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Variational inference over probabilistic programs

Probabilistic programming

Basic features:
computation over distributions
sampling

i.e., draw a value from a distribution
conditioning / scoring
i.e., tune weight of executions based on observation

Advanced features: learning model parameters

Implementations: Edward, ProbTorch, Pyro, Stan,...

In this talk, we consider Pyro more specifically, applies to others too...
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Variational inference over probabilistic programs

Variational inference

Problem
Given:

1 a (potentially complex) model
description of a system / real data observations
relies on sampling for, e.g., modeling / noisy measurement

2 a (simpler) description, referred to as guide
sampling based on unknown parameters, but with no observation

Can we infer optimal values of unknown parameters ?

Example (Pyro):
model describing a repeated coin tossing experiment
guide describing a coin with biasedness given as parameter
inference of the biasedness parameter based on experiment
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Variational inference over probabilistic programs

Variational inference issues

Solution to the inference problem
several inference algorithms based on:
collection of families of executions, with their probability density
global optimisation, e.g., gradient descent

Pyro examples: include non trivial machine learning applications
e.g., variational auto-encoders
e.g., applications to basic MNIST number recognition

However:

Inference algorithms rely on non trivial theorems
Are all the required assumptions always satisfied ?
What happens otherwise ?
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Variational inference over probabilistic programs

Our approach

To address semantic definition issues, we follow a classical PL/static
analysis approach:

1 Measure
semantics

2 Density
semantics

3 SVI: Stochastic
variational
inference

4 Semantic
conditions

5 Conservative
static analysis

well
defined satisfied

standard semantics: in terms of measurable functions
but models developed around density functions
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Examples

Outline

1 Variational inference over probabilistic programs

2 Examples

3 Semantics to study variational inference

4 On the definition of variational inference

5 A simplified, generic static analysis framework

6 Implementation and evaluation of model/guide match analysis
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Examples

A first, very basic model

Model Pyro code:

def model ():
v = pyro.sample("v", Normal (0., 5.))

Meaning:
sample: draws a value based on a distribution
in this case, normal distribution, mean 0, standard deviation 5
i.e., values of variable v distributed around 0
with some imprecision

Distribution over executions based on the final value of v:

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 100
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Examples

A second, more interesting model

Model Pyro code:

def model ():
v = pyro.sample("v", Normal (0., 5.))
if (v > 0):

pyro.sample("obs", Normal (1., 1.), obs =0.)
else:

pyro.sample("obs", Normal(-2., 1.), obs =0.)

Meaning:
sample without obs=...: sampling, as before
sample with obs=...: conditioning determined by observation

Distribution on v :

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 100
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Examples

Distribution defined by the model

Model Pyro code:

def model ():
v = pyro.sample("v", Normal (0., 5.))
if (v > 0):

pyro.sample("obs", Normal (1., 1.), obs =0.)
else:

pyro.sample("obs", Normal(-2., 1.), obs =0.)

Prior on v , before observation taken into account:
i.e., when observations on the value of obs are ignored

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 100
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Examples

Distribution defined by the model

Model Pyro code:

def model ():
v = pyro.sample("v", Normal (0., 5.))
if (v > 0):

pyro.sample("obs", Normal (1., 1.), obs =0.)
else:

pyro.sample("obs", Normal(-2., 1.), obs =0.)

Posterior distribution on v , after observations on obs
and compared with the prior:

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 100
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Examples

Distribution defined by the model

Model Pyro code:

def model ():
v = pyro.sample("v", Normal (0., 5.))
if (v > 0):

pyro.sample("obs", Normal (1., 1.), obs =0.)
else:

pyro.sample("obs", Normal(-2., 1.), obs =0.)

Posterior distribution on v , after observations on obs
and compared with the prior:

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 100

Can we discover a simpler, accurate enough
approximation of the posterior ?
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Examples

Model approximation with a parameterized “guide”

Idea: specify a template for a family of candidate functions to approximate
the posterior, then choose among them the most suitable one

Guide
Companion program with randomized parameter, aimed at
approximating the posterior distribution defined in the model

In our example: sampling the parameter from a normal distribution
def guide ():

theta = pyro.param("theta", 3.)
v = pyro.sample("v", Normal(theta , 1.))

One instance of the guide, with a positive θ (expected outcome)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 100
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Examples

Inference: selection of a good parameter value

Guide: specifies a family of candidates model approximations
characterized by a parameter
Inference: computes the optimal value of the parameter θ

Notion of optimality ? KL divergence (Kullback-Leibler)
Given two probability distributions p0, p1 over the same measurable set,
their KL divergence writes down as:

DKL(p0, p1) = Ep0

(
log

p0

p1

)
=

∫
log

dp0

dp1
dp0

defined when p0 absolutely continuous wrt p1, i.e.,
for all measurable x, p1(x) = 0 =⇒ p0(x) = 0

DKL(p0, p1) ≥ 0
DKL(p0, p1) = 0 if and only if p0 and p1 are equal almost everywhere
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Examples

Inference principle

Inference goal
Compute an ideal value of θ, using an optimization algorithm

Application to the inference problem
two distributions over sampled variables v:

p(v, obs = 0):
posterior probability distribution over
v defined by the model
(with the observation obs = 0)
qθ(v):
guide probability distribution
(parameterized by θ)

Plot of
DKL(p(v), qθ(v, obs = 0))
as a function of θ:

−4 −3 −2 −1 1 2 3 40

1

2

3

4

Optimization objective: argminθDKL(p(v), qθ(v, obs = 0))
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Examples

Stochastic variational inference (SVI)

Principle:
apply a gradient descent algorithm to KL divergence
to compute optimal value of θ

use stochastic approximation of the gradient
i.e., generate samples based on current θ to estimate gradient

Algorithm to compute local minimum:
select θ0
repeat K times
θn+1 ← θn − λ∇DKL(p(v), qθ(v, obs = 0))θ=θn,N

λ: learning rate, typically small, e.g., λ = 0.01
∇DKL(p(v), qθ(v, obs = 0))θ=θn,N : gradient approximation over N
samples
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Examples

Stochastic variational inference (SVI)

Principle:
apply a gradient descent algorithm to KL divergence
to compute optimal value of θ

use stochastic approximation of the gradient
i.e., generate samples based on current θ to estimate gradient

Algorithm to compute local minimum:
select θ0
repeat K times
θn+1 ← θn − λ∇DKL(p(v), qθ(v, obs = 0))θ=θn,N

Pyro application of stochastic variational inference:

svi = SVI(model , guide , Adam({"lr": 1.0e-2}), loss=Trace_ELBO ())
for step in range (2000):

svi.step()
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Examples

Stochastic variational inference (SVI)

Principle:
apply a gradient descent algorithm to KL divergence
to compute optimal value of θ

use stochastic approximation of the gradient
i.e., generate samples based on current θ to estimate gradient

Algorithm to compute local minimum:
select θ0
repeat K times
θn+1 ← θn − λ∇DKL(p(v), qθ(v, obs = 0))θ=θn,N

Is it always guaranteed to work ?
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Examples

Another model-guide pair

Excerpt from the Pyro webpage examples...

Model:
def model (...):

...
sigma = pyro.sample("sigma", Uniform (0., 10.))
...
pyro.sample("obs", Normal (..., sigma), obs =...)

Guide:
def guide (...):

...
loc = pyro.param("sigma_loc", 1., constraint=constraints.positive)
...
sigma = pyro.sample("sigma", Normal (loc , 0.05))

Issue: KL-divergence is undefined
domain of sigma in the model: [0, 10]
domain of sigma in the guide: R
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Examples

Issues possibly leading to undefinedness of KL-divergence

Absolute continuity requirement:
definition of KL-divergence: DKL(qθ, p) =

∫
log dqθ

dp dqθ
absolute continuity requirement:
model distribution p and guide distribution q should have the same
zero probability regions
domain in model [0, 10], in guide R
leads to the violation of absolute continuity assumption
e.g., and KL divergence is undefined

Anther possible issue: integrability
log dqθ

dp dqθ may not be integrable
. . . even if absolute continuity holds

Our goal: define semantics to let static analysis provide guarantees
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Examples

Informal overview of potential SVI issues

Several assumptions are necessary:
KL-divergence must be defined, not ∞:
otherwise: undefined optimization objective

KL-divergence must be differentiable:
otherwise: incorrect gradient descent

the stochastic estimate of ∇DKL(qθ, p) should be well-defined,
and unbiased:

otherwise: incorrect computation of gradient descent approximation

Practical consequences are difficult to troubleshoot, e.g.,
crashes or divergence of the inference engine
incoherent / invalid optimization results

may be very difficult to even notice
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Semantics to study variational inference

Outline

1 Variational inference over probabilistic programs

2 Examples

3 Semantics to study variational inference

4 On the definition of variational inference

5 A simplified, generic static analysis framework

6 Implementation and evaluation of model/guide match analysis
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Semantics to study variational inference

A basic imperative probabilistic programming language

A few assumptions:
imperative control structures (while language),
real numbers (not floating point)
only normal distributions
countable set of random variables, represented with strings

Basic syntax:

E ,B, S real, boolean, string expressions
C ::= commands

| skip | C0;C1 | x := E
| if B {C} else {C} | whileB {C}
| x := sampleN (S ,E0,E1)

S : random variable, E0 : mean, E1 : standard dev.
| scoreN (E0,E1,E2)

E0 : observed value, E1 : mean, E2 : standard dev.
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Semantics to study variational inference

Measure semantics

A state (m, r) ∈ States is a pair made of
a store: m ∈Mem = [Vars→ R] (finite set of program variables)
a random database: r ∈ RDBs = [K → R]
(where K finite set of random variables drawn so far)

Executions:
have a weight (or execution score) in R+

initially 1, then computed based on score statments
r is initially empty
then, sampled random values get added to r in sample statements
may not terminate/crash

Semantics general form:

JCKmeas : States→ (P(States× R+)→ [0, 1])

i.e., maps one input state into a (sub)-probability distribution over sets
of (output state, weight) pairs
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Semantics to study variational inference

Measure semantics: a few cases

JCKmeas : States→ (P(States× R+)→ [0, 1])
≡ (Mem× RDBs)→ P(Mem× RDBs× R+))→ [0, 1]

Assignment statement x := E

Jx := EKmeas(m, r)(A) , 1[(m[x 7→JEK(m)],r ,1)∈A]

weight is not modified
variable x is updated in the store
note: expressions should not read random variables directly
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Semantics to study variational inference

Measure semantics: a few cases

JCKmeas : States→ (P(States× R+)→ [0, 1])
≡ (Mem× RDBs)→ P(Mem× RDBs× R+))→ [0, 1]

Assignment statement x := E

Sample statement sampleN (S ,E0,E1)

Jx := sampleN (S ,E1,E2)Kmeas(m, r)(A) ,
1[JSK(m)6∈dom(r)] · 1[JE2K(m)∈R+∗]

·
∫

dv
(
N (v ; JE1K(m), JE2K(m)) · 1[(m[x 7→v ],r [JSK(m)7→v ],1)∈A]

)
crashes when sampling from a rand. var. not in the random database
crashes when standard deviation is negative
otherwise updates the states and rdb with the sample,

integrate over the density of the sampled distribution
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Semantics to study variational inference

Measure semantics: a few cases

JCKmeas : States→ (P(States× R+)→ [0, 1])
≡ (Mem× RDBs)→ P(Mem× RDBs× R+))→ [0, 1]

Assignment statement x := E

Sample statement sampleN (S ,E0,E1)

Score statement scoreN (E0,E1,E2)

JscoreN (E0,E1,E2)Kmeas(m, r)(A) ,
1[JE2K(m)∈R+∗] · 1[(m,r ,N (JE0K(m);JE1K(m),JE2K(m)))∈A]

crashes when standard deviation is negative
otherwise state left unmodified

score the density of the distribution for the observed value
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Semantics to study variational inference

Measure semantics: a few cases

JCKmeas : States→ (P(States× R+)→ [0, 1])
≡ (Mem× RDBs)→ P(Mem× RDBs× R+))→ [0, 1]

Assignment statement x := E

Sample statement sampleN (S ,E0,E1)

Score statement scoreN (E0,E1,E2)

JCKmeas is measurable
and defines a sub-probability kernel from States to States× R+
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Semantics to study variational inference

Measure semantics: a basic example

Prior: x close to 0
Posterior: noisy observation that x is close to 1

C ,

{
x := sample(”a”, 0, 5);
score(x , 3, 1);

Measure semantics, starting from mI = {x 7→?} and rI = ∅,
JCKmeas(mI , rI )(A)
= JCKmeas(mI , rI )(A ∩ {({x 7→ v}, {a 7→ v},N (3; v , 1)) | v ∈ R})

(i.e., other ouptut state, density pairs do not count)

Cumulated measure, i.e., over {({x 7→ v}, {a 7→ v},N (3; v , 1)) | v ≤ α}∫ α

−∞
JCKmeas(mI , rI )({({x 7→ v}, {a 7→ v},N (3; v , 1)) | v ∈ R})dv

−5 −4 −3 −2 −1 1 2 3 4 50
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Semantics to study variational inference

From measure semantics to density semantics

Posterior distribution over space of random databases:
starting from initial state (mI , ∅)

M(C ,A) =

∫
JCKmeas(mI , ∅)(d(m, r ,w))(w · 1[(m,r)∈Mem×A]),
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Semantics to study variational inference

From measure semantics to density semantics

Posterior distribution over space of random databases:
starting from initial state (mI , ∅)

M(C ,A) =

∫
JCKmeas(mI , ∅)(d(m, r ,w))(w · 1[(m,r)∈Mem×A]),

1 Measure
semantics

2 Density
semantics

3 SVI: Stochastic
variational
inference

4 Semantic
conditions

5 Conservative
static analysis

well
defined satisfied
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Semantics to study variational inference

From measure semantics to density semantics

Posterior distribution over space of random databases:
starting from initial state (mI , ∅)

M(C ,A) =

∫
JCKmeas(mI , ∅)(d(m, r ,w))(w · 1[(m,r)∈Mem×A]),

Towards density semantics:
should also include the density part in the semantics

i.e., allow to write:

M(C ,A) =

∫
ρ(dr) (1[r∈A] ·Dens(C ,mI )(r))

for some function Dens defined based density semantics J·Kdens

seeks for operational flavor
i.e., easier to abstract for static analysis
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Semantics to study variational inference

Density semantics: a few cases

JCKdens : States× R+ × R+ ] {⊥} → States× R+ × R+ ] {⊥}
≡ Configs ] {⊥} → Configs ] {⊥}

where Configs = (Mem× RDBs× R+ × R+)

Configurations (m, r ,w , p) ∈ Configs:
m: store
r : random data-base

each sample pops a value
w : weight/score induced by observation
p: probability induced by sampling
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Semantics to study variational inference

Density semantics: a few cases

JCKdens : States× R+ × R+ ] {⊥} → States× R+ × R+ ] {⊥}
≡ Configs ] {⊥} → Configs ] {⊥}

where Configs = (Mem× RDBs× R+ × R+)

Assignment statement x := E

Jx := EKdens(m, r ,w , p) , (m[x 7→ JEK(m)], r , 1, 1)

weight and probability density not modified
variable x is updated in the store
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Semantics to study variational inference

Density semantics: a few cases

JCKdens : States× R+ × R+ ] {⊥} → States× R+ × R+ ] {⊥}
≡ Configs ] {⊥} → Configs ] {⊥}

where Configs = (Mem× RDBs× R+ × R+)

Sample statement sampleN (S ,E0,E1)

Jx := sampleN (S ,E1,E2)Kdens(m, r ,w , p) ,
if JSK(m) 6∈ dom(r) ∨ JE2K(m) 6∈ R+∗ then ⊥
else (m[x 7→ r(JSK(m))], r \ JSK(m), w , p · N (r(JSK(m)); JE1K(m), JE2K(m)))

crashes when sampling from a random variables not in the random
database or standard deviation is negative
otherwise updates the states with the sample, score is unchanged

probability density is multiplied by the density of the distribution
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Semantics to study variational inference

Density semantics: a few cases

JCKdens : States× R+ × R+ ] {⊥} → States× R+ × R+ ] {⊥}
≡ Configs ] {⊥} → Configs ] {⊥}

where Configs = (Mem× RDBs× R+ × R+)

Score statement scoreN (E0,E1,E2)

JscoreN (E0,E1,E2)Kdens(m, r ,w , p) ,
if (JE2K(m) 6∈ R+∗) then ⊥
else (m, r ,w · N (JE0K(m); JE1K(m), JE2K(m)), p)

crashes when standard deviation is negative
otherwise state and probability density left unmodified

score multiplied by the density of the observed distribution value
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Semantics to study variational inference

Density semantics: a basic example

Same program as in the previous example:
Prior: x close to 0
Posterior: noisy observation that x is close to 1

C ,

{
x := sample(”a”, 0, 5);
score(x , 3, 1);

Semantics derived by simple calculation, starting from mI = {x 7→?} and
rI = {a 7→ v},

JCKdens((mI , rI ), 1, 1) = (({x 7→ v}, ∅),N (3; v , 1),N (v ; 0, 5))

Overall weighted density:

v 7−→ N (3; v , 1) · N (v ; 0, 5)

−5 −4 −3 −2 −1 1 2 3 4 50
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Semantics to study variational inference

Density semantics properties

Theorem: density definition
When JCKdens(mI , rI , 1, 1) = (m, ∅,w , p), we let:

Dens(C ,mI )(rI ) = w · p

we have:

M(C ,A) =
∫
ρ(dr) (1[r∈A] ·Dens(C ,mI )(r))

=
∫

JCKmeas(mI , ∅)(d(m, r ,w))(w · 1[(m,r)∈Mem×A]),

Example: weighted density
α 7−→ N (3;α, 1) · N (α; 0, 5)

−5 −4 −3 −2 −1 1 2 3 4 50
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On the definition of variational inference

Outline

1 Variational inference over probabilistic programs
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3 Semantics to study variational inference
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5 A simplified, generic static analysis framework

6 Implementation and evaluation of model/guide match analysis
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On the definition of variational inference

Towards a semantic definition of SVI

Given model program C , we defined:

M(C ,A) =

∫
ρ(dr) (1[r∈A] ·Dens(C ,mI )(r))

It can be normalized into a probability measure iff

M(C ,RDBs) ∈ R+∗

Objective of SVI:
identify a family of programs Dθ as potential approximants of C

1 withM(Dθ,RDBs) = 1, which is ensured if Dθ always terminates
2 with density 1, which is ensured if no occurrence of score

compute optimal θ to minimize

DKL(Dens(Dθ,mI ),Dens(C ,mI ))

where Dens defined by the density semantics
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On the definition of variational inference

SVI algorithm

Gradient estimate based on one sample:

GrEstθ(r) = (∇θ logDens(Dθ,mI )) · log
Dens(Dθ,mI )

Dens(C ,mI )

Fixed parameters:
N number of samples per iterate for stochastic estimation
λ: learning rate, typically small, e.g., λ = 0.01

select θ0
repeat K times

sample r0, . . . , rN−1

θk+1 ← θk − λ · 1
N ·

N−1∑
i=0

GrEstθk (ri )

Is 1
N ·
∑N−1

i=0 GrEstθk (ri ) a good estimate
of well-defined ∇θDKL(Dens(Dθ,mI ),Dens(C ,mI )) ???

Lee, Yu, Rival, Yang Towards verified SVI for prob. programs June 2022 28 / 45



On the definition of variational inference

SVI algorithms: conditions

Is 1
N ·
∑N−1

i=0 GrEstθk (ri ) a good estimate
of well-defined ∇θDKL(Dens(Dθ,mI ),Dens(C ,mI )) ???

1 Measure
semantics

2 Density
semantics

3 SVI: Stochastic
variational
inference

4 Semantic
conditions

5 Conservative
static analysis

well
defined satisfied
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On the definition of variational inference

Unbiasedness

Theorem
If:

1 absolute continuity: Dens(Dθ,mI )(r) =⇒ Dens(C ,mI )(r)

2 differentiability: θ 7→ Dens(Dθ,mI )(r) differentiable wrt all
components

3 boundnedness of KL divergence
4 differentiability of KL divergence wrt all its arguments
5 integral permutation conditions on KL divergence and guide density∫
∇ . . . = ∇

∫
. . .

Then:
E(∇θDKL(Dens(Dθ,mI ),Dens(C ,mI ))) ≡ 1

N ·
∑N−1

i=0 GrEstθk (ri )

Full version:
Towards Verified Stochastic Variational Inference for Probabilistic Programs
Wonyeol Lee, Hangyeol Yu, Xavier Rival and Hongseok Yang
POPL’20
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On the definition of variational inference

Discharging requirements by restrictions + static analysis

A few syntactic restrictions over model/guide pairs:
finitely many control flow branches
fixed and finite set of random variables samples on each branch

Conservative static analysis applied to model/guide pair to verify
theorem hypotheses 1 and 2:

absolute continuity: Dens(Dθ,mI )(r) =⇒ Dens(C ,mI )(r)

differentiability: θ 7→ Dens(Dθ,mI )(r) differentiable wrt all
components

Assumptions 3, 4, and 5 implied by stronger properties that could be
verified by static analysis, by checking on other functions:

boundness
continuous differentiability

(analysis not done yet)
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A simplified, generic static analysis framework

Outline
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A simplified, generic static analysis framework

Abstract interpretation-based static analysis

Principles of static analysis
by abstract interpretation

1 start from a reference concrete semantics
here: JCKdens ∈ D

where D = [Configs ] {⊥} → Configs ] {⊥}]
2 select a family of abstract predicates D]

with concretization function γ : D] → D
ideally with an efficient machine representation

3 derive a computable, sound abstract semantics JCK]

soundness:
JCKdens ∈ γ(JCK])

Results are sound: accounts for all program behaviors
incomplete: spurious behaviors may be included
⇒ verification of correct programs may fail
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A simplified, generic static analysis framework

A generic static analysis

We set up a static analysis, parameterized by an abstract domain:
Logical predicates + representation + algorithms

Abstract domain
An abstract domain comprises a set of abstract predicates D] and:

concretization function γ : D] → D
least element ⊥ with γ(⊥) = ∅
widening operator widen] : D] ×D] −→ D]

over-approximating ∪
and enforcing termination on all sequences of abstract iterates

abstract composition comp] : D] ×D] −→ D]
soundness: ∀g0 ∈ γ(d ]0), ∀g1 ∈ γ(d ]1), (g0 ◦ g1) ∈ γ(comp](d ]0, d

]
1))

abstract conditions, assignment, sample and score operations
satisfying similar soundness conditions
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A simplified, generic static analysis framework

Static analysis construction and soundness

Definition of the analysis by induction over the syntax:

JskipK] , skip]

Jif E {C0} else {C1}K] , cond](E )(JC0K], JC1K])
Jx := EK] , assign](x ,E )

Jx := sampleN (S ,E1,E2)K] , sample](x , S ,E1,E2)

JC0;C1K] , comp](JC1K], JC0K])
JscoreN (E0,E1,E2)K] , score](E0,E1,E2)

Jwhile E {C}K] , lfp(λd ] · cond](E )(comp](d ], JCK]), skip]))

Theorem: static analysis soundness
For all command C :

JCKdens ∈ γ(JCK])

⇒ next step: set up several instances of abstract domains
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A simplified, generic static analysis framework

First instance: static analysis for support/guide match

Abstraction
We let: D] = {⊥],>]} ] P(String)
and:
γ : ⊥] 7−→ λ(m, r ,w , p) · ⊥

>] 7−→ D
S 7−→ {g ∈ D | ∀(m, r ,w , p), g(m, r ,w , p) = (s ′, ∅,w ′, p′)

=⇒ dom(r) = S}

A few transfer functions:

comp](⊥], d ]) = comp](d ],⊥]) = ⊥]
comp](>], d ]) = comp](d ],>]) = >]

comp](S0,S1) =

{
S0 ] S1 if S0 ∩ S1 = ∅
>] otherwise

sample](x , S ,E0,E1) = {S}
score](x ,E0,E1,E2) = ∅
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A simplified, generic static analysis framework

First instance: static analysis for support/guide match

Abstraction
We let: D] = {⊥],>]} ] P(String)
and:
γ : ⊥] 7−→ λ(m, r ,w , p) · ⊥

>] 7−→ D
S 7−→ {g ∈ D | ∀(m, r ,w , p), g(m, r ,w , p) = (s ′, ∅,w ′, p′)

=⇒ dom(r) = S}

Example analysis:

def model ():
v = pyro.sample("v", Normal (0., 5.))
if (v > 0):

pyro.sample("obs", Normal (1., 1.), obs =0.)
else:

pyro.sample("obs", Normal(-2., 1.), obs =0.)

Then: JmodelK] = {v}
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A simplified, generic static analysis framework

Second instance: static analysis for guide differentiability

Abstraction
We let

D] = P(Vars)× P(Vars)× P(P(Vars)× P(Vars))

and γ(X ,Y ,R) defined by:
X : variables in X are definitely not modified
Y : density is a C1 function of the variables in Y

R : if (V0,V1) ∈ R means the output value of the variables in V1 is C1

in the variables in V0

Other instances: in the paper
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Implem. and eval. of model/guide match analysis

Outline

1 Variational inference over probabilistic programs

2 Examples

3 Semantics to study variational inference

4 On the definition of variational inference

5 A simplified, generic static analysis framework

6 Implementation and evaluation of model/guide match analysis
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Implem. and eval. of model/guide match analysis

Static analysis support for basic language features

Our goal
Model/guide support correspondence analysis on real Pyro programs

Distributions:
not only normal distribution: also uniform, beta, ...
intuitively: a same rand. var. should be sampled from the same
distribution, in both model and guide

Tensors:
multidimensional arrays: t : [1,N]× [1,M]× . . .× [1,P]→ R
basic: operations on tensors of compatible dimensions
broadcasting: operations on tensors of incompatible dimensions
plates: grouping of tensor dimensions for optimization

should also be compatible in model and guide!
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Implem. and eval. of model/guide match analysis

Abstraction for tensors and distributions

A model excerpt:

def model ():
for i in range (1,M):

for j in range (1,N):
... = pyro.sample("x_{}_{}".format(i). format(j),

dist.Uniform (0 ,1))
...

Random-database: {x_i_j | 1 ≤ i ≤ M ∧ 1 ≤ j ≤ N}

1
2

N

1 2 M

Uniform(0., 1.)

Abstraction:
should describe zones in
multidimensional tensors
should bind distribution
information to zones

Lee, Yu, Rival, Yang Towards verified SVI for prob. programs June 2022 40 / 45



Implem. and eval. of model/guide match analysis

Abstraction for tensors and distributions

Precise tensor state abstraction:

D] elements: finite set of (tensor zone, distribution) pairs
tensor zone: tensor block ∪ . . .∪ tensor block
tensor block: range × . . .× range

range: symbolic left bound × symbolic right bound
symbolic bound: finite set of equal symbolic expression of prog. vars

Example invariant, after i , j iterations, one zone, three tensor blocks:

1
2

j − 1
j
N

1 2 i − 1 i M
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Implem. and eval. of model/guide match analysis

Evaluation: setup

Collection of programs using/configurable with Trace_ELBO estimator:
39 Pyro regression tests: small programs
8 Pyro examples: realistic probabilistic model implementations

Pyro example size sample score θ
(LOCs) dims dims dims

br (Bayesian regression) 27 10 170 9
csis (inference compilation) 31 2 2 480
lda (amort. latent Dirich. alloc.) 76 21008 64000 121400
vae (variational autoencoder) 91 25600 200704 353600
sgdef (deep exponential family) 94 231280 1310720 231280
dmm (deep Markov model) 246 640000 281600 594000
ssvae (semi supervised vae) 349 24000 156800 844000
air (attend infer repeat) 410 20736 160000 6040859
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Implem. and eval. of model/guide match analysis

Evaluation: results

On Pyro regression tests:
29 validated, 10 crashes of the analyser
cause of crashes: partial support for plates, Pyro features

On Pyro examples:
Pyro example valid ? time

(s)
br (Bayesian regression) x 0.006
csis (inference compilation) y 0.007
lda (amort. latent Dirich. alloc.) x 0.014
vae (variational autoencoder) y 0.005
sgdef (deep exponential family) y 0.070
dmm (deep Markov model) y 0.536
ssvae (semi supervised vae) y 0.013
air (attend infer repeat) y 4.093

effectiveness:
6 examples verified
though complex
code
scalability:
runtime under 1s
for most tests
one test takes 5s
complex zones
two issues found
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Implem. and eval. of model/guide match analysis

Evaluation: discovered issues with model/guide mismatch

Bayesian regression (br):
model: random variable sigma sampled from Uniform(0,10)

guide: random variable sigma sampled from Normal(...)

Distribution support mismatch,
undefined SVI optimization objective

Amortized latent Dirichlet allocation (lda):
model: random variable doc_topics sampled from Dirichlet,
continuous
guide: random variable doc_topics sampled from Delta, discrete

Distribution support mismatch, undefined SVI optim. objective,
but defined with other optim. engine (Expectation Maximization)
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Implem. and eval. of model/guide match analysis

PL/Static analysis approach to provide guarantees on SVI

Encougaging results:
semantic formalization, semantic conditions, static analysis

1 Measure
semantics

2 Density
semantics

3 SVI: Stochastic
variational
inference

4 Semantic
conditions

5 Conservative
static analysis

well
defined satisfied

Much remains to be done:
more analyses to be implemented
not full support for Python + Pytorch + Pyro features
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