
Formal guarantees in machine learning,
statistics, and optimization

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE

S U P É R I E U R E

Collège de France - June 30, 2022

Formal guarantees in ML, statistics, and optimization

Outline

1. Classical supervised machine learning

2. A posteriori statistical guarantees

3. A priori statistical guarantees

4. Guarantees for optimization

Classical supervised machine learning pipeline

• Input

– Training data (xi, yi) ∈ X× Y, i = 1, . . . , n, of input/output pairs

– Prior knowledge (models, hyperparameters)

• Output

– Prediction function f : X → Y

– Often an algorithm itself

Classical supervised machine learning pipeline

• Input

– Training data (xi, yi) ∈ X× Y, i = 1, . . . , n, of input/output pairs

– Prior knowledge (models, hyperparameters)

• Output

– Prediction function f : X → Y

– Often an algorithm itself

• Difficulties

– Sets X and Y can be complex

– Relationship between x and y not deterministic

– Relationship between x and y can be complex

– Unclear performance criteria

Performance criteria

• Classical supervised machine learning pipeline

– Input: Training data (xi, yi) ∈ X× Y, i = 1, . . . , n

– Output: Prediction function f : X → Y

Performance criteria

• Classical supervised machine learning pipeline

– Input: Training data (xi, yi) ∈ X× Y, i = 1, . . . , n

– Output: Prediction function f : X → Y

1. Computational performance of training algorithm and of f

– Speed, memory

– Certification

Performance criteria

• Classical supervised machine learning pipeline

– Input: Training data (xi, yi) ∈ X× Y, i = 1, . . . , n

– Output: Prediction function f : X → Y

1. Computational performance of training algorithm and of f

– Speed, memory

– Certification

2. Statistical performance of f on testing data

– Testing data: subset of X× Y, or probability distribution

– Loss function ℓ(y, f(x)) assumed given

Statistical performance

• Expected risk: R(f) = Ep(x,y)ℓ(y, f(x))

– Binary classification (Y = {0, . . . , k − 1}): average error rate

– Regression (Y = R): mean squared error

Statistical performance

• Expected risk: R(f) = Ep(x,y)ℓ(y, f(x))

– Binary classification (Y = {0, . . . , k − 1}): average error rate

– Regression (Y = R): mean squared error

• Optimal statistical performance (Devroye et al., 1997)

– Optimal “Bayes” predictor f∗ = argminR(f)

f∗(x) = argmin
z∈Y

Ep(y|x)ℓ(y, z)

– Bayes risk R(f∗) typically not equal to zero

– Requires full access to testing distribution p(x, y)

Statistical performance

• Expected risk: R(f) = Ep(x,y)ℓ(y, f(x))

– Binary classification (Y = {0, . . . , k − 1}): average error rate

– Regression (Y = R): mean squared error

• Optimal statistical performance (Devroye et al., 1997)

– Optimal “Bayes” predictor f∗ = argminR(f)

f∗(x) = argmin
z∈Y

Ep(y|x)ℓ(y, z)

– Bayes risk R(f∗) typically not equal to zero

– Requires full access to testing distribution p(x, y)

• Absolute vs. relative performance

– Risk R(f) vs. excess risk R(f)− R(f∗)

– Guarantees for a prediction function vs. for a training algorithm

Machine learning algorithms

• Goal: achieve the risk R∗ of the optimal prediction function f∗

Machine learning algorithms

• Goal: achieve the risk R∗ of the optimal prediction function f∗

• Two main principles

1. Local averaging

2. Empirical risk minimization

Local averaging

• Principle

– Estimate conditional distribution p(y|x) and compute E(y|x)

Local averaging

• Principle

– Estimate conditional distribution p(y|x) and compute E(y|x)

• Examples

– k-nearest neighbor

– “No training”, one hyperparameter to determine “locality”

Class 0

Class 1

Testing point

Empirical risk minimization

• Principle

– Minimize the empirical risk R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi))

– Parameterized set of functions (e.g., linear models, neural networks)

Empirical risk minimization

• Principle

– Minimize the empirical risk R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi))

– Parameterized set of functions (e.g., linear models, neural networks)

• Need some “capacity control”

– Constrain or penalize some norm on the parameters

(with explicit hyperparameter)

– Algorithmic regularization

Empirical risk minimization

• Principle

– Minimize the empirical risk R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi))

– Parameterized set of functions (e.g., linear models, neural networks)

• Need some “capacity control”

– Constrain or penalize some norm on the parameters

(with explicit hyperparameter)

– Algorithmic regularization

• Training = optimization

– Can be slow

– May not converge to the global optimum

Evaluation of statistical performance

• Given a single prediction function f

– From m independent and identically distributed (xj, yj)j∈{1,...,m}

– Hoeffding’s inequality: with probability greater than 1− δ,

Ep(x,y)ℓ(y, f(x)) 6
1

m

m∑

j=1

ℓ(yj, f(xj)) +
‖ℓ‖∞√

m

√
log

1

δ

Evaluation of statistical performance

• Given a single prediction function f

– From m independent and identically distributed (xj, yj)j∈{1,...,m}

– Hoeffding’s inequality: with probability greater than 1− δ,

Ep(x,y)ℓ(y, f(x)) 6
1

m

m∑

j=1

ℓ(yj, f(xj)) +
‖ℓ‖∞√

m

√
log

1

δ

• Multiple tests require “Bonferroni” correction

– With T tests, log
1

δ
replaced by log

T

δ
= log T + log

1

δ

Evaluation of statistical performance

• Given a single prediction function f

– From m independent and identically distributed (xj, yj)j∈{1,...,m}

– Hoeffding’s inequality: with probability greater than 1− δ,

Ep(x,y)ℓ(y, f(x)) 6
1

m

m∑

j=1

ℓ(yj, f(xj)) +
‖ℓ‖∞√

m

√
log

1

δ

• Multiple tests require “Bonferroni” correction

– With T tests, log
1

δ
replaced by log

T

δ
= log T + log

1

δ

• Evaluating performance from training data only?

– Training data (xi, yi)i∈{1,...,n} i.i.d. from testing distribution

– Needs strong (often unverifiable) assumptions

Guarantees from training data

• Training data (xi, yi)i∈{1,...,n} i.i.d. from testing distribution

Guarantees from training data

• Training data (xi, yi)i∈{1,...,n} i.i.d. from testing distribution

• Selection of f̂ among T functions: with probability 1− δ

Ep(x,y)ℓ(y, f̂ (x)) 6
1

n

n∑

i=1

ℓ(yi, f̂(xi)) +
‖ℓ‖∞√

n

√
log

T

δ

– Not adapted to optimization of prediction functions fθ, θ ∈ Θ ⊂ R
d

Guarantees from training data

• Training data (xi, yi)i∈{1,...,n} i.i.d. from testing distribution

• Selection of f̂ among T functions: with probability 1− δ

Ep(x,y)ℓ(y, f̂ (x)) 6
1

n

n∑

i=1

ℓ(yi, f̂(xi)) +
‖ℓ‖∞√

n

√
log

T

δ

– Not adapted to optimization of prediction functions fθ, θ ∈ Θ ⊂ R
d

• Uniform concentration inequalities: with probability 1− δ

∀θ ∈ Θ,Ep(x,y)ℓ(y, fθ(x)) 6
1

n

n∑

i=1

ℓ(yi, fθ(xi))+
2‖ℓ‖∞√

n

√
log

1

δ
+Cn

– Capacity of function class Cn

– Allows optimization of empirical risk and a posteriori guarantees

A posteriori guarantees from training data

in practice?

• Many available statistical frameworks

– Rademacher complexities (see, e.g., Boucheron et al., 2005)

– PAC-Bayesian analysis (see, e.g., Alquier, 2021)

A posteriori guarantees from training data

in practice?

• Many available statistical frameworks

– Rademacher complexities (see, e.g., Boucheron et al., 2005)

– PAC-Bayesian analysis (see, e.g., Alquier, 2021)

• Non-trivial if n sufficiently large and model class well chosen

– Based on computable quantities

– △! Only use the testing distribution at the end

– △! Based on distributional assumptions

Guarantees for training algorithms

• Main goal

– Given a class of distributions p(x, y)

– Estimator f̂n obtained from n observations

– Proof that R(f̂n)− R(f∗) goes to zero when n → +∞
– If possible, rate of convergence

• A priori guarantees

– △! Depends on unknown quantities

No free lunch theorems

(Devroye et al., 2013, Theorem 7.2)

• Assumptions

– Binary classification with 0-1 loss, with X infinite

– P = set of all probability distributions on X× {0, 1}
– Dn(p) data set of n pairs (xi, yi) sampled i.i.d. from p ∈ P

No free lunch theorems

(Devroye et al., 2013, Theorem 7.2)

• Assumptions

– Binary classification with 0-1 loss, with X infinite

– P = set of all probability distributions on X× {0, 1}
– Dn(p) data set of n pairs (xi, yi) sampled i.i.d. from p ∈ P

• Lower-bound

– For any decreasing (an) tending to zero and such that a1 6 1/16

– For any learning algorithm A : datasets → prediction functions

– There exists p ∈ P, such that for all n > 1:

E

[
Rp(A(Dn(p)))

]
− R∗

p > an

No free lunch theorems

(Devroye et al., 2013, Theorem 7.2)

• Assumptions

– Binary classification with 0-1 loss, with X infinite

– P = set of all probability distributions on X× {0, 1}
– Dn(p) data set of n pairs (xi, yi) sampled i.i.d. from p ∈ P

• Lower-bound

– For any decreasing (an) tending to zero and such that a1 6 1/16

– For any learning algorithm A : datasets → prediction functions

– There exists p ∈ P, such that for all n > 1:

E

[
Rp(A(Dn(p)))

]
− R∗

p > an

• All learning algorithms must have weaknesses

Curse of dimensionality on X = R
d

• Weak assumption: optimal function f∗ is Lipschitz-continuous

∃L, ∀x, x′ ∈ X, |f∗(x)− f∗(x′)| 6 L‖x− x′‖
– Denote PLip. the corresponding set of probability distributions

Curse of dimensionality on X = R
d

• Weak assumption: optimal function f∗ is Lipschitz-continuous

∃L, ∀x, x′ ∈ X, |f∗(x)− f∗(x′)| 6 L‖x− x′‖
– Denote PLip. the corresponding set of probability distributions

• Lower bound on worst case performance (Tsybakov, 2008)

sup
p∈PLip.

{
E

[
Rp(A(Dn(p)))

]
− R∗

p

}
> Cn−2/(d+2)

– Need n > C(1/ε)d/2+1 to reach excess risk ε

• Unavoidable

Curse of dimensionality on X = R
d

• Weak assumption: optimal function f∗ is Lipschitz-continuous

∃L, ∀x, x′ ∈ X, |f∗(x)− f∗(x′)| 6 L‖x− x′‖
– Denote PLip. the corresponding set of probability distributions

• Lower bound on worst case performance (Tsybakov, 2008)

sup
p∈PLip.

{
E

[
Rp(A(Dn(p)))

]
− R∗

p

}
> Cn−2/(d+2)

– Need n > C(1/ε)d/2+1 to reach excess risk ε

• Unavoidable without extra assumptions

– Examples: support of inputs, smoothness and latent variables

Support of inputs

• Assumption

– Input data only occupy a low-dimensional subspace or manifold

– Dimension r < d

disk - n = 500 circle - n = 100

Support of inputs

• Assumption

– Input data only occupy a low-dimensional subspace or manifold

– Dimension r < d

• Effect on learning algorithms

– Replace d by r in rates ⇒ replace n−2/(d+2) by n−2/(r+2)

– Can reasonably estimated easily / directly from data

– Most algorithms automatically adapt to it

Smoothness of the prediction function

• Assumption

– Bounded s-th order derivatives

– Order s > 1

0 0.5 1

x

-1

0

1

y

non-smooth

0 0.5 1

x

-1

0

1

smooth

Smoothness of the prediction function

• Assumption

– Bounded s-th order derivatives

– Order s > 1

• Effect on learning algorithms

– Replace d by d/s in rates ⇒ replace n−2/(d+2) by n−2/(d/s+2)

– See, e.g., Györfi et al. (2002); Tsybakov (2008)

– Cannot be easily / directly estimated from data

– Algorithms may or may not adapt to it

Latent variables

• Assumption

– Dependence only on unknown r-dimensional projection of the data

– Dimension r < d

Latent variables

• Assumption

– Dependence only on unknown r-dimensional projection of the data

– Dimension r < d

• Effect on learning algorithms

– Replace d by r in rates ⇒ replace n−2/(d+2) by n−2/(r+2)

– See, e.g., Tong et al. (2002); Fukumizu et al. (2009)

– Cannot be easily estimated from data

– Algorithms may or may not adapt to it

Need for adaptivity

• Unknown properties

– Support of inputs, smoothness and latent variables

– Other (problem-dependent) properties could be considered

Need for adaptivity

• Unknown properties

– Support of inputs, smoothness and latent variables

– Other (problem-dependent) properties could be considered

• Adaptivity of a learning algorithm

– With the proper choice of hyperparameters

– Benefit from the assumption

– Hopefully with a “logarithmic” cost

Need for adaptivity

• Unknown properties

– Support of inputs, smoothness and latent variables

– Other (problem-dependent) properties could be considered

• Adaptivity of a learning algorithm

– With the proper choice of hyperparameters

– Benefit from the assumption

– Hopefully with a “logarithmic” cost

• Quest for adaptivity: who wins?

– Barring computational and optimization issues

local averaging < positive definite kernels < neural networks

Guarantees for optimization

• Common way of obtaining estimators

• Two different classes of functions

1. Convex

2. Non convex

Convex optimization problems

min
θ∈Rd

1

n

n∑

i=1

{
ℓ
(
yi, fθ(xi)

)
+ λΩ(θ)

}

• Conditions: Convex loss and “linear” predictions fθ(x) = θ⊤Φ(x)

• Consequences

– Efficient algorithms (typically gradient-based)

– Quantitative runtime and prediction performance guarantees

Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n∑

i=1

hi(θ) with hi(θ) = ℓ
(
yi, fθ(xi)

)
+ λΩ(θ)

Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n∑

i=1

hi(θ) with hi(θ) = ℓ
(
yi, fθ(xi)

)
+ λΩ(θ)

• Gradient descent: θt = θt−1 − γ∇g(θt−1) = θt−1 −
γ

n

n∑

i=1

∇hi(θt−1)

(Cauchy, 1847)

- Stochastic gradient descent: θt = θt−1 − γ∇hi(t)(θt−1)

(Robbins and Monro, 1951)

4

6

8

10

12

14

16

18

20

Deterministic and stochastic methods

• Minimize g(θ) =
1

n

n∑

i=1

hi(θ) with hi(θ) = ℓ
(
yi, fθ(xi)

)
+ λΩ(θ)

• Gradient descent: θt = θt−1 − γ∇g(θt−1) = θt−1 −
γ

n

n∑

i=1

∇hi(θt−1)

(Cauchy, 1847)

• Stochastic gradient descent: θt = θt−1 − γ∇hi(t)(θt−1)

(Robbins and Monro, 1951)

4

6

8

10

12

14

16

18

20

Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

θt = θt−1 − γ
[
∇hi(t)(θt−1)+

1

n

n∑

i=1

yt−1
i − yt−1

i(t)

]

Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

θt = θt−1 − γ
[
∇hi(t)(θt−1)+

1

n

n∑

i=1

yt−1
i − yt−1

i(t)

]

Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε

(convex objectives with condition number κ)

Gradient descent
∣∣∣nκ × log 1

ε

Stochastic gradient descent
∣∣∣κ × 1

ε

Variance reduction
∣∣∣(n+ κ) × log 1

ε

Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε

(convex objectives with condition number κ)

Gradient descent
∣∣∣nκ × log 1

ε

Stochastic gradient descent
∣∣∣κ × 1

ε

Variance reduction
∣∣∣(n+ κ) × log 1

ε

• Empirical behavior close to complexity bounds

Stochastic gradient with exponential convergence

From theory to practice and vice-versa

time

lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

new

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

– Non-uniform sampling, acceleration

– Matching upper and lower bounds

Beyond convex optimization

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
1 0.5 0 0.5 1

1

0.5

0

0.5

1 2

1.5

1

0.5

0

Beyond convex optimization

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
1 0.5 0 0.5 1

1

0.5

0

0.5

1 2

1.5

1

0.5

0

• Generic local theoretical guarantees

– Convergence to stationary points or local minima

– See, e.g., Lee et al. (2016); Jin et al. (2017)

Beyond convex optimization

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
1 0.5 0 0.5 1

1

0.5

0

0.5

1 2

1.5

1

0.5

0

• General global performance guarantees impossible to obtain

Beyond convex optimization

• Neural networks

– No guaranteed polynomial-time training

– Qualitative benefits of over-parameterization (Chizat and Bach,

2018)

Beyond convex optimization

• Neural networks

– No guaranteed polynomial-time training

– Qualitative benefits of over-parameterization (Chizat and Bach,

2018)

• Global optimization

– Only access to n evaluations of f

– Cannot avoid the curse of dimensionality ε = 1
n1/d

– Smooth functions allow ε = 1
ns/d

– Polynomial-time algorithms with “sums-of-squares” (Lasserre,

2001; Rudi, Marteau-Ferey, and Bach, 2020)

Formal guarantees in ML, statistics, and optimization

Conclusion

• Need for guarantees

– Computational vs. statistical guarantees

– Guarantees of the training algorithms vs. of the prediction function

– A priori vs. a posteriori guarantees

• Many open problems within machine learning

– Probabilistic inference

– Robust optimization

– etc.

References

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. arXiv preprint arXiv:2110.11216,

2021.

S. Boucheron, O. Bousquet, G. Lugosi, et al. Theory of classification: A survey of some recent

advances. ESAIM Probability and statistics, 9:323–375, 2005.

M. A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées. Comptes

rendus des séances de l’Académie des sciences, 25(1):536–538, 1847.

Lénäıc Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized

models using optimal transport. In Advances in Neural Information Processing Systems, pages

3036–3046, 2018.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method

with support for non-strongly convex composite objectives. In Advances in Neural Information

Processing Systems, 2014.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition (Stochastic

Modelling and Applied Probability). Springer, February 1997.

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition, volume 31.

Springer Science & Business Media, 2013.

Kenji Fukumizu, Francis Bach, and Michael I. Jordan. Kernel dimension reduction in regression. The

Annals of Statistics, 37(4):1871–1905, 2009.

László Györfi, Michael Kohler, Adam Krzyzak, Harro Walk, et al. A distribution-free theory of

nonparametric regression, volume 1. Springer, 2002.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape saddle

points efficiently. In International Conference on Machine Learning, pages 1724–1732. PMLR, 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance

reduction. In Advances in Neural Information Processing Systems, 2013.

Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. SIAM

Journal on Optimization, 11(3):796–817, 2001.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence

rate for strongly-convex optimization with finite training sets. In Advances in Neural Information

Processing Systems (NIPS), 2012.

Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent only

converges to minimizers. In Conference on Learning Theory, pages 1246–1257, 2016.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, 22:400–407,

1951.

Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel

approximations. Technical Report 2012.11978, arXiv, 2020.

Howell Tong, Y Xia, and L. Zhu. An adaptive estimation of dimension reduction space, with discussion.

Journal of the Royal Statistical Society. Series B: Statistical Methodology, 64(3):363–410, 2002.

A. B. Tsybakov. Introduction to nonparametric estimation. 2008.

L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of

full gradients. In Advances in Neural Information Processing Systems, 2013.

