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Formal guarantees in ML, statistics, and optimization

Outline

1. Classical supervised machine learning

2. A posteriori statistical guarantees

3. A priori statistical guarantees

4. Guarantees for optimization



Classical supervised machine learning pipeline

• Input

– Training data (xi, yi) ∈ X× Y, i = 1, . . . , n, of input/output pairs

– Prior knowledge (models, hyperparameters)

• Output

– Prediction function f : X → Y

– Often an algorithm itself
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– Training data (xi, yi) ∈ X× Y, i = 1, . . . , n, of input/output pairs

– Prior knowledge (models, hyperparameters)

• Output

– Prediction function f : X → Y

– Often an algorithm itself

• Difficulties

– Sets X and Y can be complex

– Relationship between x and y not deterministic

– Relationship between x and y can be complex

– Unclear performance criteria
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• Classical supervised machine learning pipeline

– Input: Training data (xi, yi) ∈ X× Y, i = 1, . . . , n

– Output: Prediction function f : X → Y

1. Computational performance of training algorithm and of f

– Speed, memory

– Certification

2. Statistical performance of f on testing data

– Testing data: subset of X× Y, or probability distribution

– Loss function ℓ(y, f(x)) assumed given
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Statistical performance

• Expected risk: R(f) = Ep(x,y)ℓ(y, f(x))

– Binary classification (Y = {0, . . . , k − 1}): average error rate

– Regression (Y = R): mean squared error

• Optimal statistical performance (Devroye et al., 1997)

– Optimal “Bayes” predictor f∗ = argminR(f)

f∗(x) = argmin
z∈Y

Ep(y|x)ℓ(y, z)

– Bayes risk R(f∗) typically not equal to zero

– Requires full access to testing distribution p(x, y)

• Absolute vs. relative performance

– Risk R(f) vs. excess risk R(f)− R(f∗)

– Guarantees for a prediction function vs. for a training algorithm
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Machine learning algorithms

• Goal: achieve the risk R∗ of the optimal prediction function f∗

• Two main principles

1. Local averaging

2. Empirical risk minimization
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• Principle

– Estimate conditional distribution p(y|x) and compute E(y|x)



Local averaging

• Principle

– Estimate conditional distribution p(y|x) and compute E(y|x)

• Examples

– k-nearest neighbor

– “No training”, one hyperparameter to determine “locality”

Class 0

Class 1

Testing point



Empirical risk minimization

• Principle

– Minimize the empirical risk R̂(f) =
1
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Empirical risk minimization

• Principle

– Minimize the empirical risk R̂(f) =
1

n

n∑

i=1

ℓ(yi, f(xi))

– Parameterized set of functions (e.g., linear models, neural networks)

• Need some “capacity control”

– Constrain or penalize some norm on the parameters

(with explicit hyperparameter)

– Algorithmic regularization

• Training = optimization

– Can be slow

– May not converge to the global optimum



Evaluation of statistical performance

• Given a single prediction function f

– From m independent and identically distributed (xj, yj)j∈{1,...,m}

– Hoeffding’s inequality: with probability greater than 1− δ,
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• Evaluating performance from training data only?

– Training data (xi, yi)i∈{1,...,n} i.i.d. from testing distribution

– Needs strong (often unverifiable) assumptions
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• Training data (xi, yi)i∈{1,...,n} i.i.d. from testing distribution

• Selection of f̂ among T functions: with probability 1− δ

Ep(x,y)ℓ(y, f̂ (x)) 6
1
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ℓ(yi, f̂(xi)) +
‖ℓ‖∞√
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√
log
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– Not adapted to optimization of prediction functions fθ, θ ∈ Θ ⊂ R
d

• Uniform concentration inequalities: with probability 1− δ

∀θ ∈ Θ,Ep(x,y)ℓ(y, fθ(x)) 6
1

n

n∑

i=1

ℓ(yi, fθ(xi))+
2‖ℓ‖∞√

n

√
log

1

δ
+Cn

– Capacity of function class Cn

– Allows optimization of empirical risk and a posteriori guarantees
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in practice?

• Many available statistical frameworks

– Rademacher complexities (see, e.g., Boucheron et al., 2005)

– PAC-Bayesian analysis (see, e.g., Alquier, 2021)



A posteriori guarantees from training data

in practice?

• Many available statistical frameworks

– Rademacher complexities (see, e.g., Boucheron et al., 2005)

– PAC-Bayesian analysis (see, e.g., Alquier, 2021)

• Non-trivial if n sufficiently large and model class well chosen

– Based on computable quantities

– △! Only use the testing distribution at the end

– △! Based on distributional assumptions



Guarantees for training algorithms

• Main goal

– Given a class of distributions p(x, y)

– Estimator f̂n obtained from n observations

– Proof that R(f̂n)− R(f∗) goes to zero when n → +∞
– If possible, rate of convergence

• A priori guarantees

– △! Depends on unknown quantities
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(Devroye et al., 2013, Theorem 7.2)

• Assumptions

– Binary classification with 0-1 loss, with X infinite

– P = set of all probability distributions on X× {0, 1}
– Dn(p) data set of n pairs (xi, yi) sampled i.i.d. from p ∈ P
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• Assumptions

– Binary classification with 0-1 loss, with X infinite

– P = set of all probability distributions on X× {0, 1}
– Dn(p) data set of n pairs (xi, yi) sampled i.i.d. from p ∈ P

• Lower-bound

– For any decreasing (an) tending to zero and such that a1 6 1/16

– For any learning algorithm A : datasets → prediction functions

– There exists p ∈ P, such that for all n > 1:

E

[
Rp(A(Dn(p)))

]
− R∗

p > an

• All learning algorithms must have weaknesses



Curse of dimensionality on X = R
d

• Weak assumption: optimal function f∗ is Lipschitz-continuous

∃L, ∀x, x′ ∈ X, |f∗(x)− f∗(x′)| 6 L‖x− x′‖
– Denote PLip. the corresponding set of probability distributions
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– Need n > C(1/ε)d/2+1 to reach excess risk ε
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Curse of dimensionality on X = R
d

• Weak assumption: optimal function f∗ is Lipschitz-continuous

∃L, ∀x, x′ ∈ X, |f∗(x)− f∗(x′)| 6 L‖x− x′‖
– Denote PLip. the corresponding set of probability distributions

• Lower bound on worst case performance (Tsybakov, 2008)

sup
p∈PLip.

{
E

[
Rp(A(Dn(p)))

]
− R∗

p

}
> Cn−2/(d+2)

– Need n > C(1/ε)d/2+1 to reach excess risk ε

• Unavoidable without extra assumptions

– Examples: support of inputs, smoothness and latent variables



Support of inputs

• Assumption

– Input data only occupy a low-dimensional subspace or manifold

– Dimension r < d
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Support of inputs

• Assumption

– Input data only occupy a low-dimensional subspace or manifold

– Dimension r < d

• Effect on learning algorithms

– Replace d by r in rates ⇒ replace n−2/(d+2) by n−2/(r+2)

– Can reasonably estimated easily / directly from data

– Most algorithms automatically adapt to it



Smoothness of the prediction function

• Assumption

– Bounded s-th order derivatives

– Order s > 1
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Smoothness of the prediction function

• Assumption

– Bounded s-th order derivatives

– Order s > 1

• Effect on learning algorithms

– Replace d by d/s in rates ⇒ replace n−2/(d+2) by n−2/(d/s+2)

– See, e.g., Györfi et al. (2002); Tsybakov (2008)

– Cannot be easily / directly estimated from data

– Algorithms may or may not adapt to it
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• Assumption
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Latent variables

• Assumption

– Dependence only on unknown r-dimensional projection of the data

– Dimension r < d

• Effect on learning algorithms

– Replace d by r in rates ⇒ replace n−2/(d+2) by n−2/(r+2)

– See, e.g., Tong et al. (2002); Fukumizu et al. (2009)

– Cannot be easily estimated from data

– Algorithms may or may not adapt to it
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Need for adaptivity

• Unknown properties

– Support of inputs, smoothness and latent variables

– Other (problem-dependent) properties could be considered

• Adaptivity of a learning algorithm

– With the proper choice of hyperparameters

– Benefit from the assumption

– Hopefully with a “logarithmic” cost

• Quest for adaptivity: who wins?

– Barring computational and optimization issues

local averaging < positive definite kernels < neural networks



Guarantees for optimization

• Common way of obtaining estimators

• Two different classes of functions

1. Convex

2. Non convex



Convex optimization problems

min
θ∈Rd

1

n

n∑

i=1

{
ℓ
(
yi, fθ(xi)

)
+ λΩ(θ)

}

• Conditions: Convex loss and “linear” predictions fθ(x) = θ⊤Φ(x)

• Consequences

– Efficient algorithms (typically gradient-based)

– Quantitative runtime and prediction performance guarantees
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• Minimize g(θ) =
1

n

n∑

i=1

hi(θ) with hi(θ) = ℓ
(
yi, fθ(xi)

)
+ λΩ(θ)

• Gradient descent: θt = θt−1 − γ∇g(θt−1) = θt−1 −
γ

n

n∑

i=1

∇hi(θt−1)

(Cauchy, 1847)

- Stochastic gradient descent: θt = θt−1 − γ∇hi(t)(θt−1)

(Robbins and Monro, 1951)
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Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)
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Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε

(convex objectives with condition number κ)

Gradient descent
∣∣∣nκ × log 1
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Stochastic gradient descent
∣∣∣κ × 1
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Variance reduction
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Stochastic gradient with exponential convergence

• Variance reduction

– SAG (Le Roux, Schmidt, and Bach, 2012)

– SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)

– SAGA (Defazio, Bach, and Lacoste-Julien, 2014)

• Number of individual gradient computations to reach error ε

(convex objectives with condition number κ)

Gradient descent
∣∣∣nκ × log 1

ε

Stochastic gradient descent
∣∣∣κ × 1

ε

Variance reduction
∣∣∣(n+ κ) × log 1

ε

• Empirical behavior close to complexity bounds



Stochastic gradient with exponential convergence

From theory to practice and vice-versa

time

lo
g(
ex
ce
ss

co
st
)

deterministic

stochastic

new

• Empirical performance “matches” theoretical guarantees

• Theoretical analysis suggests practical improvements

– Non-uniform sampling, acceleration

– Matching upper and lower bounds



Beyond convex optimization

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
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• Generic local theoretical guarantees

– Convergence to stationary points or local minima

– See, e.g., Lee et al. (2016); Jin et al. (2017)



Beyond convex optimization

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization

– etc...
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• General global performance guarantees impossible to obtain
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– No guaranteed polynomial-time training

– Qualitative benefits of over-parameterization (Chizat and Bach,

2018)



Beyond convex optimization

• Neural networks

– No guaranteed polynomial-time training

– Qualitative benefits of over-parameterization (Chizat and Bach,

2018)

• Global optimization

– Only access to n evaluations of f

– Cannot avoid the curse of dimensionality ε = 1
n1/d

– Smooth functions allow ε = 1
ns/d

– Polynomial-time algorithms with “sums-of-squares” (Lasserre,

2001; Rudi, Marteau-Ferey, and Bach, 2020)



Formal guarantees in ML, statistics, and optimization

Conclusion

• Need for guarantees

– Computational vs. statistical guarantees

– Guarantees of the training algorithms vs. of the prediction function

– A priori vs. a posteriori guarantees

• Many open problems within machine learning

– Probabilistic inference

– Robust optimization

– etc.
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