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Synchronous languages


High-level specification language 

Generate correct-by-construction embedded code 

Industrial tool: ANSYS Scade

Challenges


Noisy environment, perceived through noisy sensors 

Interaction with other autonomous entities

Existing approaches


Manually implement stochastic controller: Can be error prone 

Offline statistical tests: Requires up-to-date offline data

Reactive Probabilistic Programming


Synchronous languages with probabilistic constructs 

Make the probabilistic model explicit 

Automatically learn posterior distributions from observations
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Reactive Systems
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Synchronous data-flow languages and block diagrams


Signal: stream of values 

System: stream processor 



Reactive Probabilistic Systems

Synchronous data-flow languages and block diagrams


Signal: stream of values 

System: stream processor  

ProbZelus: add support to deal with uncertainty


Extend a synchronous language 

Parallel composition: deterministic/probabilistic 

Inference-in-the-loop 

Streaming inference
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Reactive Probabilistic Programming

Synchronous Programming

5



Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming


Set of stream equations 

Discrete logical time steps 

At each step, compute the current value given inputs and previous values 

Stream operations


Constant are lifted to stream: 1 = 1, 1, 1, .... 

Temporal operators: ->-, pre, fby  

Control structures: reset/every, present, automaton
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Dataflow synchronous programming


Set of stream equations 

Discrete logical time steps 

At each step, compute the current value given input and previous values 

node nat v = cpt where 

  rec cpt = v ->- pre cpt + 1 

7
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Dataflow synchronous programming


Set of stream equations 

Discrete logical time steps 

At each step, compute the current value given input and previous values 

node nat v = cpt where 

  rec cpt = v ->- pre cpt + 1 
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Reactive Probabilistic Programming

ProbZelus
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proba tracker (u, acc, gps) = x where 

  rec  x = sample (mv_gaussian (motion (u, x0 ->- pre x), noise)) 

  and () = observe (gaussian (get_acc x, 1.0), acc) 

  and present gps (pos) ->-  

          do () = observe (gaussian (get_pos x, 0.01), pos) done

Reactive Probabilistic Programming
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Extend Zelus with probabilistic constructs


x = sample(d): introduce a random variable x of distribution d 

observe(d, y): condition on the fact that y was sampled from d 

infer m obs: compute the distribution of output of the model m with respect to obs
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1

() ()

1

Constant 1:  

Initial state: the value of type unit 

Step function: return the empty state and the constant 1

𝚞𝚗𝚒𝚝 × (𝚞𝚗𝚒𝚝 → 𝚞𝚗𝚒𝚝 × 𝚒𝚗𝚝)

e

pre

vp

(s0e,v)

vp

(se,vp) seUnit delay pre e:  

Initial state: the initial state of e and default value 

Step function: the result of e is stored in the state and 

returned at the next iteration

(S × T) × (S × T → (S × T) × T)

CoStream(T, S) = S × (S → S × T )
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CoPStream(T, S) = S × (S → ΣS × T → [0,∞])

Transition function returns a pair of state and value

Deterministic Streams

CoStream(T, S) = S × (S → S × T )

Deterministic vs. Probabilistic

14

Probabilistic Streams

Transition function returns a measure over (state, value)

step
ΣS⇥T ! [0,1]

S

step

S

T

S
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Transition function returns a measure

step
ΣS⇥T ! [0,1]

S

CoPStream(T, S) = S × (S → ΣS × T → [0,∞])

e v

s0

λU.δ(s0,v)(U)

s

lift

dirac

lift turns a deterministic expression into a probabilistic one  

lift:S × (S → S × T ) → S × (S → ΣS × T → [0,∞])

e

s
ν = λU.µ(U)/µ(>)

π1⇤(ν)

infer

µ

R
S

σ(ds)

σ

η
norm. proj.

π2⇤(ν)

infer turns probabilistic expressions to a pair of distributions 

infer: S × (S → ΣS × T → [0,∞]) → S 𝚍𝚒𝚜𝚝 × (S 𝚍𝚒𝚜𝚝 → S 𝚍𝚒𝚜𝚝 × T 𝚍𝚒𝚜𝚝)
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Intractable integrals


Approximation: weighted sum from multiple particles



Delayed Sampling

Simple Particles Filters can be impractical


Require lot of computing power 

Poor approximation 

Exact inference is often possible


Semi-Symbolic inference


Perform as much exact computation as possible 

Fall back to a Particle Filter when symbolic computation fails 

Main idea


Keep track of conjugacy relationships 

Incorporate observations analytically 

Sample only when necessary

19 Murray et al. 2018



Delayed Sampling

Simple Particles Filters can be impractical


Require lot of computing power 

Poor approximation 

Exact inference is often possible


Semi-Symbolic inference


Perform as much exact computation as possible 
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Main idea
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Reactive Probabilistic Programming (Demo)

exact position + color sensor

estimated color of a map cell 

estimated position

Simultaneous Localization And Mapping


Environment: slippery wheels and noisy color sensor 

System: infer current position and map, output command (left/right/up/down) 

At each step:


Move to the next position 

Observe the color of the ground 

Use inferred position to compute next command

deterministic

probabilistic

infer

system

environment
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Language features  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Algorithms comparison
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Streaming Delayed Sampling 
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Benchmarks
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Conclusions


SDS is always faster to match accuracy 

Reduction in particle count outweighs symbolic overhead 

SDS can be exact (1 particle) 

PF is impractical for advanced examples

Baseline: SDS with 1,000 particles
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Can we determine if a given program will run in bounded memory?



Trace: Abstract Execution

proba tracker (y) = x where 

  rec x  = sample (gaussian (0, 10) ->- gaussian (pre x, 1)) 

  and () = observe (gaussian (x, 1), y)

2727

trace           state                    time 

       x =                  

 

 

       x = , pre x =       

 

 

       x = , pre x =       

 

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…



Trace: Abstract Execution

proba tracker (y) = x where 

  rec x  = sample (gaussian (0, 10) ->- gaussian (pre x, 1)) 

  and () = observe (gaussian (x, 1), y)

2727

random variable

trace           state                    time 

       x =                  

 

 

       x = , pre x =       

 

 

       x = , pre x =       

 

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…



Trace: Abstract Execution

proba tracker (y) = x where 

  rec x  = sample (gaussian (0, 10) ->- gaussian (pre x, 1)) 

  and () = observe (gaussian (x, 1), y)

2727

random variable

observation

trace           state                    time 

       x =                  

 

 

       x = , pre x =       

 

 

       x = , pre x =       

 

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…



Static Analysis for Delayed Sampling

Semantic properties
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m-consumed property


Chains of variables before an observe are bounded

unseparated paths property


Chains of variables referenced in the state are bounded

Theorem: The program satisfies these two properties iff it executes in bounded memory
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m-consumed property


Chains of variables before an observe are bounded

unseparated paths property


Chains of variables referenced in the state are bounded

Theorem: The program satisfies these two properties iff it executes in bounded memory

Static analysis

Track variables introduced but not used yet Track maximal path between pairs of variable in the state

Theorem: The program pass the analysis if it executes in bounded memory
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Abstract

Synchronous modeling is at the heart of programming lan-
guages like Lustre, Esterel, or SCADE used routinely for
implementing safety critical control software, e.g., !y-by-
wire and engine control in planes. However, to date these
languages have had limited modern support for modeling
uncertainty — probabilistic aspects of the software’s envi-
ronment or behavior — even though modeling uncertainty
is a primary activity when designing a control system.
In this paper we present ProbZelus the "rst synchronous

probabilistic programming language. ProbZelus conserva-
tively provides the facilities of a synchronous language to
write control software, with probabilistic constructs to model
uncertainties and perform inference-in-the-loop.

We present the design and implementation of the language.
We propose a measure-theoretic semantics of probabilistic
stream functions and a simple type discipline to separate
deterministic and probabilistic expressions. We demonstrate
a semantics-preserving compilation into a "rst-order func-
tional language that lends itself to a simple presentation of
inference algorithms for streaming models. We also redesign
the delayed sampling inference algorithm to provide e#cient
streaming inference. Together with an evaluation on several
reactive applications, our results demonstrate that ProbZelus
enables the design of reactive probabilistic applications and
e#cient, bounded memory inference.

CCS Concepts: • Theory of computation → Streaming

models; • Software and its engineering → Data !ow

languages.
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1 Introduction

Synchronous languages [2] were introduced thirty years ago
for designing and implementing real-time control software.
They are founded on the synchronous abstraction [4] where
a system is modeled ideally, as if communications and com-
putations were instantaneous and paced on a global clock.
This abstraction is simple but powerful: input, output and
local signals are streams that advance synchronously and a
system is a stream function. It is at the heart of the data-!ow
languages Lustre [20] and SCADE [13]; it is also the under-
lying model behind the discrete-time subset of Simulink.
The data-!ow programming style is very well adapted

to the direct expression of the classic control blocks of con-
trol engineering (e.g., relays, "lters, PID controllers, control
logic), and a discrete timemodel of the environment, with the
feedback between the two. For example, consider a backward
Euler integration method de"ned by the following stream
equations and its corresponding implementation in Zelus [7],
a language reminiscent of Lustre:

x0 = xo0 xn = xn−1 + x
′
n × h ∀n ∈ N,n > 0

let node integr (xo, x') = x where

rec x = xo -> (pre x + x' * h)

The node integr is a function from input streams xo and x'

to output stream x. The initialization operator -> returns its
left-hand side value at the "rst time step and its right-hand
side expression on every time step thereafter. The unit-delay
operator pre returns the value of its expression at the previ-
ous time step. The following table presents a sample timeline

showing the sequences of values taken by the streams de-
"ned in the program (where h is set to 0.1).
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Probabilistic programming languages aid developers performing Bayesian inference. These languages provide
programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced
a probabilistic programming language, ProbZelus, to extend probabilistic programming functionality to
unbounded streams of data. This work demonstrated that the delayed sampling inference algorithm could be
extended to work in a streaming context. ProbZelus showed that while delayed sampling could be e!ectively
deployed on some programs, depending on the probabilistic model under consideration, delayed sampling is
not guaranteed to use a bounded amount of memory over the course of the execution of the program.
In this paper, we the present conditions on a probabilistic program’s execution under which delayed sampling
will execute in bounded memory. The two conditions are data"ow properties of the core operations of delayed
sampling: the !-consumed property and the unseparated paths property. A program executes in bounded
memory under delayed sampling if, and only if, it satis#es the!-consumed and unseparated paths properties.
We propose a static analysis that abstracts over these properties to soundly ensure that any program that
passes the analysis satis#es these properties, and thus executes in bounded memory under delayed sampling.

CCS Concepts: • Theory of computation → Program analysis; Streaming models; • Software and its

engineering→ Data !ow languages.
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1 INTRODUCTION

Probabilistic programming languages aid developers performing Bayesian inference [Atkinson et al.
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@node function model() 

    @init x = rand(Normal(0.0, 1000.0))   # x_0 ~ N(0, 1000) 

    x = rand(Normal(@prev(x), speed))     # x_t ~ N(x_{t-1}, speed) 

    y = rand(Normal(x, noise))            # y_t ~ N(x_t, noise) 

    return x, y 

end 

@node function hmm(obs) 

    x, y = @nodecall model() # apply model to get x, y 

    @observe(y, obs)         # assume y_t is observed with value obs_t  

    return x 

end 

Reactive Probabilistic Programming in Julia
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Hybrid Probabilistic Programming with ODEs

let hybrid ball g = h where  

  rec der v = -. g init 0. reset up (-. h) ->- -. phi *. (last v) 

  and der h = v init h0 

let hybrid proba ball_pos obs = g where 

  rec init g = sample (gaussian (5., 5.)) 

  and h = ball g 

  and present obs(x) ->-  

    do () = observe (gaussian (h, 0.1), x) done
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