ′2

e ′1

∗

R

e ′′2

e ′′1

∗

R

· · ·

· · ·
∗

v2

v1

R

18



Simulation

Canonical proof technique is backward simulation:

e1

e2

Source:

Compiled:

R

e ′2

e ′1

∗

R

e ′′2

e ′′1

∗

R

· · ·

· · ·
∗

v2

v1

R

18



Simulation

Canonical proof technique is backward simulation:

e1

e2

Source:

Compiled:

R

e ′2

e ′1

∗

R

e ′′2

e ′′1

∗

R

· · ·

· · ·
∗

v2

v1

R

18



Forward Simulation

If program is deterministic can go other direction:

e1

e2

Source:

Compiled:

R

e ′1

e ′2

∗

R

e ′′1

e ′′2

∗

R

· · ·

· · ·
∗

v1

v2

R

19



Forward Simulation

If program is deterministic can go other direction:

e1

e2

Source:

Compiled:

R

e ′1

e ′2

∗

R

e ′′1

e ′′2

∗

R

· · ·

· · ·
∗

v1

v2

R

19



Forward Simulation

If program is deterministic can go other direction:

e1

e2

Source:

Compiled:

R

e ′1

e ′2

∗

R

e ′′1

e ′′2

∗

R

· · ·

· · ·
∗

v1

v2

R

19



Forward Simulation

If program is deterministic can go other direction:

e1

e2

Source:

Compiled:

R

e ′1

e ′2

∗

R

e ′′1

e ′′2

∗

R

· · ·

· · ·
∗

v1

v2

R

19



Forward Simulation

If program is deterministic can go other direction:

e1

e2

Source:

Compiled:

R

e ′1

e ′2

∗

R

e ′′1

e ′′2

∗

R

· · ·

· · ·
∗

v1

v2

R

19



Forward Simulation

If program is deterministic can go other direction:

e1

e2

Source:

Compiled:

R

e ′1

e ′2

∗

R

e ′′1

e ′′2

∗

R

· · ·

· · ·
∗

v1

v2

R

19



Forward Simulation for ProbCompCert?

How can we use forward simulation if MCMC sampler is randomized?

Answer: runtime is randomized, BUT model block code is deterministic

20



Forward Simulation for ProbCompCert?

How can we use forward simulation if MCMC sampler is randomized?

Answer: runtime is randomized, BUT model block code is deterministic

20



Forward Simulation Preserves Denotation

Recall: we want JC (e)K = JeK. That is, ∀y ,A:

∫
A

eC(model)(y ,p)dµ(p) ∝
∫
A

emodel(y ,p)dµ(p)

Standard simulation implies C (model)(y , p) = model(y , p) so integral preserved.

21



Forward Simulation Preserves Denotation

Recall: we want JC (e)K = JeK. That is, ∀y ,A:

∫
A

eC(model)(y ,p)dµ(p) ∝
∫
A

emodel(y ,p)dµ(p)

Standard simulation implies C (model)(y , p) = model(y , p) so integral preserved.

21



Passes Covered by Standard Simulation

Stan
Parsing

Stanlight
Elaborate

IR2
Sampling

IR3

Reparam

IR4
Cify

IR5
Var Alloc

IR6
Target

CompCert Clight

Code Gen
CompCert

22



1. Sample Statement Pass

Sample Statement Pass desugars:

alpha ~ normal(x, y)

into

target += normal_lpdf(alpha | x, y);

BUT Stan also drops addition of constants to target:

target += f(...) + D ⇒ target += f(...)

23



1. Sample Statement Pass

Sample Statement Pass desugars:

alpha ~ normal(x, y)

into

target += normal_lpdf(alpha | x, y);

BUT Stan also drops addition of constants to target:

target += f(...) + D ⇒ target += f(...)

23



Why is dropping additive constants sound?

We get the same distribution after normalizing:

∫
A

emodel(y ,p)+Ddµ(p) =

∫
A

eD · emodel(y ,p)dµ(p)

∝
∫
A

emodel(y ,p)dµ(p)

24



2. Reparameterization

Stan allows parameters to have a constrained range:

real<lower=0> alpha;

real<upper=1> beta;

real<lower=0, upper=1> gamma;

However, sampler operates over unconstrained parameter space

25



2. Reparameterization

To bridge gap, compiler inserts code to map between constrained and

unconstrained.

E.g. to handle real<lower=b>alpha:

1. Sample unconstrained alpha’

2. Insert prologue in model to set alpha = exp(alpha') + b

3. Add Jacobian offset: target += alpha'

Where does this come from? Integral change of variables:∫ b

a

f (ϕ(x))ϕ′(x)dx =

∫ ϕ(b)

ϕ(a)

f (x)dx

26



2. Reparameterization

To bridge gap, compiler inserts code to map between constrained and

unconstrained.

E.g. to handle real<lower=b>alpha:

1. Sample unconstrained alpha’

2. Insert prologue in model to set alpha = exp(alpha') + b

3. Add Jacobian offset: target += alpha'

Where does this come from? Integral change of variables:∫ b

a

f (ϕ(x))ϕ′(x)dx =

∫ ϕ(b)

ϕ(a)

f (x)dx

26



2. Reparameterization

To bridge gap, compiler inserts code to map between constrained and

unconstrained.

E.g. to handle real<lower=b>alpha:

1. Sample unconstrained alpha’

2. Insert prologue in model to set alpha = exp(alpha') + b

3. Add Jacobian offset: target += alpha'

Where does this come from? Integral change of variables:∫ b

a

f (ϕ(x))ϕ′(x)dx =

∫ ϕ(b)

ϕ(a)

f (x)dx

26



Using Simulations

These passes change extensional behavior of model, but can still use simulation:

1. Operational Proof: simulation to show that

C (model)(y , p) = g(model(y , p))

2. Denotational Proof: show that∫
A

eg(model(y ,p))dµ(p) ∝
∫
A

emodel(y ,p)dµ(p)

27



Using Simulations

These passes change extensional behavior of model, but can still use simulation:

1. Operational Proof: simulation to show that

C (model)(y , p) = g(model(y , p))

2. Denotational Proof: show that∫
A

eg(model(y ,p))dµ(p) ∝
∫
A

emodel(y ,p)dµ(p)

27



Challenges and Conclusion



Open Question

Denotational arguments assume exact real arithmetic.

Reality: approximate floating point arithmetic.

∫
A

emodel(y ,p)dµ(p)⇒
∑
p∈A

emodel(y ,p)µ(p)

How to address?

• Don’t?

• Bound floating point error?

• Implement an exact arithmetic backend?

28



Open Question

Denotational arguments assume exact real arithmetic.

Reality: approximate floating point arithmetic.

∫
A

emodel(y ,p)dµ(p)⇒
∑
p∈A

emodel(y ,p)µ(p)

How to address?

• Don’t?

• Bound floating point error?

• Implement an exact arithmetic backend?
28



Conclusion

Goal: build a verified compiler for Stan probabilistic programming language

• Modular design to make verification feasible

• Connects to CompCert for end-to-end guarantees

Phase 1: Density Compilation

• Many intermediate passes

• Leverage forward simulations as much as possible

29


	Specification and Semantics
	Compiler Verification Strategy
	Challenges and Conclusion

