
Reactive Probabilistic Programming

E. Atkinson

B. Sherman

C. Yuan

M. Carbin

MIT

M. Pouzet

ENS

L. Mandel

IBM Research

Guillaume Baudart

Inria

Uncertainty in Embedded Systems

2

Uncertainty in Embedded Systems

Synchronous languages

High-level specification language

Generate correct-by-construction embedded code

Industrial tool: ANSYS Scade

Challenges

Noisy environment, perceived through noisy sensors

Interaction with other autonomous entities

2

Uncertainty in Embedded Systems

Synchronous languages

High-level specification language

Generate correct-by-construction embedded code

Industrial tool: ANSYS Scade

Challenges

Noisy environment, perceived through noisy sensors

Interaction with other autonomous entities

2

Uncertainty in Embedded Systems

Synchronous languages

High-level specification language

Generate correct-by-construction embedded code

Industrial tool: ANSYS Scade

Challenges

Noisy environment, perceived through noisy sensors

Interaction with other autonomous entities

2

Uncertainty in Embedded Systems

Synchronous languages

High-level specification language

Generate correct-by-construction embedded code

Industrial tool: ANSYS Scade

Challenges

Noisy environment, perceived through noisy sensors

Interaction with other autonomous entities

Existing approaches

Manually implement stochastic controller: Can be error prone

Offline statistical tests: Requires up-to-date offline data

2

Uncertainty in Embedded Systems

Synchronous languages

High-level specification language

Generate correct-by-construction embedded code

Industrial tool: ANSYS Scade

Challenges

Noisy environment, perceived through noisy sensors

Interaction with other autonomous entities

Existing approaches

Manually implement stochastic controller: Can be error prone

Offline statistical tests: Requires up-to-date offline data

Reactive Probabilistic Programming

Synchronous languages with probabilistic constructs

Make the probabilistic model explicit

Automatically learn posterior distributions from observations

2

Reactive Systems

3

controller

tracker
x

acc

gps

u

robot

State: x: (position × velocity × acceleration)

Synchronous data-flow languages and block diagrams

Signal: stream of values

System: stream processor

Reactive Probabilistic Systems

Synchronous data-flow languages and block diagrams

Signal: stream of values

System: stream processor

ProbZelus: add support to deal with uncertainty

Extend a synchronous language

Parallel composition: deterministic/probabilistic

Inference-in-the-loop

Streaming inference

4

controlleracc

gps

u

robot

tracker

infer

x_dist

State: x_dist: (position × velocity × acceleration) 𝚍𝚒𝚜𝚝

Reactive Probabilistic Programming

Synchronous Programming

5

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given inputs and previous values

Stream operations

Constant are lifted to stream: 1 = 1, 1, 1,

Temporal operators: ->-, pre, fby

Control structures: reset/every, present, automaton

6

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given input and previous values

node nat v = cpt where

 rec cpt = v ->- pre cpt + 1

7

cpt
n

= if (n = 0) then v0 else cpt
n−1

+ 1

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given input and previous values

node nat v = cpt where

 rec cpt = v ->- pre cpt + 1

7

nat

t = 0

cpt
n

= if (n = 0) then v0 else cpt
n−1

+ 1

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given input and previous values

node nat v = cpt where

 rec cpt = v ->- pre cpt + 1

7

nat

1

t = 0

cpt
n

= if (n = 0) then v0 else cpt
n−1

+ 1

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given input and previous values

node nat v = cpt where

 rec cpt = v ->- pre cpt + 1

7

nat

1

1

t = 0

cpt
n

= if (n = 0) then v0 else cpt
n−1

+ 1

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given input and previous values

node nat v = cpt where

 rec cpt = v ->- pre cpt + 1

7

nat

1

1

t = 0

nat

1

2

t = 1

cpt
n

= if (n = 0) then v0 else cpt
n−1

+ 1

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given input and previous values

node nat v = cpt where

 rec cpt = v ->- pre cpt + 1

7

nat

1

1

t = 0

nat

1

2

t = 1

nat

1

3

t = 2

cpt
n

= if (n = 0) then v0 else cpt
n−1

+ 1

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given input and previous values

node nat v = cpt where

 rec cpt = v ->- pre cpt + 1

7

nat

1

1

t = 0

nat

1

2

t = 1

nat

1

3

t = 2

nat

1

4

t = 3

cpt
n

= if (n = 0) then v0 else cpt
n−1

+ 1

Lustre ->- Lucid Synchrone ->- Zelus ->- ProbZelus

Dataflow synchronous programming

Set of stream equations

Discrete logical time steps

At each step, compute the current value given input and previous values

node nat v = cpt where

 rec cpt = v ->- pre cpt + 1

7

nat ...

1

1

t = 0

nat

1

2

t = 1

nat

1

3

t = 2

nat

1

4

t = 3

cpt
n

= if (n = 0) then v0 else cpt
n−1

+ 1

Reactive Probabilistic Programming

ProbZelus

8

proba tracker (u, acc, gps) = x where

 rec x = sample (mv_gaussian (motion (u, x0 ->- pre x), noise))

 and () = observe (gaussian (get_acc x, 1.0), acc)

 and present gps (pos) ->-

 do () = observe (gaussian (get_pos x, 0.01), pos) done

Reactive Probabilistic Programming

9

latent

observed

221

222

223

224

225

. . . xt−1

at−1

xt

at

xt+1

at+1 pt+1

xt+2

at+2

. . .

controlleracc

gps

u

robot

tracker

infer

x_dist

Extend Zelus with probabilistic constructs

x = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d

infer m obs: compute the distribution of output of the model m with respect to obs

proba tracker (u, acc, gps) = x where

 rec x = sample (mv_gaussian (motion (u, x0 ->- pre x), noise))

 and () = observe (gaussian (get_acc x, 1.0), acc)

 and present gps (pos) ->-

 do () = observe (gaussian (get_pos x, 0.01), pos) done

Reactive Probabilistic Programming

9

latent

observed

221

222

223

224

225

. . . xt−1

at−1

xt

at

xt+1

at+1 pt+1

xt+2

at+2

. . .

controlleracc

gps

u

robot

tracker

infer

x_dist

Extend Zelus with probabilistic constructs

x = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d

infer m obs: compute the distribution of output of the model m with respect to obs

proba tracker (u, acc, gps) = x where

 rec x = sample (mv_gaussian (motion (u, x0 ->- pre x), noise))

 and () = observe (gaussian (get_acc x, 1.0), acc)

 and present gps (pos) ->-

 do () = observe (gaussian (get_pos x, 0.01), pos) done

Reactive Probabilistic Programming

9

latent

observed

221

222

223

224

225

. . . xt−1

at−1

xt

at

xt+1

at+1 pt+1

xt+2

at+2

. . .

controlleracc

gps

u

robot

tracker

infer

x_dist

Extend Zelus with probabilistic constructs

x = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d

infer m obs: compute the distribution of output of the model m with respect to obs

proba tracker (u, acc, gps) = x where

 rec x = sample (mv_gaussian (motion (u, x0 ->- pre x), noise))

 and () = observe (gaussian (get_acc x, 1.0), acc)

 and present gps (pos) ->-

 do () = observe (gaussian (get_pos x, 0.01), pos) done

Reactive Probabilistic Programming

9

latent

observed

221

222

223

224

225

. . . xt−1

at−1

xt

at

xt+1

at+1 pt+1

xt+2

at+2

. . .

controlleracc

gps

u

robot

tracker

infer

x_dist

Extend Zelus with probabilistic constructs

x = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d

infer m obs: compute the distribution of output of the model m with respect to obs

proba tracker (u, acc, gps) = x where

 rec x = sample (mv_gaussian (motion (u, x0 ->- pre x), noise))

 and () = observe (gaussian (get_acc x, 1.0), acc)

 and present gps (pos) ->-

 do () = observe (gaussian (get_pos x, 0.01), pos) done

Reactive Probabilistic Programming

9

latent

observed

221

222

223

224

225

. . . xt−1

at−1

xt

at

xt+1

at+1 pt+1

xt+2

at+2

. . .

controlleracc

gps

u

robot

tracker

infer

x_dist

Extend Zelus with probabilistic constructs

x = sample(d): introduce a random variable x of distribution d

observe(d, y): condition on the fact that y was sampled from d

infer m obs: compute the distribution of output of the model m with respect to obs

Reactive Probabilistic Programming

1010

t = 0

infer

tracker

Reactive Probabilistic Programming

1010

 u = 1

acc = 10

t = 0

infer

tracker

Reactive Probabilistic Programming

1010

 u = 1

acc = 10

t = 0

infer

tracker

p(x0 |y0)

0 5-5

Reactive Probabilistic Programming

1010

 u = 1

acc = 10

t = 0

infer

tracker

p(x0 |y0)

0 5-5

t = 1

 u = 1

acc = -15

infer

tracker

p(x1 |y0, y1)

0 5-5

Reactive Probabilistic Programming

1010

 u = 1

acc = 10

t = 0

infer

tracker

p(x0 |y0)

0 5-5

t = 1

 u = 1

acc = -15

infer

tracker

p(x1 |y0, y1)

0 5-5

t = 2

 u = 1

acc = 0, pos = 2

infer

tracker

p(x2 |y0, y1, y2)

0 5-5

Reactive Probabilistic Programming

1010

 u = 1

acc = 10

t = 0

infer

tracker

p(x0 |y0)

0 5-5

t = 1

 u = 1

acc = -15

infer

tracker

p(x1 |y0, y1)

0 5-5

t = 2

 u = 1

acc = 0, pos = 2

infer

tracker

p(x2 |y0, y1, y2)

0 5-5

...

Deterministic Semantics

11

Initial state, transition function
step

S

T

S

Caspi & Pouzet. CMCS 1998

CoStream(T, S) = S × (S → S × T)

Deterministic Semantics

11

Initial state, transition function
step

S

T

S

Caspi & Pouzet. CMCS 1998

1

1

() ()

1

Constant 1:

Initial state: the value of type unit

Step function: return the empty state and the constant 1

𝚞𝚗𝚒𝚝 × (𝚞𝚗𝚒𝚝 → 𝚞𝚗𝚒𝚝 × 𝚒𝚗𝚝)

CoStream(T, S) = S × (S → S × T)

Deterministic Semantics

11

Initial state, transition function
step

S

T

S

Caspi & Pouzet. CMCS 1998

1

1

() ()

1

Constant 1:

Initial state: the value of type unit

Step function: return the empty state and the constant 1

𝚞𝚗𝚒𝚝 × (𝚞𝚗𝚒𝚝 → 𝚞𝚗𝚒𝚝 × 𝚒𝚗𝚝)

e

pre

vp

(s0e,v)

vp

(se,vp) seUnit delay pre e:

Initial state: the initial state of e and default value

Step function: the result of e is stored in the state and

returned at the next iteration

(S × T) × (S × T → (S × T) × T)

CoStream(T, S) = S × (S → S × T)

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

x

+

1

pre

1

12

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

+

1

12

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

+

1

12

(),0

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

+

1

12

(),0

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

+

1

()

0

12

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

+

1

12

(),1

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

+

1

12

(),1

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

+

1

12

(),1

1

+

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

13

(),1

+

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

13

(),1

+

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

()

1

13

1

+

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

13

(),2

2

+

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

13

(),2

2

+

1

Deterministic Semantics

rec x = 1 + pre x
Initial state: (), 0
Output: 1, 2, 3, 4,

13

(),2

2

CoPStream(T, S) = S × (S → ΣS × T → [0,∞])

Transition function returns a pair of state and value

Deterministic Streams

CoStream(T, S) = S × (S → S × T)

Deterministic vs. Probabilistic

14

Probabilistic Streams

Transition function returns a measure over (state, value)

step
ΣS⇥T ! [0,1]

S

step

S

T

S

Probabilistic Semantics

15

Transition function returns a measure

step
ΣS⇥T ! [0,1]

S

CoPStream(T, S) = S × (S → ΣS × T → [0,∞])

Probabilistic Semantics

15

Transition function returns a measure

step
ΣS⇥T ! [0,1]

S

CoPStream(T, S) = S × (S → ΣS × T → [0,∞])

e v

s0

λU.δ(s0,v)(U)

s

lift

dirac

lift turns a deterministic expression into a probabilistic one  

lift:S × (S → S × T) → S × (S → ΣS × T → [0,∞])

Probabilistic Semantics

15

Transition function returns a measure

step
ΣS⇥T ! [0,1]

S

CoPStream(T, S) = S × (S → ΣS × T → [0,∞])

e v

s0

λU.δ(s0,v)(U)

s

lift

dirac

lift turns a deterministic expression into a probabilistic one  

lift:S × (S → S × T) → S × (S → ΣS × T → [0,∞])

e

s
ν = λU.µ(U)/µ(>)

π1⇤(ν)

infer

µ

R
S

σ(ds)

σ

η
norm. proj.

π2⇤(ν)

infer turns probabilistic expressions to a pair of distributions 

infer: S × (S → ΣS × T → [0,∞]) → S 𝚍𝚒𝚜𝚝 × (S 𝚍𝚒𝚜𝚝 → S 𝚍𝚒𝚜𝚝 × T 𝚍𝚒𝚜𝚝)

Kahn vs. Scott Semantics

16

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

Kahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

Kahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

Kahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

Kahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

ScottKahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

ScottKahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

infer

kahn_vs_

scott

δ1

t = 0

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

ScottKahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

infer

kahn_vs_

scott

δ1

t = 0

infer

kahn_vs_

scott

δ1

t = 1

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

ScottKahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

infer

kahn_vs_

scott

δ1

t = 0

infer

kahn_vs_

scott

δ1

t = 1

infer

kahn_vs_

scott

δ1

t = 2

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Kahn vs. Scott Semantics

16

ScottKahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

infer

kahn_vs_

scott

δ1

t = 0

infer

kahn_vs_

scott

δ1

t = 1

infer

kahn_vs_

scott

δ1

t = 2

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Moving constants...

Kahn vs. Scott Semantics

16

ScottKahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

infer

kahn_vs_

scott

δ1

t = 0

infer

kahn_vs_

scott

δ1

t = 1

infer

kahn_vs_

scott

δ1

t = 2

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Depends on the futureMoving constants...

Kahn vs. Scott Semantics

16

ScottKahn

infer

kahn_vs_

scott

beta(1, 2)

t = 0

infer

kahn_vs_

scott

beta(1, 3)

t = 1

infer

kahn_vs_

scott

beta(1, 4)

t = 2

infer

kahn_vs_

scott

δ1

t = 0

infer

kahn_vs_

scott

δ1

t = 1

infer

kahn_vs_

scott

δ1

t = 2

proba kahn_vs_scott () = z where

 rec init z = sample(uniform(0, 1))

 and () = observe(bernoulli(z), true)

Depends on the futureMoving constants...

could be an input

Reactive Probabilistic Programming

Streaming Inference

17

Particle Filtering

18

e

s
ν = λU.µ(U)/µ(>)

π1⇤(ν)

infer

µ

R
S

σ(ds)

σ

η
norm. proj.

π2⇤(ν)

Particle Filtering

18

e

s
ν = λU.µ(U)/µ(>)

π1⇤(ν)

infer

µ

R
S

σ(ds)

σ

η
norm. proj.

π2⇤(ν)

e

e

e

.
.
.
.
.
.

µ

s0n
vn
wn

sn

s02
v2
w2

s01
v1
w1

s1

s2

draw

w
e
ig
h
ted

sa
m
p
le
s

σ

Intractable integrals

Approximation: weighted sum from multiple particles

Delayed Sampling

Simple Particles Filters can be impractical

Require lot of computing power

Poor approximation

Exact inference is often possible

Semi-Symbolic inference

Perform as much exact computation as possible

Fall back to a Particle Filter when symbolic computation fails

Main idea

Keep track of conjugacy relationships

Incorporate observations analytically

Sample only when necessary

19 Murray et al. 2018

Delayed Sampling

Simple Particles Filters can be impractical

Require lot of computing power

Poor approximation

Exact inference is often possible

Semi-Symbolic inference

Perform as much exact computation as possible

Fall back to a Particle Filter when symbolic computation fails

Main idea

Keep track of conjugacy relationships

Incorporate observations analytically

Sample only when necessary

19

Example: Conjugate Gaussians 

x ∼ 𝒩(μ0, σ0)

y ∼ 𝒩(x, σ)

x | (y = v) ∼ 𝒩(μ1, σ1)

μ1 = (1

σ2
0

+
1

σ2)
−1

(μ0

σ2
0

+
v

σ2)
σ1 = (1

σ2
0

+
1

σ2)
−2

Murray et al. 2018

Delayed Sampling

20 Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

t = 0

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

t = 0

sample (gaussian (0, 10))

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

x

t = 0

sample (gaussian (0, 10))

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

x

t = 0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

𝒩(⋅,1)

x

t = 0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

x

t = 0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

Example: 2 Gaussians 

x ∼ 𝒩(μ0, σ0)

y ∼ 𝒩(x, σ)

x | (y = v) ∼ 𝒩(μ1, σ1)

μ1 = (1

σ2
0

+
1

σ2)
−1

(μ0

σ2
0

+
v

σ2)
σ1 = (1

σ2
0

+
1

σ2)
−2

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

x

t = 0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

Example: 2 Gaussians 

x ∼ 𝒩(μ0, σ0)

y ∼ 𝒩(x, σ)

x | (y = v) ∼ 𝒩(μ1, σ1)

μ1 = (1

σ2
0

+
1

σ2)
−1

(μ0

σ2
0

+
v

σ2)
σ1 = (1

σ2
0

+
1

σ2)
−2

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

x

t = 0

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

x

t = 0 t = 1

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

xpre xx

t = 0 t = 1

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

xpre xx

t = 0 t = 1

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

𝒩(⋅,1)

xpre xx

t = 0 t = 1

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

𝒩(⋅,1)
δ(5)

xpre xx

t = 0 t = 1

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

𝒩(⋅,1)
δ(5)

𝒩(4.32,0.816)

xpre xx

t = 0 t = 1

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

…

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

𝒩(⋅,1)
δ(5)

𝒩(4.32,0.816)

xpre xx xpre x

t = 0 t = 1 t = 2

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), …)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

…

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

𝒩(⋅,1)
δ(5)

𝒩(4.32,0.816)

xpre xx xpre x

t = 0 t = 1 t = 2

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), …)

Murray et al. 2018

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

20

…

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

𝒩(⋅,1)
δ(5)

𝒩(4.32,0.816)

xpre xx xpre x

t = 0 t = 1 t = 2

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), …)

Murray et al. 2018

Unbounded resources

354

355

356

357

358

359

360

361

362

363

10
0

10
3

10
3

10
3

10
3

10
4

0 200 400 600 800 1000 1200 1400 1600
th
o
u
sa
n
d
s
o
f
w
o
rd
s

Step

Robot Memory

SDS

DS

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

Streaming

20

…

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

𝒩(⋅,1)
δ(5)

𝒩(4.32,0.816)

xpre xx xpre x

t = 0 t = 1 t = 2

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), …)

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

Streaming

20

…

𝒩(0,10)

𝒩(⋅,1)
δ(3)

𝒩(2.97,0.995)

𝒩(⋅,1)

𝒩(⋅,1)
δ(5)

𝒩(4.32,0.816)

xpre xx xpre x

t = 0 t = 1 t = 2

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), …)

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Delayed Sampling

Streaming

20

…
𝒩(4.32,0.816)

xpre xx xpre x

t = 0 t = 1 t = 2

sample (gaussian (0, 10))
observe (gaussian (x, 1), 3)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), 5)

sample (gaussian (pre x, 1))
observe (gaussian (x, 1), …)

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Reactive Probabilistic Programming (Demo)

exact position + color sensor

estimated color of a map cell

estimated position

Simultaneous Localization And Mapping

Environment: slippery wheels and noisy color sensor

System: infer current position and map, output command (left/right/up/down)

At each step:

Move to the next position

Observe the color of the ground

Use inferred position to compute next command

deterministic

probabilistic

infer

system

environment

21

Evaluation

Language features  

 Moving parameters

 Fixed parameters

 Inference-in-the-loop

Algorithms comparison

Particle Filtering

Streaming Delayed Sampling

22

⌅ PF

PF BDS H SDS

Evaluation

Language features  

 Moving parameters

 Fixed parameters

 Inference-in-the-loop

Algorithms comparison

Particle Filtering

Streaming Delayed Sampling

22

⌅ PF

PF BDS H SDS

Moving parameters

…

Evaluation

Language features  

 Moving parameters

 Fixed parameters

 Inference-in-the-loop

Algorithms comparison

Particle Filtering

Streaming Delayed Sampling

22

⌅ PF

PF BDS H SDS

Moving parameters

…

Fixed parameters

…

Evaluation

Language features  

 Moving parameters

 Fixed parameters

 Inference-in-the-loop

Algorithms comparison

Particle Filtering

Streaming Delayed Sampling

22

⌅ PF

PF BDS H SDS

deterministic

probabilistic

infer

Inference-in-the-loopMoving parameters

…

Fixed parameters

…

Evaluation

Language features  

 Moving parameters

 Fixed parameters

 Inference-in-the-loop

Algorithms comparison

Particle Filtering

Streaming Delayed Sampling

22

⌅ PF

PF BDS H SDS

deterministic

probabilistic

infer

Inference-in-the-loopMoving parameters

…

Fixed parameters

…

10
−1

10
0

10
1

1 10 100 1000 10000

L
o
ss

(l
o
g
sc
a
le
)

Number of Particles (log scale)

SLAM Accuracy

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 10 100 1000 10000

E
xe
cu
ti
o
n
ti
m
e
in

m
s
(l
o
g
sc
a
le
)

Number of Particles (log scale)

SLAM Latency

Benchmarks

23

Conclusions

SDS is always faster to match accuracy

Reduction in particle count outweighs symbolic overhead

SDS can be exact (1 particle)

PF is impractical for advanced examples

Baseline: SDS with 1,000 particles

Beta-
Bernoulli

Gaussian-
Gaussian

Kalman-1D Outlier Robot SLAM MTT

100

101

102

103
20
0

3,
50
0

15

65
0

85 >
15
,0
00

>
2,
50
0

1

15
0

1

65

1

70
0 60

T
o
ta
l
E
xe
cu
ti
o
n
T
im

e
(m

s) ⌅ PF ⌅ SDS 2 500

15 000

85

650

15

3 500

200

60

700

1

65

1

150

1

>

>Particles

N
u
m

b
e
r

o
f
p

a
rt

ic
le

s

 Moving parameters

 Fixed parameters

 Inference-in-the-loop

Reactive Probabilistic Programming

Static Analysis

24

2525

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……

Bounded Memory Delayed Sampling?

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2525

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……

Bounded Memory Delayed Sampling?

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2525

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……

Bounded Memory Delayed Sampling?

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2525

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……

Bounded Memory Delayed Sampling?

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2525

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……

Bounded Memory Delayed Sampling?

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2525

Yes!

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……

Bounded Memory Delayed Sampling?

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

Bounded Memory Delayed Sampling?

proba tracker (y) = x, x0 where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2626

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……x0

y0

Bounded Memory Delayed Sampling?

proba tracker (y) = x, x0 where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2626

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……x0

y0

Bounded Memory Delayed Sampling?

proba tracker (y) = x, x0 where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2626

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……x0

y0

Bounded Memory Delayed Sampling?

proba tracker (y) = x, x0 where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2626

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……x0

y0

Bounded Memory Delayed Sampling?

proba tracker (y) = x, x0 where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2626

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……x0

y0

Bounded Memory Delayed Sampling?

proba tracker (y) = x, x0 where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2626

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……x0

y0
No!

Bounded Memory Delayed Sampling?

proba tracker (y) = x, x0 where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2626

xt xt+1 xt+2xt−1

yt−1 yt yt+1 yt+2

……x0

y0
No!

Can we determine if a given program will run in bounded memory?

Trace: Abstract Execution

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2727

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Trace: Abstract Execution

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2727

random variable

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Trace: Abstract Execution

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

2727

random variable

observation

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Static Analysis for Delayed Sampling

Semantic properties

28

m-consumed property

Chains of variables before an observe are bounded

unseparated paths property

Chains of variables referenced in the state are bounded

Theorem: The program satisfies these two properties iff it executes in bounded memory

Static Analysis for Delayed Sampling

Semantic properties

28

m-consumed property

Chains of variables before an observe are bounded

unseparated paths property

Chains of variables referenced in the state are bounded

Theorem: The program satisfies these two properties iff it executes in bounded memory

Static analysis

Track variables introduced but not used yet Track maximal path between pairs of variable in the state

Theorem: The program pass the analysis if it executes in bounded memory

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

m-consumed Property

2929

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

m-consumed Property

2929

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Chains of variables before an observe are bounded

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

m-consumed Property

2929

 is 0-consumedy0

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Chains of variables before an observe are bounded

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

m-consumed Property

2929

 is 1-consumedx0

 is 0-consumedy0

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Chains of variables before an observe are bounded

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

m-consumed Property

2929

 is 1-consumedx0

 is 0-consumedy0

 is 1-consumedx1

 is 0-consumedy1

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Chains of variables before an observe are bounded

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

m-consumed Property

2929

 is 1-consumedx0

 is 0-consumedy0

 is 1-consumedx1

 is 0-consumedy1

Yes!

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Chains of variables before an observe are bounded

Unseparated Paths Property

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

3030

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Unseparated Paths Property

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

3030

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Chains of variables referenced in the state are bounded

Unseparated Paths Property

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

3030

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Chains of variables referenced in the state are bounded

Unseparated Paths Property

proba tracker (y) = x where

 rec x = sample (gaussian (0, 10) ->- gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

3030

Yes!

trace state time

 x =

 x = , pre x =

 x = , pre x =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 ::

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 ::

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 ::

…

Chains of variables referenced in the state are bounded

proba tracker (obs) = x where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

trace state time

 x =

 x0 =

 x = , pre x =

 x0 =

 x = , pre x =

 x0 =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 :: x0

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 :: x0

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 :: x0

…

Unseparated Paths Property

3131

Chains of variables referenced in the state are bounded

proba tracker (obs) = x where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

trace state time

 x =

 x0 =

 x = , pre x =

 x0 =

 x = , pre x =

 x0 =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 :: x0

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 :: x0

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 :: x0

…

Unseparated Paths Property

3131

Chains of variables referenced in the state are bounded

proba tracker (obs) = x where

 rec init x0 = sample (gaussian (0, 10))

and x = x0 ->- sample (gaussian (pre x, 1))

 and () = observe (gaussian (x, 1), y)

trace state time

 x =

 x0 =

 x = , pre x =

 x0 =

 x = , pre x =

 x0 =

x0 ← ⊥ :: x0 t = 0

y0 ← x0 :: x0

observe y0 ::

x1 ← x0 :: x1 x0 t = 1

y1 ← x1 :: x0

observe y1 ::

x2 ← x1 :: x2 x1 t = 2

y2 ← x2 :: x0

…

Unseparated Paths Property

3131

No!

Chains of variables referenced in the state are bounded

Evaluation

32

Evaluation

32

memory is

probabilistically

bounded

Evaluation

32

memory is

always bounded

memory is

probabilistically

bounded

Take Away

Language design and implementation

Parallel composition, control structures, and inference in the loop

Measure-based semantics

Inference with bounded resources

Semi-symbolic inference on streaming models based on Delayed Sampling

Static analysis

Can delayed sampling run in bounded memory?

Ongoing and future work

JAX based parallel inference (L. Mandel, R. Tekin)

Reactive probabilistic programming in Julia (W. Azizian, M. Lelarge)

Hybrid probabilistic programming (L. Mandel, M. Pouzet, C. Tasson)

33

Take Away

Language design and implementation

Parallel composition, control structures, and inference in the loop

Measure-based semantics

Inference with bounded resources

Semi-symbolic inference on streaming models based on Delayed Sampling

Static analysis

Can delayed sampling run in bounded memory?

Ongoing and future work

JAX based parallel inference (L. Mandel, R. Tekin)

Reactive probabilistic programming in Julia (W. Azizian, M. Lelarge)

Hybrid probabilistic programming (L. Mandel, M. Pouzet, C. Tasson)

33

Reactive Probabilistic Programming

Guillaume Baudart
MIT-IBM Watson AI Lab,

IBM Research
USA

Louis Mandel
MIT-IBM Watson AI Lab,

IBM Research
USA

Eric Atkinson
MIT
USA

Benjamin Sherman
MIT
USA

Marc Pouzet
École Normale Supérieure,
PSL Research University

France

Michael Carbin
MIT
USA

Abstract

Synchronous modeling is at the heart of programming lan-
guages like Lustre, Esterel, or SCADE used routinely for
implementing safety critical control software, e.g., !y-by-
wire and engine control in planes. However, to date these
languages have had limited modern support for modeling
uncertainty — probabilistic aspects of the software’s envi-
ronment or behavior — even though modeling uncertainty
is a primary activity when designing a control system.
In this paper we present ProbZelus the "rst synchronous

probabilistic programming language. ProbZelus conserva-
tively provides the facilities of a synchronous language to
write control software, with probabilistic constructs to model
uncertainties and perform inference-in-the-loop.

We present the design and implementation of the language.
We propose a measure-theoretic semantics of probabilistic
stream functions and a simple type discipline to separate
deterministic and probabilistic expressions. We demonstrate
a semantics-preserving compilation into a "rst-order func-
tional language that lends itself to a simple presentation of
inference algorithms for streaming models. We also redesign
the delayed sampling inference algorithm to provide e#cient
streaming inference. Together with an evaluation on several
reactive applications, our results demonstrate that ProbZelus
enables the design of reactive probabilistic applications and
e#cient, bounded memory inference.

CCS Concepts: • Theory of computation → Streaming

models; • Software and its engineering → Data !ow

languages.

Keywords: Probabilistic programming, Reactive program-
ming, Streaming inference, Semantics, Compilation

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro"t or commercial advantage and that copies
bear this notice and the full citation on the "rst page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

PLDI ’20, June 15–20, 2020, London, UK

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7613-6/20/06.
h!ps://doi.org/10.1145/3385412.3386009

ACM Reference Format:

Guillaume Baudart, Louis Mandel, Eric Atkinson, Benjamin Sher-
man, Marc Pouzet, and Michael Carbin. 2020. Reactive Probabilistic
Programming. In Proceedings of the 41st ACM SIGPLAN International

Conference on Programming Language Design and Implementation

(PLDI ’20), June 15–20, 2020, London, UK. ACM, New York, NY, USA,
15 pages. h!ps://doi.org/10.1145/3385412.3386009

1 Introduction

Synchronous languages [2] were introduced thirty years ago
for designing and implementing real-time control software.
They are founded on the synchronous abstraction [4] where
a system is modeled ideally, as if communications and com-
putations were instantaneous and paced on a global clock.
This abstraction is simple but powerful: input, output and
local signals are streams that advance synchronously and a
system is a stream function. It is at the heart of the data-!ow
languages Lustre [20] and SCADE [13]; it is also the under-
lying model behind the discrete-time subset of Simulink.
The data-!ow programming style is very well adapted

to the direct expression of the classic control blocks of con-
trol engineering (e.g., relays, "lters, PID controllers, control
logic), and a discrete timemodel of the environment, with the
feedback between the two. For example, consider a backward
Euler integration method de"ned by the following stream
equations and its corresponding implementation in Zelus [7],
a language reminiscent of Lustre:

x0 = xo0 xn = xn−1 + x
′
n × h ∀n ∈ N,n > 0

let node integr (xo, x') = x where

rec x = xo -> (pre x + x' * h)

The node integr is a function from input streams xo and x'

to output stream x. The initialization operator -> returns its
left-hand side value at the "rst time step and its right-hand
side expression on every time step thereafter. The unit-delay
operator pre returns the value of its expression at the previ-
ous time step. The following table presents a sample timeline

showing the sequences of values taken by the streams de-
"ned in the program (where h is set to 0.1).

898

PLDI'20

https://github.com/IBM/probzelus

OOPSLA'21

115

Statically Bounded-Memory Delayed Sampling for

Probabilistic Streams

ERIC ATKINSON,MIT, USA

GUILLAUME BAUDART, INRIA, École normale supérieure – PSL University, France

LOUIS MANDEL,MIT-IBM Watson AI Lab, IBM Research, USA

CHARLES YUAN,MIT, USA

MICHAEL CARBIN,MIT, USA

Probabilistic programming languages aid developers performing Bayesian inference. These languages provide
programming constructs and tools for probabilistic modeling and automated inference. Prior work introduced
a probabilistic programming language, ProbZelus, to extend probabilistic programming functionality to
unbounded streams of data. This work demonstrated that the delayed sampling inference algorithm could be
extended to work in a streaming context. ProbZelus showed that while delayed sampling could be e!ectively
deployed on some programs, depending on the probabilistic model under consideration, delayed sampling is
not guaranteed to use a bounded amount of memory over the course of the execution of the program.
In this paper, we the present conditions on a probabilistic program’s execution under which delayed sampling
will execute in bounded memory. The two conditions are data"ow properties of the core operations of delayed
sampling: the !-consumed property and the unseparated paths property. A program executes in bounded
memory under delayed sampling if, and only if, it satis#es the!-consumed and unseparated paths properties.
We propose a static analysis that abstracts over these properties to soundly ensure that any program that
passes the analysis satis#es these properties, and thus executes in bounded memory under delayed sampling.

CCS Concepts: • Theory of computation → Program analysis; Streaming models; • Software and its

engineering→ Data !ow languages.

Additional Key Words and Phrases: Probabilistic programming, reactive programming, streaming inference,
semantics, program analysis

ACM Reference Format:

Eric Atkinson, Guillaume Baudart, Louis Mandel, Charles Yuan, and Michael Carbin. 2021. Statically Bounded-
Memory Delayed Sampling for Probabilistic Streams. Proc. ACM Program. Lang. 5, OOPSLA, Article 115
(October 2021), 28 pages. https://doi.org/10.1145/3485492

1 INTRODUCTION

Probabilistic programming languages aid developers performing Bayesian inference [Atkinson et al.
2018; Bingham et al. 2019; Cusumano-Towner et al. 2019; Ge et al. 2018; Gelman et al. 2015; Goodman
et al. 2008; Goodman and Stuhlmüller 2014; Gordon et al. 2014; Huang et al. 2017; Mansingkha et al.
2018; Milch et al. 2007; Narayanan et al. 2016; Nori et al. 2015; Pfe!er 2009; Tran et al. 2017]. These
languages provide programming constructs and tools for probabilistic modeling and automated
inference. Researchers have developed probabilistic programming languages for several domains,

Authors’ addresses: Eric Atkinson, MIT, USA; Guillaume Baudart, INRIA, École normale supérieure – PSL University,
France; Louis Mandel, MIT-IBM Watson AI Lab, IBM Research, USA; Charles Yuan, MIT, USA; Michael Carbin, MIT, USA.

© 2021 Copyright held by the owner/author(s).
2475-1421/2021/10-ART115
https://doi.org/10.1145/3485492

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 115. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Reactive Probabilistic Programming

Ongoing & Future Work

34

μF Python/JAX

JAX-Based Parallel Inference

35

program.py

Purely functional Python

Just-in-Time compiler

Numerical library

zeluc

program.zls

Parser Analyses Rewrite OBC

program.byte

Embedded code (OCaml)

Imperative updates to the state

CPU

GPU

TPU

High-performance compiler Specialized hardware

infer.py stdlib.py

runtime

with L. Mandel and R. Tekin

@node function model()

 @init x = rand(Normal(0.0, 1000.0)) # x_0 ~ N(0, 1000)

 x = rand(Normal(@prev(x), speed)) # x_t ~ N(x_{t-1}, speed)

 y = rand(Normal(x, noise)) # y_t ~ N(x_t, noise)

 return x, y

end

@node function hmm(obs)

 x, y = @nodecall model() # apply model to get x, y

 @observe(y, obs) # assume y_t is observed with value obs_t

 return x

end

Reactive Probabilistic Programming in Julia

36

with W. Azizian and M. Lelarge

Hybrid Probabilistic Programming with ODEs

let hybrid ball g = h where

 rec der v = -. g init 0. reset up (-. h) ->- -. phi *. (last v)

 and der h = v init h0

let hybrid proba ball_pos obs = g where

 rec init g = sample (gaussian (5., 5.))

 and h = ball g

 and present obs(x) ->-

 do () = observe (gaussian (h, 0.1), x) done

37

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	0 	50 	100 	150 	200 	250

with L. Mandel, M. Pouzet, and C. Tasson

