Lambda, The Ultimate TA
(Agda version)

Philip Wadler
(with Wen Kokke and Jeremy Siek)
University of Edinburgh / IOHK
College de France, Paris, 12 September 2019

[Lambda, the Ultimate TA

Lambda,
The Ultimate TA

Using a Proof Assistant to Teach
Programming Language Foundations

ICFP 2009

Benjamin C. Pierce

University of Pennsylvania

PENN

w

automated proof assistant

one TA per student

Oops, forgot one thing...

There is one small catch...

® Making up lectures and homeworks
takes between one and two orders of

magnitude more work for the
instructor than a paper-and-pencil
presentation of the same material!

Programming Language
Foundations 1n Agda

® 0 O ocuFLrest&MiowestPLSum X @ Software Foundations X

& o Y & softwarefoundations.cis.upenn.edu Q% mé @ o080 @

Programming

Logical Language

Foundations Foundations

@ ® @ PurPLFestaMidwest PLSum X @ Softwere Foundatlons X @ Table of Centents Programm X

& C O & plfagithub.io o % N & @ 6 0 ¢ :

Programming Language Foundations in Agda

The Book Announcements Getting Started Citing HX

Table of Contents

This book is an introduction to programming language theory using the proof assistant Agda.

Comments on all matters—organisation, material to add, material to remove, parts that require better
explanation, good exercises, errors, and typos—are welcome. The book repository is on GitHub. Pull
requests are encouraged.

Front matter

¢ Dedication
¢ Preface

(Programming LLanguage)
Foundations 1n Agda

Programming (Language
Foundations) in Agda

Coqg vs Agda

The troubles with Coq ...

Everything needs to be done twice! Students need to
learn both the pair type (terms and patterns) and the
tactics for manipulating conjunctions (split and destruct).
Induction can be mysterious.

Names vs notations: subst N x M vs N[x:=M].

Naming conventions vary widely.

Propositions as Types present but hidden.

... are absent 1n Agda

No tactics to learn. Pairing and conjunction identical.

Induction 1s the same as recursion.

[=] 1sname for N [x :

M].
Standard Library makes a stab at consistency.

Propositions as Types on proud display.

Agda vs Coq:
Simply-Typed Lambda
Calculus

Progress

We would like to show that every term is either a value or takes a reduction step. However, this is not
true in general. The term

‘zero + "suc "zero

is neither a value nor can take a reduction step. Andif s : *n - 'n then the term

s + "zero

U}

cannot reduce because we do not know which function is bound to the free variable s . The first of
those terms is ill-typed, and the second has a free variable. Every term that is well-typed and closed
has the desired property.

Progress: If @ - M : o theneither m isavalueorthereisan n suchthat M — n.

To formulate this property, we first introduce a relation that captures what it means for aterm u to
make progess.

data Progress (M : Term) : Set where

- Progress M

done :
Value M

- Progress M

A term M makes progress if either it can take a step, meaning there exists aterm n suchthat m —
N , orif it is done, meaning that » is a value.

If a term is well-typed in the empty context then it satisfies progress.

progress : V {M A}
-2 FM:A
- Progress M
progress (F° ())

progress (A FN) = done V-=A

progress (L - +M) with progress kL

«ss | step L—L‘’ = step (£~-1 L—-L')
«.+. | done VL with progress M

siare | step M—M’ = step (£~-2 VL M—M’)
oiere | done VM with canonical L VL

oiers | C=X = step (p-A VM)
progress kzero = done V~zero
progress (ksuc +M) with progress M

ese | step M—M’ = step (Z-suc M—M’)
stera | done VM = done (V-suc VM)
progress (rcase +L M FN) with progress KL

-+s | step L—L’ = step (Z-case L—1')
... | done VL with canonical L VL

S | C~zero = step pP-zero

e | C=suc CL = step (f-suc (value CL))

progress (Fp FM) = step P-p

We induct on the evidence that » is well-typed. Let’s unpack the first three cases.
* The term cannot be a variable, since no variable is well typed in the empty context.
» |f the term is a lambda abstraction then it is a value.

» |f the termis an application = . m, recursively apply progress to the derivation that 1 is well-
typed.

o |f the term steps, we have evidence that . — 1’ , whichby z-.1 means that our original
termstepsto .’ - M

o |f the term is done, we have evidence that = is a value. Recursively apply progress to the
derivation that » is well-typed.

= |f the term steps, we have evidence that m — m’ , which by z-.2 means that our
original term stepsto . - M’ . Step z-.2 applies only if we have evidence that . isa
value, but progress on that subterm has already supplied the required evidence.

= |f the term is done, we have evidence that m is a value. We apply the canonical forms
lemma to the evidence that 1 is well typed and a value, which since we are in an
application leads to the conclusion that . must be a lambda abstraction. We also have
evidence that is a value, so our original term steps by p-a .

The remaining cases are similar. If by induction we have a step case we applya z rule, and if we
have a done case then either we have a value or apply a g rule. For fixpoint, no induction is required
as the p rule applies immediately.

Our code reads neatly in part because we consider the step option before the done option. We
could, of course, do it the other way around, but then the ... abbreviation no longer works, and we
will need to write out all the arguments in full. In general, the rule of thumb is to consider the easy
case (here step) before the hard case (here done). If you have two hard cases, you will have to
expand out ... orintroduce subsidiary functions.

The progress theorem tells us that closed, well-typed terms are not stuck: either a well-typed term is a value, or it can
take a reduction step. The proof is a relatively straightforward extension of the progress proof we saw in the Types
chapter. We'll give the proof in English first, then the formal version.

Theorem progress : V t T,
empty |- t € T »
value t VI t', t ==>t'.

Proof: By induction on the derivation of | - t € T.
* The last rule of the derivation cannot be T_Var, since a variable is never well typed in an empty context.

* TheT True, T False,and T Abs cases are trivial, since in each of these cases we can see by inspecting the
rule that t is a value.

* If the last rule of the derivation is T_App, then t has the form t, t, for some t, and t,, where |- t, € T, > T

and | - t, € T, for some type T,. By the induction hypothesis, either t, is a value or it can take a reduction
step.

o If t, is avalue, then consider t,, which by the other induction hypothesis must also either be a value or

take a step.

= Suppose t, is a value. Since t, is a value with an arrow type, it must be a lambda abstraction;

hence t; t, can take a step by ST AppAbs.
= Otherwise, t, can take a step, and hence so can t; t, by ST App2.
o |f t, can take a step, thenso can t; t, by ST Appl.

* If the last rule of the derivationis T_If,thent =if t; then t, else t;, where t; has type Bool. By the IH,
t, either is a value or takes a step.

o If t, is avalue, then since it has type Bool it must be either true or false. Ifitis true, then t steps to

t,; otherwise it steps to tj.

o Otherwise, t, takes a step, and therefore so does t (by ST _If).

Proof with eauto.
intros t T Ht.
remember (@empty ty) as Gamma.
induction Ht; subst Gamma...

(* T Var *)

(* contradictory: variables cannot be typed in an
empty context *)

inversion H.

(* T_App *)
(* £t = t1 t3. Proceed by cases on whether t; is a

value or steps... *)
right. destruct IHHtl...
+ (* t; is a value *)

destruct IHHt2...
* (* t, is also a value *)

assert (3 xp tp, tp1 = tabs x5 Ti; tp).

eapply canonical forms fun; eauto.
destruct H; as [Xg [tp Heq]]. subst.

3 ([%Xp:=t2]tp) ...

* (* t, steps *)
inversion Hy as [ty' Hstp]. 3 (tapp t; t2')...

+ (* t; steps *)
inversion H as [t;' Hstp]. 3 (tapp t1' t3)...

- (* T_If *)

right. destruct IHHtl...

+ (* t; is a value ¥*)
destruct (canonical forms bool t;); subst; eauto.

+ (* t, also steps *)
inversion H as [t;' Hstp]. 3 (tif t;' t; t3)...

Qed.

Intrinsically-Typed
1s Golden

Extrinsic (1)

® @ @ PurPLFest & MidwestPL X | & Software Foundations X & lable of Contents | Preg: X | O pifa.github.iofsreiplfalps - X | @ Denciaticnal: Denotation: X @ Lambea Introductionto L X -+

& > C O @© localhast:4000/Lambda/ Q % m & @ ovnOn @

data Term : Set where

t_ : Id > Term
A_>_ : Id » Term » Term
o : Term » Term » Term

Extrinsic (2)

® ® @ rurLrFest&MicwestPL X @ Software Foundations X | @ Table of Contenis | Progr: X I C) plfagithub.iojsre/plialper X = @ Denotatonal: Denctaticn: X @ Lambda: Introductionte L X ==

& G O @ localhost:4000/Lambda/ @Q % N & @ &6 (B | ',

data _+_28_ : Context » Term » Type » Set where

FTor v {l x A}
> 3 x 3 A

Intrinsic

® ® @ cubLrest& MidwestPL X I @ Software Foundaticns X | @ Taole of Contents | Prog: X | () efagithub.io/sreiplifalpar X = @ Denotatonal: Denotation: X @ DeBeuiin: Intrinsicaliy-typ: X ==

¢ C O @ lacalhost:4000;DeBruijn/ Qv N & @ & B L)

data _r_ : Context » Type » Set where

_ v {l A}
>3 A

Lines of code,
omitting examples

Extrinsic 451

Intrinsic 2’75

451/275=1.6

2757451 =0.6

Progress + Preservation
= Animation

Aside: the normalize Tactic

When experimenting with definitions of programming languages in Coq, we often want to see what
a particular concrete term steps to — i.e., we want to find proofs for goals of the form t ==>* t ',
where t is a completely concrete term and t ' is unknown. These proofs are quite tedious to do by

hand. Consider, for example, reducing an arithmetic expression using the small-step relation
astep.

The following custom Tactic Notation definition captures this pattern. In addition, before each
step, we print out the current goal, so that we can follow how the term is being reduced.

Tactic Notation "print_goal" :=
match goal with |- ?x = idtac x end.

Tactic Notation "normalize" :=
repeat (print goal; eapply multi step ;
[(eauto 10; fail) | (instantiate; simpl)]);
apply multi refl.

The normalize tactic also provides a simple way to calculate the normal form of a term, by
starting with a goal with an existentially bound variable.

Example step examplel''' : 3 e',
(P (C 3) (P (C 3) (C 4)))
==>% e'.

Proof.

eapply ex intro. normalize.
(* This time, the trace 1is:
(P (C 3) (P (C 3) (C 4)) ==>* 2e'")
(P (C 3) (C 7) ==>*% 2e')
(C 10 ==>* ?2e')
where ?e' is the variable " "guessed'' by eapply. *)
Qed.

Functional Big-step Semantics

Scott Owens!, Magnus O. Myreen?, Ramana Kumar®, and Yong Kiam Tan*

1 School of Computing, University of Kent, UK
2 CSE Department, Chalmers University of Technology, Sweden
3 NICTA, Australia
4 THPC, A*STAR, Singapore

Testing semantics To test a semantics, one must actually use it to evaluate
programs. Functional big-step semantics can do this out-of-the-box, as can many
small-step approaches [13,14]. Where semantics are defined in a relational big-

13.

14.

C. Ellison and G. Rosu. An executable formal semantics of C with appli-
cations. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012, pages 533—-544, 2012. doi:
10.1145/2103656.2103719.

C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A.
McCarthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. Run your research:
on the effectiveness of lightweight mechanization. In Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2012, pages 285-296, 2012. doi:10.1145/2103656.2103691.

Mechanized Metatheory for the Masses:
The POPLMARK Challenge

Brian E. Aydemir!, Aaron Bohannon!, Matthew Fairbairn?, J. Nathan Foster!,
Benjamin C. Pierce!, Peter Sewell?, Dimitrios Vytiniotis!, Geoffrey
Washburn!, Stephanie Weirich!, and Steve Zdancewic'

! Department of Computer and Information Science, University of Pennsylvania
2 Computer Laboratory, University of Cambridge

Challenge 2A: Type Safety for Pure F..

Type soundness is usually proven in the style popularized by Wright and
Felleisen [51], in terms of preservation and progress theorems. Challenge 2A is
to prove these properties for pure F...

3.3 THEOREM [PRESERVATION|: If’Ft : Tandt — t/,then ' -t' : T. O

3.4 THEOREM [PROGRESS|: If t is a closed, well-typed F.. term (i.e.,if -t : T
for some T), then either t is a value or else there is some t’ with t — t’. O

Challenge 3: Testing and Animating with Respect to the Semantics

Our final challenge is to provide an implementation of this functionality,
specifically for the following three tasks (using the language of Challenge 2B):

1. Given F.. terms t and t’, decide whether t — t’'.
2. Given F.. terms t and t’, decide whether t —" t’ —/=, where —" is the

reflexive-transitive closure of —.
3. Given an F.. term t, find a term t’ such that t — t’.

Evaluation

By repeated application of progress and preservation, we can evaluate any well-typed term. In this
section, we will present an Agda function that computes the reduction sequence from any given closed,

well-typed term to its value, if it has one.

The evaluator takes gas and evidence that a term is well-typed, and returns the corresponding steps.

eval : V {L A}
= Gas

- Steps L
eval {L} (gas zero) L = steps (L m) out-of-gas
eval {L} (gas (suc m)) FL with progress FL
| dene VL = steps (L m) (done VL)
| step L—M with eval (gas m) (preserve L L—M)

| steps M—N fin = steps (L —<¢(L—M > M—N) fin

eval (gas 100) (Ftwo€® - Esuc® . Fzero)

steps
((A "s" = (A "z" = © "g" . (7 "g® . ° Wzm)) - (X "n" = “suc T "n")
" Zero
—=¢ E—-1 (B-A V-R) >
(R Bz = (K M@ = gy T Pa%) o« (A aY = suc T N - 7 Ra¥)
“zero
—= PR V=-2erpo »
(A "n" = “suc " "™m") - {((A "n" - ‘suc ° "n") . “zero)
—=(&=.2 V=-A (B-A V-zerc))
(A "n" =» ‘suc ° "n") . “suc "zero

—<{ B=A (V-suc V-zero))
"suc (suc " zero)
1)

(done (V-suc (V-suc V-zero)))

_ = refl

Agda for Fun and Profit:
System I

IE I"I’.i ST I0HK I Summic2019

. 2 @

Philip Wadler Manuel g3
Chakravarty N

&

Simon Thompson

Vanessa McHale Michael Peyton Jones kqis Jenkins
Jann Miller L a e
David Smith

Kenneth “ Pablo Alexander
J Ch . .
I\/IaCKeﬂIngecca Valeﬁm]ees apman Lamela Seijas Nemish

(Former Member)

Roman
Kireev

Lambda Calculus Natural Deduction

' g ':‘c .
e ’ - y

" - - , \

: e X e - At

L - J boy B - “ “IRY
X s 1 .‘k. Y\

Alonzo Church, 1932-40 Gerhard Genfzen, 1935

Polymorphic
Lambda Calcululus

11 y

; f'.’ :

System F

Jean-Yves Girard, 1972 John Reynolds, 1974

Plutus Core

Kinds Terms
J,K ::= L,M,N ::=
* X
J »> K AX:A.N
L M
Types AX:K.N
A,B ::= L A
X wrap M
A > B unwrap M
VX.B P
UX.B

Plutus Core 1n Agda

data Kind : Set where data +~ : VI ->1T7T1+*J > Set where
* : Kind) : T3 A
= 1 Kind -» Kind - Kind
- A
data +*_ : Ctx*x - Kind - Set where
) : & 3«] 7 : ", A-B
- @& x] -+ A=0B
A ® ,~ K+~ J . ' - A > B
——————————— - [+ A
- ®+xK=J
- [- B
o ® + K= J
- & -+ K N r,~KrB
- &] - ~-MB
[¢ ,» K > % IR Fr' - N B
““““““ > (AT =+ K)
- & > x
T +BI[A]
= ® H+ x
- @ > % conv : A =B B
—————— - A
- & -~ x

Roman Kireev 3 months ago

| haven't talked with James except for a couple of
messages, but | read what he wrote in Agda and I'm very
surprised that you can formalize System F in a non-
disgusting way. Or at least | do not see those huge
clunky theorems which | see everywhere including my
own attempts

Conclusions

SBMF 2018 g,

st Paper Award
1" Place

viahons n‘.Q'\a

CONTRIBUTED ARTICLES

Propositions as Types

By Philip Wadler

Communications of the ACM, December 2015, Vol. 58 No. 12, Pages 75-84
10.1145/2699407

Comments (1)

vewas: B[] @ B e m 8 @ © B 0

.......... — _—

Powerful insights arise from linking two fields of study previously
thought separate. Examples include Descartes's coordinates,
which links geometry to algebra, Planck's Quantum Theory,
which links particles to waves, and Shannon's Information
Theory, which links thermodynamics to communication. Such a
synthesis is offered by the principle of Propositions as Types,
which links logic to computation. At first sight it appears to be a
simple coincidence—almost a pun—but it turns out to be
remarkably robust, inspiring the design of automated proof
assistants and programming languages, and continuing to
influence the forefronts of computing.

Back to Top

3 YouTube Search

Propositions as Types

Philip Wadler
University of Edinburgh

CO Strange Loop

St Louis, 25 August 2015
strange

Sept 25-26,2015
thestrangeloop.com

P »l o) 005/4242

"Propositions as Types" by Philip Wadler

61,321 views s LKE @ DISLIKE & SHARE = SAVE

vilem
) Follow v
@buggymcbugfix

| just proved commutativity of
multiplication in Agda and got way too

much serotonin out of it. ‘&

Programming Language Foundations in
Agda is AMAZING. Check it out at
plfa.github.io.

Thank you, Phil Wadler and @wenkokke.

(PS: If you have a better proof, let me
know!)

*-~comm : (mn :N) -m*xnsn=xm
*-COMMm Zero n
rewrite »-absorption n = refl
*—COMM m Zero
rewrite *-absorption m = refl
*~comm {(suc m') (suc n')
rewrite *-comm m' (suc n')
| sym (+-assoc n" m' (n' *m'))
*-comm n' m'
+-comm n' m'
| ®=comm n' (suc m')
+-assocm' n' (m" *n')
= refl

10:35 AM - 16 Oct 2018

uies RISGODDL @

http://plfa.inf.ed.ac.uk
https://github.com/plfa

Or search for “Kokke Wadler”

Please send your comments and pull requests!

