
Compositional Symbolic Testing 
and Verification

PHILIPPA GARDNER

I m p e r i a l  C o l l e g e  L o n d o n

WITH GENEROUS

SUPPORT FROM

Sacha-Élie Ayoun Philippa GardnerJosé Fragoso SantosPetar Maksimović



Verified Software: JavaScript Analysis

2

JSCert

POPL’14

JaVerT

POPL’18

JS Logic

POPL’12

Cosette

PPDP’18

JaVerT 2.0

Gillian

POPL’19

JS Events

ECOOP’20

PLDI’20



Full Verification

Trust, Annotation effort

Automatic 

Compositional
Testing

Whole-Program 
Symbolic Testing

3

Annotations Success FailureTechnique

Gillian: Unified Symbolic Analysis



Bounded correctness guarantees (loops unrolled)

Counter-models

First-order assertions about symbolic inputs/outputs

Core Execution engine (Gillian: Part 1, PLDI’20)

4

Annotations Success FailureTechnique

Full Verification

Trust, Annotation effort

Automatic 

Compositional
Testing

Whole-Program 
Symbolic Testing

Gillian: Unified Symbolic Analysis



Functional correctness guarantees

Failing symbolic traces

Separation-logic specs, invariants, lemmas, tactics

Specification

5

Annotations Success FailureTechnique

Full Verification

Trust, Annotation effort

Automatic 

Compositional
Testing

Whole-Program 
Symbolic Testing

Gillian: Unified Symbolic Analysis

(Gillian Verification for JS and C, submitted)



Gillian: Unified Symbolic Analysis

Bounded correctness specifications (loops unrolled)

Lightweight bug specifications

None / Lightweight type annotations

Bi-abduction

6

Annotations Success FailureTechnique

Full Verification

Trust, Annotation effort

Automatic 

Compositional
Testing

Whole-Program 
Symbolic Testing



7

GILLIAN

The Gillian Platform



8

GIL Symbolic

Analysis

Gillian Infrastructure
• GIL, an intermediate goto language parametric on the 

memory model of the target language (TL)

• First-order solver powered by the Z3 theorem prover

The Gillian Platform

TL

Memory 
model 



9

The Gillian Platform

TL

Memory 
model 

Bi-abduction

Specification

Execution

TL

Memory 
model 

Gillian Infrastructure
• GIL, an intermediate goto language parametric on the 

memory model of the target language (TL)

• First-order solver powered by the Z3 theorem prover

• Modular analyses: execution, specification, bi-abduction



The Gillian Platform

10

Gillian Instantiation (by a tool developer)
• OCaml impl. of TL concrete and symbolic memory 

models, using basic actions, core predicates and fixes

• Trusted compiler from the TL to GIL, preserving the 

memory models and the semantics

Basic actions

Core predicates

Fixes

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Bi-abduction

Specification

Execution

TL

Memory 

model 
Example Instantiations
• Gillian-While: for teaching and experimentation 

• Gillian-JS: extensible-object memory model, JaVerT compiler

• Gillian-C: block-offset memory model, CompCert compiler

• Gillian-Rust: just started (Sacha)



IN THEORY



User Input: Basic Actions

Fundamental interactions between 

the language and its memory

Core Execution Engine

12

Basic actions

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Execution

TL

Memory 

model 

Formal semantics, closely followed by OCaml implementation

Single Additional Rule



13

Specification

Additional Rules

Unfolding/folding of user-defined predicates

Re-use of function specifications

(slightly simplified)

User Input: Core predicates

Separation-logic assertions

describing the memory building blocks 

Consumer and producer actions

for each core predicate

Basic actions

Core predicates

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Specification

Execution

TL

Memory 

model 



14

Aside: Specification Re-Use

Function specifications: 𝑃 𝑓 𝑥 𝑄

Basic actions

Core predicates

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Specification

Execution

TL

Memory 

model 

Goal: apply a given function specification instead

of symbolically executing a function

Symbolic 

state

𝑃 𝑓 𝑥 𝑄

Specification



15

Aside: Specification Re-Use

Function specifications: 𝑃 𝑓 𝑥 𝑄

Basic actions

Core predicates

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Specification

Execution

TL

Memory 

model 

Goal: apply a given function specification instead

of symbolically executing a function

Symbolic 

state

𝑃 𝑓 𝑥 𝑄

Specification

𝑷

Step 1: consume the pre-condition
Unify the part of the state that corresponds to the pre-

condition and  consume it, leaving the frame; learn the 

bindings 𝜃 for the logical variables in the pre-condition

Frame



16

Aside: Specification Re-Use

Function specifications: 𝑃 𝑓 𝑥 𝑄

Basic actions

Core predicates

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Specification

Execution

TL

Memory 

model 

Goal: apply a given function specification instead

of symbolically executing a function

Symbolic 

state

𝑃 𝑓 𝑥 𝑄

Specification

Step 1: consume the pre-condition
Using a unification algorithm, identify the part of the 

symbolic state that corresponds to the pre-condition and    

consume it, leaving the frame; in this process, we learn 

the bindings for the logical variables in the pre-condition

𝑷

Frame



17

Aside: Specification Re-Use

Function specifications: 𝑃 𝑓 𝑥 𝑄

Basic actions

Core predicates

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Specification

Execution

TL

Memory 

model 

Goal: apply a given function specification instead

of symbolically executing a function

Symbolic 

state

𝑃 𝑓 𝑥 𝑄

Specification

Step 1: consume the pre-condition

Step 2: produce the post-condition

Using the learned bindings, produce the resource 

corresponding to the post-condition

Frame

𝜽(𝑸)



18

User Input: Fixes

Missing information errors yield fixes, which 

represent ways of correcting the errors

An error can have multiple 

possible fixes that the tool developer

needs to understand

Bi-abduction

Single additional rule

Basic actions

Core predicates

Fixes

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Bi-abduction

Specification

Execution

TL

Memory 

model 

Fundamental connection with execution engine (POPL’19) 

if an action fails with a given fix, 

produce that fix in the current state 

and re-execute the action



General Correctness Results

Frame property

for producers/consumers

Specification

After an action fix is applied,

the execution can continue

Bi-abduction

Correctness of symbolic 

actions w.r.t. concrete actions

Execution

Parametric correctness results

Stated and proven independently of the underlying memory model

Minimal proof effort for the user

19



Frame property

for producers/consumers

General Correctness Results

Specification

After an action fix is applied,

the execution can continue

Bi-abduction

Correctness of symbolic 

actions w.r.t. concrete actions

Execution

Parametric correctness results

Stated and proven independently of the underlying memory model

Minimal proof effort for the user

20

Symbolic Execution

• Forward soundness (analogy with Hoare triples)

• Forward completeness (no false positives)

• Backward completeness (no false positives, 

analogy with incorrectness triples)

• Bounded verification guarantees



General Correctness Results

Frame property

for the framing actions

Abstraction

After an action fix is applied,

the execution can continue

Bi-abduction

Correctness of symbolic 

actions w.r.t. concrete actions

Execution

Parametric correctness results

Stated and proven independently of the underlying memory model

Minimal proof effort for the user

21

Specification

• Full verification guarantees



Frame property

for producers/consumers

General Correctness Results

Specification

After an action fix is applied,

the execution can continue

Bi-abduction

Correctness of symbolic 

actions w.r.t. concrete actions

Execution

Parametric correctness results

Stated and proven independently of the underlying memory model

Minimal proof effort for the user

22

Bi-abduction

• No false positives if and only if

fixes are not over-approximating

no over-approximating specifications are used

• Bounded verification guarantees if and only if

fixes are not under-approximating



INSTANTIATIONS



Gillian Instantiation

24

Compositional Memory Models
• TL concrete and symbolic memory models, using basic 

actions, core predicates and fixes

• The memory models are compositional to provide  

compositional analysis

• Basic actions must therefore account for positive, 

negative and missing information

Basic actions

Core predicates

Fixes

TL

Memory 

model 

Compiler from TL to GIL

Concrete 

TL Memory

Model

Symbolic

TL Memory

Model

Bi-abduction

Specification

Execution

TL

Memory 

model 
Gillian-JS
• partial extensible object memory models

• explicit absence of object properties

(POPL’12, POPL’18, PPDP’18, POPL’19)

Gillian-C
• partial block-offset memory models

• explicit tracking of freed locations and block bounds



25

Gillian-JS

Concrete memory:

JS Compositional Memories
: absent

: potentially 

missing



26

Gillian-JS

Concrete memory:

JS Compositional Memories

location

: absent

: potentially 

missing



27

Gillian-JS

Concrete memory:

JS Compositional Memories

location
property

table

: absent

: potentially 

missing



28

Gillian-JS

Concrete memory:

JS Compositional Memories

location
domain

table

property

table

: absent

: potentially 

missing



29

Gillian-JS

Concrete memory:

location
domain

table
metadata

property

table

JS Compositional Memories
: absent

: potentially 

missing



30

Gillian-JS

Concrete memory:

JS Compositional Memories
: absent

: potentially 

missingSymbolic memory:



31

Gillian-JS

Well-formedness: Captures separation of object locations and properties 

within an object, as well as the connection between 

the domain table and the property table

Symbolic well-formedness:

Concrete memory:

JS Compositional Memories
: absent

: potentially 

missingSymbolic memory:



32

Gillian-JS

Basic actions, Core Predicates and Fixes
Six basic actions for the management of property table, domain table, and metadata

Three core predicates: !𝑙, �̂� ↦ '𝑣∅, domain(!𝑙, !𝑑), metadata(!𝑙, 3𝑚)

Exact fixes for all actions

Concrete memory:

JS Compositional Memories
: absent

: potentially 

missingSymbolic memory:



33

Gillian-JS

Basic actions, Core Predicates and Fixes
Six basic actions for the management of property table, domain table, and metadata

Three core predicates: !𝑙, �̂� ↦ '𝑣∅, domain(!𝑙, !𝑑), metadata(!𝑙, 3𝑚)

Exact fixes for all actions

Explicit Negative Information: absence of object properties (expressed via core predicates) 

Concrete memory:

JS Compositional Memories
: absent

: potentially 

missingSymbolic memory:



34

Gillian-JS

Actions account for positive, negative and missing information
Symbolic execution of action getProp("𝑙, %𝑝):

✓

✗

✗

Missing property

!𝑙 ∈ dom(�̂�)

!𝑙, �̂�

!𝜇 #𝑙 = ('ℎ, #𝑑, +𝑚)
�̂� ∈ dom(-ℎ)

-ℎ(�̂�)

!𝑑 = ⊥

�̂� ∈ !𝑑

!𝑙, �̂�

∅

yes

yes

yes

yesno

no

no

no

Missing 

object

Concrete memory:

JS Compositional Memories

Symbolic memory:

: absent

: potentially 

missing



35

Gillian-JS

✓ Fix

Actions account for positive, negative and missing information
Bi-abductive execution of action getProp("𝑙, %𝑝):

✓

!𝑙 ∈ dom(�̂�)

!𝑙, �̂� ↦ 4𝑥

!𝑙, �̂� ↦ ∅

!𝜇 #𝑙 = ('ℎ, #𝑑, +𝑚)
�̂� ∈ dom(-ℎ)

-ℎ(�̂�)

!𝑑 = ⊥

�̂� ∈ !𝑑 ∅

yes

yes

yes

yesno

no

no

no

✓ Fix
!𝑙, �̂� ↦ 4𝑥

!𝑙, �̂� ↦ ∅

Concrete memory:

JS Compositional Memories

Symbolic memory:

: absent

: potentially 

missing



36

Gillian-C

Concrete memory:

C Simplified Compositional Memories

: freed

: potentially 

missing



37

Gillian-C

Concrete memory:

location

C Simplified Compositional Memories

: freed

: potentially 

missing



38

Gillian-C

Concrete memory:

location
block

contents

C Simplified Compositional Memories

: freed

: potentially 

missing



39

Gillian-C

Concrete memory:

location
block

bound

block

contents

C Simplified Compositional Memories

: freed

: potentially 

missing



40

Gillian-C

Concrete memory:

C Simplified Compositional Memories

: freed

: potentially 

missingSymbolic memory:



41

Gillian-C

Well-formedness: Captures separation of block locations and offsets 

within a block, as well as the connection between the 

block bound and the block contents

Concrete memory:

C Simplified Compositional Memories

Symbolic well-formedness:

: freed

: potentially 

missingSymbolic memory:



42

Gillian-C

Basic actions, Core Predicates and Fixes
Six basic actions for the management of blocks, bounds, and freed objects

Three core predicates: !𝑙, '𝑜 ↦ '𝑣, bound(!𝑙, '𝑛), !𝑙 ↦ ∅

Exact fixes for all actions

C Simplified Compositional Memories

Concrete memory:

Symbolic memory:

: freed

: potentially 

missing



43

Gillian-C

Explicit Negative Information: freed locations and block bounds (expressed via core predicates) 

C Simplified Compositional Memories

Concrete memory:

Symbolic memory:

: freed

: potentially 

missing

Basic actions, Core Predicates and Fixes
Six basic actions for the management of blocks, bounds, and freed objects

Three core predicates: !𝑙, '𝑜 ↦ '𝑣, bound(!𝑙, '𝑛), !𝑙 ↦ ∅

Exact fixes for all actions



44

Gillian-C

Actions account for positive, negative and missing information
Symbolic execution of the action getCell("𝑙, %𝑜):

✓⚡ Use aSer free ⚡ Buffer

Missing cell

overrun

!𝑙 ∈ dom(�̂�) �̂� !𝑙 = ∅

Missing block

✗ !𝑙, 4𝑜

!𝜇 #𝑙 = ('𝑘, !𝑛)
4𝑜 ∈ dom(-𝑘)

-𝑘( 4𝑜)

4𝑛 = ⊥

4𝑜 ≥ 4𝑛

✗ !𝑙, 4𝑜
yes

yes yes

yes

yes

no

no no

nono

C Simplified Compositional Memories

Concrete memory:

Symbolic memory:

: freed

: potentially 

missing



45

Gillian-C

AcDons account for posiDve, negaDve and missing informaDon
Bi-abductive execution of the action getCell("𝑙, %𝑜):

✓⚡ Use aSer free ⚡ Buffer

overrun

!𝑙 ∈ dom(�̂�) �̂� !𝑙 = ∅

!𝑙, 4𝑜 ↦ 4𝑥

!𝜇 #𝑙 = ('𝑘, !𝑛)
4𝑜 ∈ dom(-𝑘)

-𝑘( 4𝑜)

4𝑛 = ⊥

4𝑜 ≥ 4𝑛

yes

yes yes

yes

yes

no

no no

nono

✓ Fix

!𝑙, 4𝑜 ↦ 4𝑥✓ Fix

C Simplified Compositional Memories

Concrete memory:

Symbolic memory:

: freed

: potentially 

missing



IN PRACTICE



Symbolic Testing: Buckets.js and Collections-C

47

Stand-alone real-world data-structure libraries for JavaScript and C 

Data Structure
Symbolic 

Tests

Executed

GIL Cmds
Time

array 22 109,290 4.21s

deque 34 106,737 6.57s

list 37 730,655 13.02s

pqueue 4 39,828 0.65s

queue 2 15,726 0.64s

pqueue 3 27,284 0.52s

queue 38 325,383 7.18s

stack 2 5,211 0.28s

treetbl 13 618,326 2.98s

treeset 6 108,583 3.29s

Total 161 2,097,023 39.34s

Data 

Structure

Symbolic 

Tests

Executed

GIL cmds
Time

array 9 329,854 2.53s

bag 7 1,343,808 4.78s

bst 11 3,750,552 12.47s

dict 7 401,964 1.81s

heap 4 1,487,554 3.36s

llist 9 588,699 3.97s

mdict 6 1,106,058 3.84s

queue 6 407,061 2.22s

pqueue 5 2,297,943 4.02s

set 6 2,181,474 4.56s

stack 4 306,434 1.63s

Total 73 14,201,401 45.19s

100% line coverage, 3 bugs found and fixed 

Bugs found in library and concrete tests, fixed 

Buckets.js: ~1.5Kloc, > 65K downloads on npm

Collections-C: ~5.5Kloc, 2K stars on GitHub



48

Cash: A compact alternative for jQuery, > 450K downloads on npm, 4.4K stars on GitHub

Uses DOM Core Level 1, DOM UI Events, JS promises, await/async

Bounded Correctness Guarantees

rHand: If a handler has been triggered, then it must have previously been registered

sHand: If a single handler has been registered to a given event, then that is the 

only handler that can be triggered for that event (revealed two bugs, fixed)

Correctness bound: length of the event type is at most 20 characters

8 symbolic tests,  100% line coverage

Symbolic Testing: Cash Events Module (ECOOP’20)

Gabriela Sampaio



Full VerificaFon: AWS EncrypFon SDK

49

Current approach to validation:
JS: concrete testing, runtime correctness assertions

C: concrete testing, runtime correctness assertions, bounded model checking (CBMC)

First project: verification of the message header deserialisation module
(~200loc for JS, ~950loc for C, using full features of both languages)

Target code: AWS Encryp:on SDK message header manipula:on in JS and C



AWS Verification: Header Deserialisation

50

Results: Gillian-JS and Gillian-C verify that the JS and C deserialisaNon modules:

• correctly deserialise a well-formed header

• return false (JS) or throw an appropriate error (C) if supplied an incomplete header

• throw an appropriate error if supplied a malformed header      

Impact on AWS code and Gillian:

• improved the implementaNon of the JS readElements auxiliary funcNon

• discovered one bug and one vulnerability in the JS decodeEncrypNonContext funcNon

• found one over-allocaDon and one undefined behaviour in the aws-c-common library

• substanNally improved the reasoning capabiliNes of Gillian

Workload:

• ~2 person months for JS, ~1 person-month for C

• ~3.5K lines of annotations (predicates, specifications, invariants, lemmas, proof tactics)

(~1.2K language-independent, ~1K for C, ~1.3K for JS)



AWS SDK Message Header

51

A sequence of bytes, divided into sec=ons

Version Type Suite ID Message ID EC Length Encryption Context EDK Count Encrypted Data Keys . . .

. . .   Content Type Reserved Bytes IV Length Frame Length IV Authentication Tag

1 1 2 16 2 UInt16(EC Length) EDK Length2

1 4 1 4 1612

Our Approach:

• build language-independent first-order abstractions capturing the header structure

• using these abstractions, build language-specific abstractions capturing header-related objects 

and structures in JS and C memories used in the AWS SDK implementations 

• prove lemmas about all abstractions

• specify and verify all functions of the deserialisation modules



AWS SDK Message Header

52

A sequence of bytes, divided into sections

Version Type Suite ID Message ID EC Length Encryption Context EDK Count Encrypted Data Keys . . .

. . .   Content Type Reserved Bytes IV Length Frame Length IV Authentication Tag

1 1 2 16 2 UInt16(EC Length) EDK Length2

1 4 1 4 1612

Our Approach:

• build language-independent first-order abstractions capturing the header structure

• using these abstractions, build language-specific abstractions capturing header-related objects 

and structures in JS and C memories used in the AWS SDK implementation 

• specify all functions of the deserialisation modules

FOCUS: Encryption context & related functions
• Section of variable length, complex to specify and reason about

• Source of the JS bugs



AWS: LANGUAGE-INDEPENDENT

SPECIFICATION



Specification: Encryption Context

54

Encryption context: serialised list of key-value pairs

KC kLen1 key1 vLen1 val1 . . . kLenKC keyKC vLenKC valKC

2 2 2 2kLen1 2 vLen1 kLenKC vLenKC

buf



Specification: Encryption Context

55

field field

Encryption context: serialised list of key-value pairs

KC kLen1 key1 vLen1 val1 . . . kLenKC keyKC vLenKC valKC

2 2 2 2kLen1 2 vLen1 kLenKC vLenKC

buf



Specification: Encryption Context

56

KC kLen1 key1 vLen1 val1 . . . kLenKC keyKC vLenKC valKC

2 2 2 2kLen1 2 vLen1 kLenKC vLenKC

field

2-field element

2-field elementfield

Encryption context: serialised list of key-value pairs

buf



Specification: Encryption Context

57

KC kLen1 key1 vLen1 val1 . . . kLenKC keyKC vLenKC valKC

2 2 2 2kLen1 2 vLen1 kLenKC vLenKC

field

2-field element

2-field elementfield

Encryption context: serialised list of key-value pairs

KC 2-field elements

buf



Specification: Field

58

pred Field(buf : byte list, pos : int, field : byte list, len : int)

(0 <= pos) * 

(#rawFL = l-sub(buf, pos, 2)) * // l-sub(buf, pos, n): sublist of buf at pos of length n

UInt16(#rawFL, #fLen) * // Conversion to an unsigned 16-bit integer

(field = l-sub(buf, pos + 2, #fLen)) *

(len = 2 + #fLen) * 

(pos + len <= l-len buf); // Field must fit in buffer

#rawFL field

field

buf

pos

len

#fLen2

Abstractions: language-independent, pure



Specification: Complete Element

59

#field #rFields

fCount fields

buf

pos

len

pred CElement(buf : byte list, pos : int, fCount : int, element : (byte list) list, len : int) :

(0 <= pos) * (pos <= l-len buf) * // Base case: no more fields to read

(fCount = 0) * (element = [ ]) * (len = 0),

(0 < fCount) * // Inductive case: first field and rest

Field(buf, pos, #field, #fLen) *

CElement(buf, pos + #fLen, fCount - 1, #rFields, #rLen) *

(element = #field :: #rFields) *

(len = #fLen + #rLen);

element = #field :: #rFields

#fLen #rLen

Abstractions: language-independent, pure



Specification: Complete Element

60

#field #rFields

fCount fields

buf

pos

len

pred CElement(buf : byte list, pos : int, fCount : int, element : (byte list) list, len : int) :

(0 <= pos) * (pos <= l-len buf) * // Base case: no more fields to read

(fCount = 0) * (element = [ ]) * (len = 0),

(0 < fCount) * // Inductive case: first field and rest

Field(buf, pos, #field, #fLen) *

CElement(buf, pos + #fLen, fCount - 1, #rFields, #rLen) *

(element = #field :: #rFields) *

(len = #fLen + #rLen);

element = #field :: #rFields

#fLen #rLen

Additionally:

• Incomplete element: part of an element with correct structure

• Broken element: element with incorrect structure

• A general Element abstraction incorporating all three types of elements

Abstractions: language-independent, pure



Specification: Complete Element Sequence

61

#element1 . . . #elementeCount

eCount elements of fCount fields each

buf

pos

len

elements = [ #element1, . . ., #elementeCount ]

pred CElements(buf : byte list, pos : int, eCount : int, fCount : int, 

elements : ((byte list) list) list, len : int)

// The buffer buf contains, at position pos, a sequence of eCount complete elements, 

// each consisting of fCount fields, with overall contents denoted by elements (list of 

// lists of field contents) and total length len

Abstractions: language-independent, pure



Specification: Complete Encryption Context

62

pred CEncryptionContext(buf  : byte list, KVs : ((byte list) list) list) :

(buf = [ ]) * (KVs = [ ]), // The EC is empty, no key-value pairs

(#rawKC = l-sub(buf, 0, 2)) * // EC not empty: learn raw key count

UInt16(#rawKC, #KC) * (0 < #KC) * // Learn actual key count, which must be positive

CElements(buf, 2, #KC, 2, KVs, #ECLen) * // #KC elements, each with 2 fields (key-value pairs)

FirstProj(KVs, #keys) * Unique(#keys) * // The keys (first projection) must be unique

(2 + #ECLen = l-len buf); // And the EC must fill the buffer completely

KVs = [ [ key1, val1 ], …, [ key#KC, val#KC ] ]

Encryption context: serialised list of key-value pairs

#rawKC kLen1 key1 vLen1 val1 . . . kLen#KC key#KC vLen#KC val#KC

2 2 2 2kLen1 2 vLen1 kLen#KC vLen#KC

#KC 2-field elements

buf

Abstractions: language-independent, pure



Specification: Complete Encryption Context

63

KVs = [ [ key1, val1 ], …, [ key#KC, val#KC ] ]

Encryption context: serialised list of key-value pairs

#rawKC kLen1 key1 vLen1 val1 . . . kLen#KC key#KC vLen#KC val#KC

2 2 2 2kLen1 2 vLen1 kLen#KC vLen#KC

#KC 2-field elements

buf

Abstractions: language-independent, pure

pred CEncryptionContext(buf  : byte list, KVs : ((byte list) list) list) :

(buf = [ ]) * (KVs = [ ]), // The EC is empty, no key-value pairs

(#rawKC = l-sub(buf, 0, 2)) * // EC not empty: learn raw key count

UInt16(#rawKC, false, #KC) * (0 < #KC) * // Learn actual key count, which must be positive

CElements(buf, 2, #KC, 2, KVs, #ECLen) * // #KC elements, each with 2 fields (key-value pairs)

FirstProj(KVs, #keys) * Unique(#keys) * // The keys (first projection) must be unique

(2 + #ECLen = l-len buf); // And the EC must fill the buffer completely

Analogously to elements:

• Additional abstractions capturing incomplete and broken encryption contexts

• A general EncryptionContext abstraction incorporating all three types of elements



AWS: LANGUAGE-DEPENDENT

SPECIFICATION FOR JS AND C



65

pred JSSerialisedEC(sEC : Obj, EC : byte list, KVs : ((byte list) list) list) :

Uint8Array(sEC, #aBuf, #off, #len) *  // sEC is a UInt8Array on top of the ArrayBuffer #aBuf

ArrayBuffer(#aBuf, #data) * // which holds the information #data (a list of bytes),

(EC == l-sub(#aBuf, #off, #len) *  // of which the encryption context EC is part,

CEncryptionContext(EC, KVs) // and the EC contains the key-value pairs KVs

In JS, the serialised encryption context is accessible via an ES6 UInt8Array object 

JS: Serialised Encryption Context

#off #len

sEC #aBuf #off #len

Uint8Array(sEC, #aBuf, #off, #len) ArrayBuffer(#aBuf, #data)

EC KC [key1, val1] . . . [keyKC, valKC] equals

CEncryptionContext(EC, KVs) 

Abstractions: language-dependent, resource; language-independent, pure



66

• The keys, when encoded with toUtf8, must be unique

• The resulting key-value map should be frozen to prevent tampering

pred JSDeserialisedEC(dEC : Obj, KVs : ((byte list) list) list) :

FrozenObject(dEC, null, #utf8KVs) * // dEC is a frozen JS object with prototype null

// that holds the property-value pairs given by #utf8KVs

toUtf8(KVs, #utf8KVs) // which are obtained from KVs by converting to UTF-8 

JS: Deserialised Encryption Context

toUtf8(key1) toUtf8(val1)

. . . . . .

toUtf8(keyKC) toUtf8(valKC)

(toUtf8 converts a list of bytes 

into an UTF-8 string)

dEC (extensible object)

In JS, the encryption context is deserialised into a JS object representing a key-value map

Abstractions: language-dependent, resource; language-independent, pure

#off #len

sEC #aBuf #off #len

Uint8Array(sEC, #aBuf, #off, #len) ArrayBuffer(#aBuf, #data)

EC KC [key1, val1] . . . [keyKC, valKC] equals

CEncryptionContext(EC, KVs) 

JSSerialisedEC(sEC, #EC, #KVs)



JS Specification: Header Deserialisation

67

decodeEncryptionContext: deserialises the encryption context in JS

{  JSSerialisedEC(sEC, #EC, #KVs)  }

function decodeEncryptionContext(sEC)

{  JSSerialisedEC(sEC, #EC, #KVs) * JSDeserialisedEC(ret, #KVs)  }

toUtf8(key1) toUtf8(val1)

. . . . . .

toUtf8(keyKC) toUtf8(valKC)

#off #len

sEC #aBuf #off #len

Uint8Array(sEC, #aBuf, #off, #len) ArrayBuffer(#aBuf, #data)

#EC KC [key1, val1] . . . [keyKC, valKC] equals

CEncryptionContext(#EC, #KVs)

JSSerialisedEC(sEC, #EC, #KVs)

(frozen, with prototype null)

ret (extensible object)



C Specification: Header Deserialisation

68

aws_cryptosdk_enc_ctx_deserialize: deserialises the encryption context in C into a hashtable

{  CSerialisedEC(cur, [#b, #off], #EC, #KVs) * empty_hash_table(ec) }

int aws_cryptosdk_enc_ctx_deserialize(
struct aws_hash_table *ec, struct aws_byte_cursor *cur) 

{  array(#b, #off, #EC) * CEncryptionContext(#EC, #KVs) *

aws_byte_cursor(cur, [#b, #off + l-len #EC], [ ]) * CDeserialisedEC(ec, #KVs) }

toUtf8(key1) toUtf8(val1)

. . . . . .

toUtf8(keyKC) toUtf8(valKC)

CSerialisedEC(cur, #buf, #EC, #KVs)

ec (hashtable, stylised)
#EC KC [key1, val1] . . . [keyKC, valKC] equalsequals

#len

#len [#b, #off]cur

struct_aws_byte_cursor(cur, [#b, #off], #EC) array(#b, #off, #EC)

CEncryptionContext(#EC, #KVs) 



C Specification: Header Deserialisation

69

pred aws_byte_cursor(cur : Ptr, buf : Ptr, c : byte list) :

struct_aws_byte_cursor(cur, #len, buf) * // cur points to a byte cursor that views

(buf = [#b, #off]) * array(#b, #off, c) * // an array with contents c starting from

(#len = l-len c) // offset #off in the block #b

struct aws_byte_cursor {

size_t len;

uint8_t *buf;

}

(automatically

generated)

toUtf8(key1) toUtf8(val1)

. . . . . .

toUtf8(keyKC) toUtf8(valKC)

CSerialisedEC(cur, #buf, #EC, #KVs)

ec (hashtable, stylised)
#EC KC [key1, val1] . . . [keyKC, valKC] equalsequals

#len

#len [#b, #off]cur

struct_aws_byte_cursor(cur, [#b, #off], #EC) array(#b, #off, #EC)

CEncryptionContext(#EC, #KVs) 

aws_cryptosdk_enc_ctx_deserialize: deserialises the encryption context in C into a hashtable

Abstractions: language-dependent, resource; language-independent, pure



Caveats

70

• Changes to JS source code

Original code written in TypeScript, types elided to get pure JavaScript, could be automated

Some ES6 features rewritten to ES5 (let, const, patterns in function parameters), no expressivity loss

• Used library functions mostly axiomatised, some verified, some executed

JS ES6 built-in libraries fully axiomatised (ArrayBuffer, DataView, etc.)

JS ES5 built-in libraries mostly executed, a few axiomatised (Object.freeze, Array.prototype.map)

aws-c-common library functions mostly axiomatised; a few verified with bugs discovered

• Higher-order functions either axiomatised or specialised

The toUtf8 function is supplied as a parameter of the deserialisation module, and axiomatised 

as an injective function from lists of bytes to strings.

Functions in the aws-c-common array-list library specialised for encrypted data keys



AWS: VERIFICATION



Verification Effort

72

(A) List concatenation and sublists with 

lists of symbolic size and content

(M) First projection of lists of pairs

(M) List element uniqueness

(M) List-to-set conversion

(M) Conversion to/from UTF-8

(M) Manipulation of all user-defined 

abstractions (some unfolding, 

lemmas; folding is automatic)

Verification requires complex automatic and manual reasoning about:

// Main loop of decodeEncryptionContext (JS)

// Set-up and establish loop invariant

for (var count = 0; count < pairsCount; count++) {

var [key, value] = elements[count].map(toUtf8)

needs(encryptionContext[key] === undefined)

encryptionContext[key] = value

// Re-establish invariant

}

Example of reasoning complexity



Verification: decodeEncryptionContext

73

Set-up and establish loop invariant: 4 tactics, 27 invariant components



Verification: decodeEncryptionContext

74

Re-establish loop invariant: 9 tactics



75

Actual JS Verification



Summary of Discovered Issues

76

JavaScript: Encryption Context

• if a key coincides with a property of Object.prototype, an exception is thrown erroneously*

• deserialised key-value map returned non-frozen in one scenario, allowing potential 

manipulation (adding/removing keys) by third parties after authentication

* Bug predicted in the original JaVerT paper (POPL’18); found here, in cash, and in jQuery.

C: The aws-c-common Library

• over-allocation of strings: each allocated string contains eight additional, unused bytes

• undefined behaviour (adding null with 0) in the function that advances the byte cursor



Full Verification

Whole-program 
Symbolic Testing

Automatic 

Compositional
Testing

Gillian: Unified, Compositional Symbolic Analysis

More languages
Rust (Sacha)

WebAssembly

Various DSLs

More Analyses

Inter-operability

Concurrency

Incorrectness logic

77

Improving 
Instantiations  
Gillian-While, Gillian-C, 

Gillian-JS

Improving Gillian
Better bi-abduction

Better first-order solver

Better error reporting

Continuous integration

Coq certification



THANK YOU!

QUESTIONS?


