Understanding and Evolving the Rust Programming Language

Derek Dreyer MPI-SWS, Germany

Collège de France February 6, 2020

Rust – Mozilla's replacement for C/C++

Rust is the only language to provide...

- Low-level control à la C/C++
- Strong safety guarantees
- Modern, functional paradigms
- Industrial development and backing

Core ingredients:

- Sophisticated ownership type system
- Safe encapsulation of unsafe code

Rust – Mozilla's replacement for C/C++

Understanding Rust: λ_{Rust}

Building an extensible soundness proof of Rust that covers its core type system as well as standard libraries

Evolving Rust: Stacked Borrows

Defining the semantics of Rust in order to justify powerful intraprocedural type-based optimizations

Understanding Rust: λ_{Rust}

Building an extensible soundness proof of Rust that covers its core type system as well as standard libraries

Key challenge: Interaction of safe and unsafe code

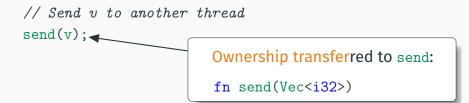
Defining the semantics of Rust in order to justify powerful intraprocedural type-based optimizations

Understanding Rust: λ_{Rust}

Building an extensible soundness proof of Rust that covers its core type system as well as standard libraries

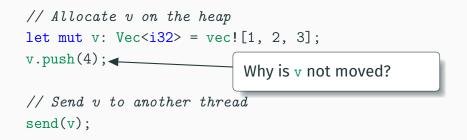
Evolving Rust: Stacked Borrows

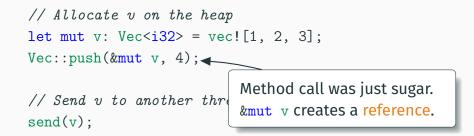
Defining the semantics of Rust in order to justify powerful intraprocedural type-based optimizations


Rust 101

Rust 101


```
// Allocate v on the heap
let mut v: Vec<i32> = vec![1, 2, 3];
v.push(4);
```


```
// Allocate v on the heap
let mut v: Vec<i32> = vec![1, 2, 3];
v.push(4);
```




```
// Allocate v on the heap
let mut v: Vec<i32> = vec![1, 2, 3];
v.push(4);
```

// Send v to another thread
send(v);

// Let us try to use v again
v.push(5);
Error: v has been moved.
Prevents possible data race.

// Allocate v on the heap
let mut v: Vec<i32> = vec![1, 2, 3];
Vec::push(&mut v, 4);

Pass-by-reference: Vec::push borrows ownership temporarily

// Allocate v on the heap
let mut v: Vec<i32> = vec![1, 2, 3];
Vec::push(&mut v, 4);

Pass-by-reference: Vec::push borrows ownership temporarily

send(v);

```
// Allocate v on the heap
let mut v: Vec<i32> = vec![1, 2, 3];
Vec::push(&mut v, 4);
// Send v to another thread
send(v);
```

Type of push:

fn Vec::push<'a>(&'a mut Vec<i32>, i32)

```
// Allocate v on the heap
let mut v: Vec<i32> = vec![1, 2, 3];
Vec::push(&mut v, 4);
// Send v to another thread
send(v);
```

Type of push:

fn Vec::push<'a>(&'a mut Vec<i32>, i32)
Lifetime 'a is inferred by Rust.

// Allocate v on the heap

&mut x creates a mutable reference of type
&'a mut T:

- Ownership temporarily borrowed
- Borrow lasts for inferred lifetime 'a
- Mutation, no aliasing
 - Unique pointer

&x creates a shared reference of type &'a T

- Ownership borrowed for lifetime 'a
- Can be aliased
- Does not allow mutation

Shared Borrowing

Rust's type system is based on ownership and borrowing:

- 1. Full ownership: T
- 2. Mutable (borrowed)
 reference: &'a mut T
- 3. Shared (borrowed) reference: &'a T

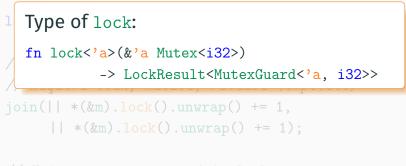
Lifetimes 'a decide how long borrows last.

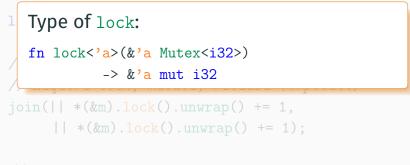
Aliasing	
Mutation	

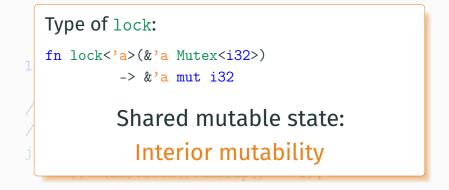
But what if I need aliased mutable state?

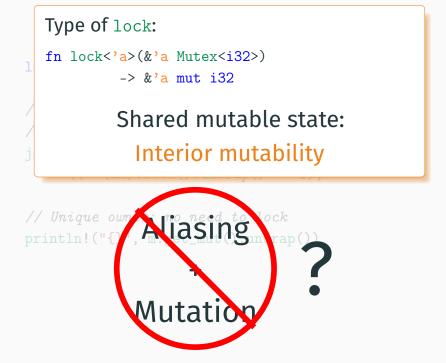
Pointer-based data structures:

• Doubly-linked lists, ...


Synchronization mechanisms:


• Locks, channels, semaphores, ...


Memory management:


• Reference counting, ...

let m = Mutex::new(1); // m : Mutex<i32>


```
fn lock<'a>(&'a self) -> LockResult<MutexGuard<'a, T>>
{
    unsafe {
        libc::pthread_mutex_lock(self.inner.get());
        MutexGuard::new(self)
     }
}
```

unsafe

fn

Mutex has an unsafe implementation. But the interface (API) is safe:

fn lock<'a>(&'a Mutex<i32>) -> &'a mut T

unsafe

Mutex has an unsafe implementation. But the interface (API) is safe:

fn lock<'a>(&'a Mutex<i32>) -> &'a mut T
Similar for join: unsafely implemented user
library, safe interface.

Goal: Prove safety of Rust and its standard library.

Safety proof needs to be extensible.

The λ_{Rust} type system

 $\tau ::= \mathbf{bool} \mid \mathbf{int} \mid \mathbf{own}_n \tau \mid \mathbf{\&}_{\mathbf{mut}}^{\kappa} \tau \mid \mathbf{\&}_{\mathbf{shr}}^{\kappa} \tau \mid \mu \, \alpha. \, \tau \mid \dots$

The λ_{Rust} type system

 $\tau ::= \mathbf{bool} \mid \mathbf{int} \mid \mathbf{own}_n \tau \mid \mathbf{\&}_{\mathbf{mut}}^{\kappa} \tau \mid \mathbf{\&}_{\mathbf{shr}}^{\kappa} \tau \mid \mu \, \alpha. \, \tau \mid \dots$

The λ_{Rust} type system

 $\tau ::= \mathbf{bool} \mid \mathbf{int} \mid \mathbf{own}_n \tau \mid \mathbf{\&}_{\mathbf{mut}}^{\kappa} \tau \mid \mathbf{\&}_{\mathbf{shr}}^{\kappa} \tau \mid \mu \, \alpha. \, \tau \mid \dots$

The λ_{Rust} type system

 $\tau ::= \mathbf{bool} \mid \mathbf{int} \mid \mathbf{own}_n \tau \mid \mathbf{\&}_{\mathbf{mut}}^{\kappa} \tau \mid \mathbf{\&}_{\mathbf{shr}}^{\kappa} \tau \mid \boldsymbol{\mu} \boldsymbol{\alpha}. \tau \mid \dots$

 $\tau ::= \mathbf{bool} \mid \mathbf{int} \mid \mathbf{own}_n \tau \mid \mathbf{\&}_{\mathbf{mut}}^{\kappa} \tau \mid \mathbf{\&}_{\mathbf{shr}}^{\kappa} \tau \mid \mu \alpha. \tau \mid \dots$ $\mathbf{T} ::= \emptyset \mid \mathbf{T}, \mathbf{p} \triangleleft \tau \mid \dots$

Typing context assigns types to paths *p* (denoting fields of structures)

 $\tau ::= \mathbf{bool} \mid \mathbf{int} \mid \mathbf{own}_n \tau \mid \mathbf{\&}_{\mathbf{mut}}^{\kappa} \tau \mid \mathbf{\&}_{\mathbf{shr}}^{\kappa} \tau \mid \mu \alpha. \tau \mid \dots$ $\mathbf{T} ::= \emptyset \mid \mathbf{T}, \mathbf{p} \lhd \tau \mid \dots$

Core substructural typing judgments:

E, **L**; $T_1 \vdash I \dashv x$. T_2 Typing individual instructions *I* (**E** and **L** track lifetimes) **E**, **L**; **K**, **T** \vdash *F* **(K** tracks continuations)

The λ_{Rust} type system

			$\frac{ \Gamma_1 k: \text{val} \mid \mathbf{E}, \mathbf{L}_2 \mid \mathbf{K}, k: \text{cont}(\mathbf{I}_1; \mathbf{x}; \mathbf{T}'); \mathbf{T} - \mathbf{F}_2}{ \Gamma - \mathbf{E}, \mathbf{L}_2 \mid \mathbf{K}, \mathbf{T} \mid \text{letcont} k(s) := F_1 \text{ in } F_2}$			
ictin	ne inclusion		\mathbf{F}_{1} \mathbf{F}_{1} $\mathbf{L} \mid \mathbf{K}_{1}$ $\mathbf{T} \in F_{1}$	$\mathbf{E};\mathbf{L}\mid\mathbf{K};\mathbf{T}\vdash F_2$	F-JUMP E(L)	$\mathbf{T} \Rightarrow \mathbf{T}'[\tilde{g}/\tilde{x}]$
T	$\mu \equiv_{\mathbf{i}} \overline{\kappa} \in \mathbf{L} \qquad \kappa' \in \overline{\kappa}$	$\kappa \sqsubseteq_{\gamma} \kappa' \in \mathbf{E}$	$\mathbf{E}; \mathbf{L} \mid \mathbf{K}; \mathbf{T}, p < \mathbf{hool}$	- if p then F_1 also F_2	$\mathbf{E}; \mathbf{L} \mid k < \mathbf{cont}$	$(L, 7, T'), T \vdash jum h(\overline{p})$
				own 7. T' E: L	salive Er:Ht	E - C & L E
	S-FN T' copy T' send			$y, y < own \tau, \mathbf{T}'); \mathbf{T}, f < fn(\rho : \mathbf{E}', \mathbf{T}) \rightarrow \tau + call f(\mathbf{p}) ret k$		
	$[\Gamma, \overline{\alpha}, \varepsilon] : [\mathbf{ft}, f, \overline{x}, k: val \mid \mathbf{E}, \mathbf{E}'; \varepsilon \mid 1] \mid k < \mathbf{E}$	$< cont(\{ \lfloor_i \rfloor\}; y \mid y < ow)$			F-ENDLET	
		$< own \pi_1 f < \forall \alpha, fn(p)$		-1π K ; T \vdash F		$F = T \Rightarrow^{\dagger a} T'$
	$\Gamma \mid \mathbf{E}'; \mathbf{L}' \mid \overline{p} \triangleleft \tau' \vdash funce f(\overline{x}) ret k$	$:= F \dashv f, f \lhd \forall \overline{\alpha}. \ln(z)$	$\mathbf{E}(\tau) \rightarrow \tau$	nevift; F	$\mathbf{E}: \mathbf{L}, \kappa \subseteq \kappa \mid \mathbf{I}$	C: T endift: F
	S-PATH S-NAT-OP			al ciown, Trail	size (T.) is own.	$(\max, \operatorname{she}(\tau_i)) - \operatorname{she}(\tau_i) = F_i$
	$\mathbf{E}; \mathbf{L} \mid p \lhd \tau \vdash p \dashv x, x \lhd \tau \qquad \qquad \mathbf{E}; \mathbf{L} \mid p,$	\triangleleft int, $p_3 \triangleleft$ int $\vdash p_1 \{-,$	$\rightarrow p_2 \dashv x, x \dashv int$	$(\mathbf{E}; \mathbf{L} \mid \mathbf{K}; \mathbf{T}, p <)$	$swn_{\alpha} \Sigma_7 \vdash F_1$	(understated) - ere
	S-N3T-12Q	S-XEW		$\mathbb{E}[\mathbf{L} \mid \mathbf{K}, \mathbf{T}, \boldsymbol{\mu} \lhd own]_{t}$	$\Sigma \tau \vdash case "p cf F$	
	$\mathbf{E}; \mathbf{L} \mid p_1 < int, p_2 < int - p_1 \leq p_2 \dashv x, x < boc$	H E: L D - new()	$x) \dashv x, x < cown_n f_n$	10.1.1.1C.101.4.45	- PALER F	or at fact - est
	S-DELETE	$\pi = \operatorname{size}(\tau)$ $\mathbf{E}; \mathbf{L} \vdash \tau_1 \Rightarrow \tau' \operatorname{size}(\tau) = 1$			$\mathbf{F}_{\mathbf{i}} \mathbf{b} \mid \mathbf{K}; \mathbf{T}, \mu, \mathbf{i} \lhd \boldsymbol{k}_{\mu}^{*} \boldsymbol{\gamma}_{\mathbf{i}} \leftarrow F_{\mathbf{i}} \rangle \vee (\mathbf{E}; \mathbf{b} \mid \mathbf{K}; \mathbf{T}, \mu \lhd \boldsymbol{k}_{\mu}^{*} \Sigma \overline{\boldsymbol{\tau}} - F_{\mathbf{i}})$ $\mathbf{E}; \mathbf{L} \mid \mathbf{K}; \mathbf{T}, \mu \lhd \boldsymbol{k}_{\mu}^{*} \Sigma \overline{\boldsymbol{\tau}} + case^{*} \mu \text{ of } \overline{F}$	
	$\frac{n = \operatorname{size}(r)}{\operatorname{E}(1 \mid p < \operatorname{sown}_n \tau) \operatorname{delete}(n, p) \mid)}$	$\frac{\mathbf{E} (\mathbf{L} \models \tau_1 \ge + \tau_1)}{\mathbf{E} (\mathbf{L} \models q \models 1^{-k} p_1)}$			1	
		9940994999000 (Shii)	$x, p \sim r_1, x \sim r_2$			$\overline{\Gamma \mathbf{E}; \mathbf{L} \mid \tau_1 \sim \tau}$
	S-DEREF-BOR-OWN E: L + >: alive	S-DEREF-BOR-BOR E: $L = s$ alive	$\mathbf{E}: \mathbf{L} = \kappa \equiv \kappa'$			
	$\overline{\mathbf{E}}; \mathbf{L} \mid p < k_{\mu}^{*} \operatorname{own}_{n} \tau \vdash {}^{*}p \dashv x, x < k_{\mu}^{*} \tau$	$\frac{\mathbf{E}; \mathbf{L} = \kappa \text{ alive}}{\mathbf{E}; \mathbf{L} \mid p \triangleleft \hat{w}_{\mu}^{\kappa} \hat{w}_{max}^{\epsilon^{\dagger}} \tau}$	$ x x, x \leq k^{\kappa} \tau$	- size(7')	TWETE SON E.L.	v alive
				✓ " cwn, 7	$\mathbf{E}: \mathbf{L} \vdash \mathcal{U}_{mat}^{\mathcal{V}}$	-or bernet 7
	S-ASSEX $\mathbf{E}(\mathbf{L} \vdash \tau_1 \rightarrow \tau' \tau'_1)$	$\begin{bmatrix} 5 \text{-sum assgn} & cs \\ \mathbf{T}_{i} &= \mathbf{\Pi} \end{bmatrix}$	r $\mathbf{L} \vdash \tau_1 \rightarrow \Sigma^+ \tau'_1$			ELtra-*
	$\mathbf{E}; \mathbf{L} \mid p_1 < \tau_1, p_1 < \tau + p_1 := p_2 + p_1 < \tau'$	$\mathbf{E}: \mathbf{L} \mid p \triangleleft \tau_1 = j$	$e^{\frac{167}{4}}$ () $ e \sin \pi i$			
			Contraction of the second	Theorem $n = s_1$		Therefore τ copy $\mathbf{E}; \mathbf{L} \vdash \kappa$ alive
	S-sum-asson $\tau_i = \tau$.	aNF +'		$\mathbf{E};\mathbf{L} \models own_m \tau$	⊶" own _{ec} ģ "	$\mathbf{E}; \mathbf{L} = \hat{k}_{\mu}^{\alpha} \tau :=^{\tau} \hat{k}_{\mu}^{\alpha} \tau$
	$\mathbf{E};\mathbf{L} \mid p_1 \lhd \tau_1, p_2 \lhd \tau \vdash$	$y_1 := p_2 \dashv p_1 \dashv p_1$				$\mathbf{\overline{\Gamma} \ E: E \mid T_1 \vdash I \mid x}.$
	Sancorpy					
	$s_{i,i} = n$ $\mathbf{E}_{i} \mathbf{L} \vdash \tau_{1} = n$	$\overline{\sigma} \tau_1^{t} = \mathbf{E}_1 \mathbf{L} - \tau_2 \mathbf{e}_1^{-T} \tau_2$	8	$\hat{S} \stackrel{(S)}{=} \frac{1}{1} \hat{S} \stackrel{(S)}{=} \hat{S} \stackrel{(S)}$	$a_i \dashv x, x < bool$	S_{MON} $\mathbf{E}, \mathbf{L} \mid \mathbf{E} \vdash z \dashv x, z < in$
	$\mathbf{E};\mathbf{L}\mid p_{1}\lhd\tau_{1},p_{2}<\tau_{2}\vdash p_{1}$	$=_n {}^*p_2 \dashv p_1 \lhd r_1', p_2 \lhd r_2'$	5	0.02.0		1017S - 111 - 5
	S-SUV-VEMORY					
	$\operatorname{size}(\tau) = n$ E; L $\vdash \tau_1 - \delta^{2T} \tau_1'$	E.L. mark	· · · ·	σ', ϵ . If $t \in E', E_{2}, L_{0}$	$1 - \mathbf{E} \pi / \overline{\alpha}$	

Syntactic type soundness

E, **L**; **K**, **T** \vdash *F* \implies *F* is safe

Usually proven by progress and preservation.

E, **L**; **K**, **T** \vdash *F* \implies *F* is safe

Usually proven by progress and preservation. But says nothing about unsafe code!

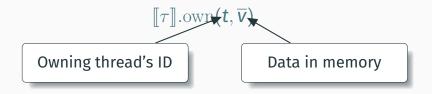
E, **L**; **K**, **T** \vdash *F* \implies *F* is safe

Usually proven by progress and preservation. But says nothing about unsafe code!

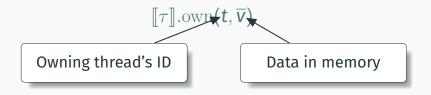
Instead, we prove semantic type soundness using the method of logical relations.

Logical relations in four "easy" steps:

- 1. Semantic interpretation of types ($[\tau]$)
- 2. Lift that to all judgments (\models)
- ^E3. Prove "compatibility lemmas"


4. Profit!

Instead, we prove semantic type soundness using the method of logical relations.


Define ownership predicate for every type τ :

 $\llbracket \tau
rbracket$.own (t, \overline{v})

Define ownership predicate for every type τ :

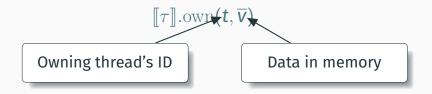
Define ownership predicate for every type τ :

What logic should we use to assert ownership?

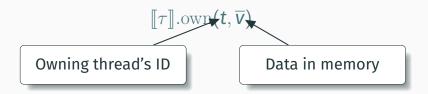
Separation Logic

to the Rescue!

Separation Logic


to the Rescue!

Extension of Hoare logic (O'Hearn-Reynolds-..., 1999)
For reasoning about pointer-manipulating programs


Major influence on many verification & analysis tools
e.g. Infer, VeriFast, Viper, Bedrock, jStar, ...

Separation logic = Ownership logic
Perfect fit for modeling Rust's ownership types!

Define ownership predicate for every type τ :

Define ownership predicate for every type τ :

We use a modern, higher-order, concurrent separation logic framework called Iris:

- Implemented in the Coq proof assistant
- Designed to derive new reasoning principles inside the logic

2. Lift to all judgments

Define ownership predicate for every type τ :

 $[\![\tau]\!].\mathrm{own}(\pmb{t},\overline{\pmb{\mathsf{V}}})$

Lift to semantic contexts [T](t):

$$\begin{split} \llbracket p_1 \lhd \tau_1, p_2 \lhd \tau_2 \rrbracket(t) &:= \\ & \llbracket \tau_1 \rrbracket. \mathrm{own}(t, [p_1]) * \llbracket \tau_2 \rrbracket. \mathrm{own}(t, [p_2]) \end{split}$$

2. Lift to all judgments

Define ownership predicate for every type τ :

 $[\![\tau]\!].\mathrm{own}(\pmb{t},\overline{\pmb{v}})$

Lift to semantic contexts [T](t):

 $\begin{bmatrix} p_1 \triangleleft \tau_1, p_2 \triangleleft \tau_2 \end{bmatrix}(t) := \\ \ [\tau_1] .own(t, [p_1]) * [\tau_2] .own(t, [p_2])$

Separating conjunction

2. Lift to all judgments

Define ownership predicate for every type τ :

 $[\![\tau]\!].\mathrm{own}(\pmb{t},\overline{\pmb{v}})$

Lift to semantic typing judgments:

 $\mathbf{E},\mathbf{L}; \ \mathbf{T_1} \models \mathbf{I} \models \mathbf{T_2} \quad := \quad$

 $\forall t. \{ \llbracket \mathbf{E} \rrbracket * \llbracket \mathbf{L} \rrbracket * \llbracket \mathbf{T}_1 \rrbracket (t) \} I \{ \llbracket \mathbf{E} \rrbracket * \llbracket \mathbf{L} \rrbracket * \llbracket \mathbf{T}_2 \rrbracket (t) \}$

Crucially, semantic typing implies safety.

Connect logical relation to type system: Semantic versions of all syntactic typing rules.

E, **L** $\vdash \kappa$ alive

 $\mathbf{E}, \mathbf{L}; \ p_1 \lhd \mathbf{k}_{\mathsf{mut}}^{\kappa} \tau, p_2 \lhd \tau \vdash p_1 := p_2 \dashv p_1 \lhd \mathbf{k}_{\mathsf{mut}}^{\kappa} \tau$

 $\frac{\mathsf{E},\mathsf{L}; \ \mathsf{T}_1 \vdash I \dashv x. \mathsf{T}_2 \qquad \mathsf{E},\mathsf{L}; \ \mathsf{K};\mathsf{T}_2,\mathsf{T} \vdash F}{\mathsf{E},\mathsf{L}; \ \mathsf{K};\mathsf{T}_1,\mathsf{T} \vdash \operatorname{let} x = I \operatorname{in} F}$

Connect logical relation to type system: Semantic versions of all syntactic typing rules.

 $\mathbf{E}, \mathbf{L} \models \kappa$ alive

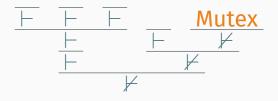
 $\mathbf{E}, \mathbf{L}; \ p_1 \lhd \mathbf{\&}_{\mathbf{mut}}^{\kappa} \tau, p_2 \lhd \tau \models p_1 := p_2 \models p_1 \lhd \mathbf{\&}_{\mathbf{mut}}^{\kappa} \tau$

 $\frac{\mathbf{E}, \mathbf{L}; \ \mathbf{T}_1 \models I \models X. \mathbf{T}_2 \qquad \mathbf{E}, \mathbf{L}; \ \mathbf{K}; \mathbf{T}_2, \mathbf{T} \models F}{\mathbf{E}, \mathbf{L}; \ \mathbf{K}; \mathbf{T}_1, \mathbf{T} \models \operatorname{let} x = I \operatorname{in} F}$

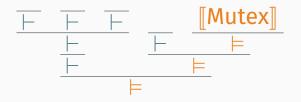
Connect logical relation to type system: Semantic versions of all syntactic typing rules.

Well-typed programs can't go wrong

No data race


E, L;

• No invalid memory access


 $\frac{\mathsf{E},\mathsf{L}; \ \mathsf{T}_1 \models l \models l \neq x. \mathsf{T}_2 \qquad \mathsf{E},\mathsf{L}; \ \mathsf{K};\mathsf{T}_2,\mathsf{T} \models F}{\mathsf{E},\mathsf{L}; \ \mathsf{K};\mathsf{T}_1,\mathsf{T} \models \texttt{let} x = l \texttt{in} F}$

hut au

4. Profit! - Linking with unsafe code

4. Profit! - Linking with unsafe code

4. Profit! – Linking with unsafe code

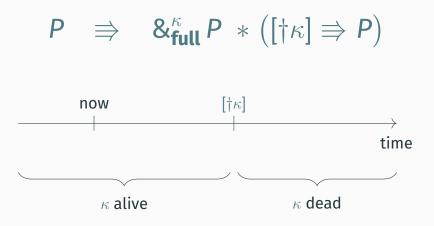
The whole program is safe if the unsafe pieces are safe!

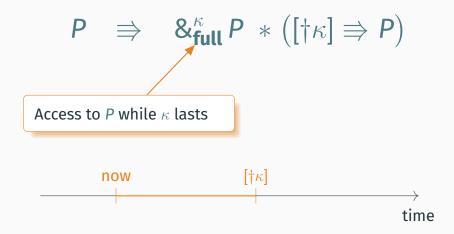
How do we define $[\tau].own(t, \overline{v})?$

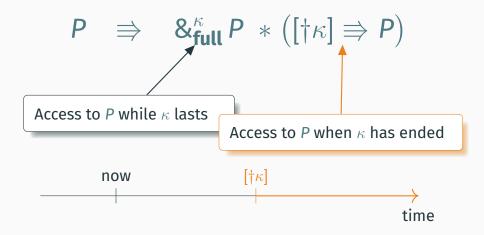
 $\llbracket \mathbf{own}_n \tau \rrbracket.\operatorname{own}(t, \overline{v}) := \\ \exists \ell. \ \overline{v} = [\ell] * \triangleright (\exists \overline{w}. \ \ell \mapsto \overline{w} * \llbracket \tau \rrbracket.\operatorname{own}(t, \overline{w})) * \dots$

$\llbracket \mathbf{own}_n \, \tau \rrbracket. \operatorname{own}(t, \overline{v}) := \\ \exists \ell. \ \overline{v} = [\ell] * \triangleright (\exists \overline{w}. \ \ell \mapsto \overline{w} * \llbracket \tau \rrbracket. \operatorname{own}(t, \overline{w})) * \dots$

 $\llbracket \operatorname{own}_n \tau \rrbracket.\operatorname{own}(t, \overline{v}) := \\ \exists \ell. \ \overline{v} = [\ell] * \triangleright (\exists \overline{W}. \ \ell \mapsto \overline{W} * \llbracket \tau \rrbracket.\operatorname{own}(t, \overline{W})) * \dots$


 $\begin{bmatrix} & & \\ & \mathsf{mut} \\ & \mathsf{mut} \\ & \forall \end{bmatrix} . \operatorname{own}(t, \overline{v}) := \\ \exists \ell. \ \overline{v} = [\ell] * & & \\ & \mathsf{k}_{\mathsf{full}}^{\kappa} (\exists \overline{w}. \ \ell \mapsto \overline{w} * \llbracket \tau \rrbracket. \operatorname{own}(t, \overline{w})) \end{bmatrix}$


 $\llbracket \mathbf{own}_n \tau \rrbracket.\operatorname{own}(t, \overline{v}) := \\ \exists \ell. \ \overline{v} = [\ell] * \triangleright (\exists \overline{W}. \ \ell \mapsto \overline{W} * \llbracket \tau \rrbracket.\operatorname{own}(t, \overline{W})) * \dots$


 $\begin{bmatrix} &_{\mathsf{mut}}^{\kappa} \tau \end{bmatrix} .\operatorname{own}(t, \overline{v}) :=$ $\exists \ell. \ \overline{v} = [\ell] * &_{\mathsf{full}}^{\kappa} (\exists \overline{w}. \ \ell \mapsto \overline{w} * \llbracket \tau \rrbracket .\operatorname{own}(t, \overline{w}))$ $\mathsf{Lifetime logic connective}$

Traditionally, *P* * *Q* splits ownership in space.

Lifetime logic allows splitting ownership in time!

The lifetime logic has been fully derived inside Iris.

time

What else? [POPL'18 and POPL'20 papers]

- More details about λ_{Rust} , the type system, and the lifetime logic
- How to handle interior mutability that is safe for subtle reasons (e.g., mutual exclusion)
 - Mutex, Cell, RefCell, Rc, Arc, RwLock
 - Found bugs in Mutex, Arc, ...

• Scaling from sequentially consistent concurrency model to a more realistic relaxed memory model

Still missing from λ_{Rust} :

• Trait objects (existential types), drop, ...

Logical relations are the tool of choice for proving safety of languages with unsafe operations.

Advances in separation logic (as embodied in Iris) make this possible for a language as sophisticated as Rust!

Understanding Rust: λ_{Rust}

Building an extensible soundness proof of Rust that covers its core type system as well as standard libraries

Evolving Rust: Stacked Borrows

Defining the semantics of Rust in order to justify powerful intraprocedural type-based optimizations

Understanding Rust: λ_{Rust}

Building an extensible soundness proof of Rust that covers its core type system as well as standard libraries

Evolving Rust: Stacked Borrows

Defining the semantics of Rust in order to justify powerful intraprocedural type-based optimizations

Rust's type system is based on ownership and borrowing:

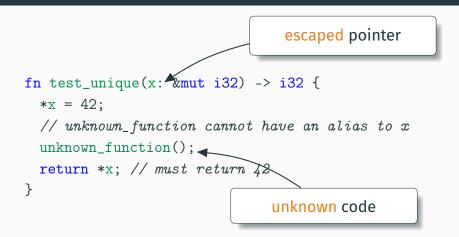
- 1. Full ownership: T
- 2. Mutable (borrowed)
 reference: &'a mut T
- 3. Shared (borrowed) reference: &'a T

Lifetimes 'a decide how long borrows last.

Aliasing	
Mutation	

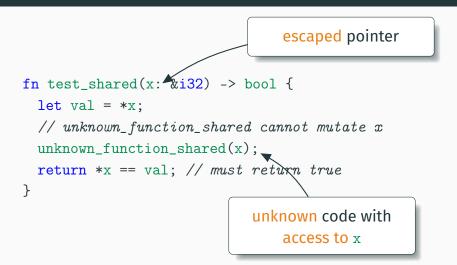
Rust's type system is based on ownership and borrowing:

1.


Rust's reference types provide strong aliasing information.

The Rust compiler should exploit them for optimization!

Lifetimes 'a decide how long borrows last.


fn test_noalias(x: &mut i32, y: &mut i32) -> i32 {
 // x, y cannot alias: they are unique pointers
 *x = 42;
 *y = 37;
 return *x; // must return 42
}

```
fn test_unique(x: &mut i32) -> i32 {
 *x = 42;
 // unknown_function cannot have an alias to x
 unknown_function();
 return *x; // must return 42
}
```



```
fn test_noalias_shared(x: &i32, y: &mut i32) -> i32 {
  let val = *x;
  // cannot mutate x: x points to immutable data
  *y = 37;
  return *x == val; // must return true
}
```

```
fn test_shared(x: &i32) -> bool {
   let val = *x;
   // unknown_function_shared cannot mutate x
   unknown_function_shared(x);
   return *x == val; // must return true
}
```


These optimizations go beyond the wildest dreams of C compiler developers!

These optimizations go beyond the wildest dreams of C compiler developers!

But there is a problem:

These optimizations go beyond the wildest dreams of C compiler developers!

But there is a problem:

UNSAFE CODE!

- 11: fn test_unique(x: &mut i32) -> i32 {
- 12: *x = 42;
- 13: unknown_function();
- 14: return *x; // must return 42

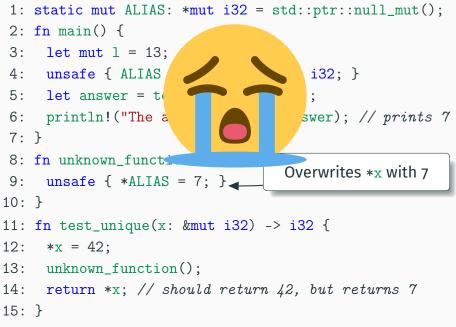
- 2: fn main() {
- 3: let mut l = 13;
- 5: let answer = test_unique(&mut l);
 6: println!("The answer is {}", answer);
 7: }

- 11: fn test_unique(x: &mut i32) -> i32 {
- 12: *x = 42;
- 13: unknown_function();
- 14: return *x; // must return 42

1: static mut ALIAS: *mut i32 = std::ptr::null_mut();
2: fn main() {
 ALIAS is a raw pointer (*mut T)
 let mut l = 13;
 ALIAS is a raw pointer (*mut T)

- 5: let answer = test_unique(&mut 1);
- 6: println!("The answer is {}", answer);
 7: }

- 11: fn test_unique(x: &mut i32) -> i32 {
- 12: *x = 42;
- 13: unknown_function();
- 14: return *x; // should return 42


1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

- 2: **fn** main() {
- 3: let mut l = 13;
- 4: unsafe { ALIAS = &mut 1 as *mut i32; }
- 5: let answer = test_unique(&mut 1);
- 6: println!("The answer is {}", answer);
 7: }

- 11: fn test_unique(x: &mut i32) -> i32 {
- 12: *x = 42;
- 13: unknown_function();
- 14: return *x; // should return 42

```
1: static mut ALIAS: *mut i32 = std::ptr::null_mut();
2: fn main() {
3:
   let mut 1 = 13;
4: unsafe { ALIAS = &mut 1 as *mut i32; }
5: let answer = test_unique(&mut 1);
   println!("The answer is {}", answer); // prints 7
6:
7: }
8: fn unknown_function() {
                                  Overwrites *x with 7
   unsafe { *ALIAS = 7; }
9:
10: }
11: fn test_unique(x: &mut i32) -> i32 {
12: *x = 42;
13: unknown_function();
14: return *x; // should return 42, but returns 7
15: }
```


1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

- 2: fn main() {
- 3: let mut l = 13;
- 4: unsafe { ALIAS = &mut 1 as *mut i32; }
- 5: let answer = test_unique(&mut 1);
- 6: println!("The answer is {}", answer); // prints 7
 7.]

Goal: rule out misbehaving programs

- 10:
- 11: fn test_unique(x: &mut i32) -> i32 {
- 12: *x = 42;
- 13: unknown_function();
- 14: return *x; // should return 42, but returns 7
 15: }

Use of unsafe code imposes proof obligations on the programmer:

No use of dangling/NULL pointers, no data races, ...

Use of unsafe code imposes proof obligations on the programmer: No use of dangling/NULL pointers, no data races, ...

Violation of proof obligation leads to Undefined Behavior.

Image: dbeast32

Review: Undefined Behavior

llse of unsafe code imposes

Compilers can rely on these proof obligations when justifying optimizations

Violation of proof obligation leads to Undefined Behavior.

1: static mut ALIAS: *mut i32 = std::ptr::null_mut(); 2: **fn** main() { 3: **let** mut 1 = 13; 4: unsafe { ALIAS = &mut 1 as *mut i32; } 5: let answer = test_unique(&mut 1); println!("The answer is {}", answer); // prints 7 6: 7: } Plan: make this 8: fn unknown_function() { 9: unsafe { *ALIAS = 7; } \square Undefined Behavior 10: } 11: fn test_unique(x: &mut i32) -> i32 { 12: *x = 42;13: unknown_function(); 14: return *x; // should return 42, but returns 7 15: }

Aliasing model defining which pointers may be used to access memory, ensuring

- uniqueness of mutable references, and
- immutability of shared references.

 Stacked Borrows is restrictive enough to enable useful optimizations

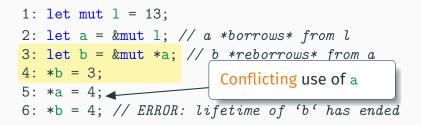
🗸 formal proof 🦆

- Stacked Borrows is restrictive enough to enable useful optimizations
 ✓ formal proof
- Stacked Borrows is permissive enough to enable programming
 - checked standard library test suite by instrumenting the Rust interpreter Miri

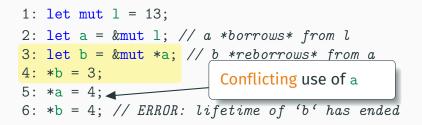
Stacked Borrows: Key Idea

Model proof obligations after existing static "borrow" check

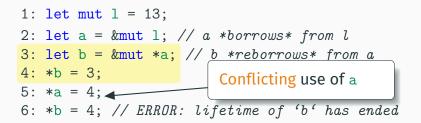
Borrow Checker	Stacked Borrows
static	dynamic
only <mark>safe</mark> code	safe & unsafe code

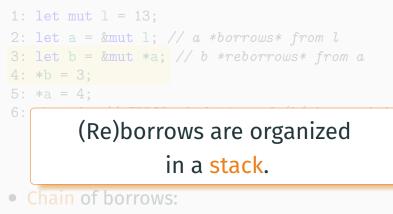

1: let mut l = 13; 2: let a = &mut l; // a *borrows* from l 1: let mut l = 13;

- 2: let a = &mut 1; // a *borrows* from l
- 3: let b = &mut *a; // b *reborrows* from a


1: let mut l = 13; 2: let a = &mut l; // a *borrows* from l 3: let b = &mut *a; // b *reborrows* from a 4: *b = 3;

```
1: let mut l = 13;
2: let a = &mut l; // a *borrows* from l
3: let b = &mut *a; // b *reborrows* from a
4: *b = 3;
5: *a = 4;
```


1: let mut l = 13; 2: let a = &mut l; // a *borrows* from l 3: let b = &mut *a; // b *reborrows* from a 4: *b = 3; 5: *a = 4; 6: *b = 4; // ERROR: lifetime of 'b' has ended

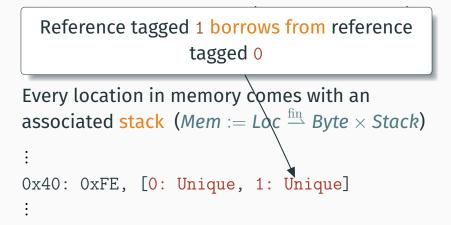

1. The lender a does not get used until the lifetime of the loan has expired.

- 1. The lender a does not get used until the lifetime of the loan has expired.
- 2. The recipient of the borrow b may only be used while its lifetime is ongoing.

- Chain of borrows:
 1 borrowed to a reborrowed to b
- Well-bracketed: no ABAB

1 borrowed to \mathbf{a} reborrowed to \mathbf{b}

• Well-bracketed: no ABAB


Pointer values carry a tag (PtrVal := $Loc \times \mathbb{N}$) Example: (0x40, 1)

references (&mut T) are identified by a tag

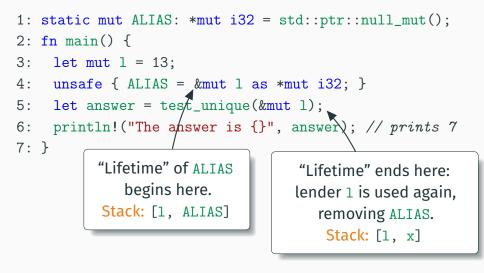
Pointer values carry a tag (PtrVal := Loc $\times \mathbb{N}$) Example: (0x40, 1)

Every location in memory comes with an associated stack (Mem := Loc $\stackrel{\text{fin}}{\longrightarrow}$ Byte \times Stack)

```
:
0x40: 0xFE, [O: Unique, 1: Unique]
:
```


Pointer values carry a tag (PtrVal := Loc $\times \mathbb{N}$)

For every use of a reference or raw pointer:


- Extra proof obligation:
 - \Rightarrow the tag must be in the stack
- Extra operational effect:
 ⇒ pop elements further up off the stack

1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

- 2: fn main() {
- 3: let mut l = 13;
- 4: unsafe { ALIAS = &mut 1 as *mut i32; }
- 5: let answer = test_unique(&mut 1);
- 6: println!("The answer is {}", answer); // prints 7

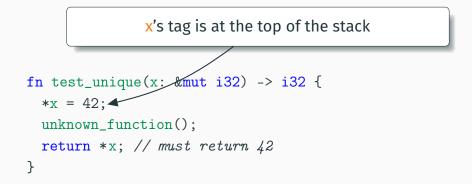
7: }

"Lifetime" of ALIAS begins here. Stack: [1, ALIAS]

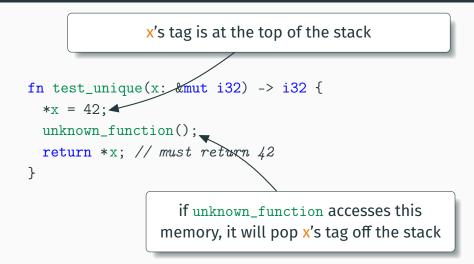
1: static mut ALIAS: *mut i32 = std::ptr::null_mut(); 2: **fn** main() { 3: **let** mut 1 = 13; 4: unsafe { ALIAS = &mut 1 as *mut i32; } 5: let answer = test_unique(&mut 1); 6: println!("The answer is {}", answer); // prints 7 7: } Stack: [1, x] 8: fn unknown_function() { 9: unsafe { *ALIAS = 7; } _ ALIAS is not on the stack 💥 10: } 11: fn test_unique(x: &mut i32) -> i32 { 12: *x = 42;13: unknown_function(); 14: return *x; // should return 42, but returns 7 15: }

Stacked Borrows

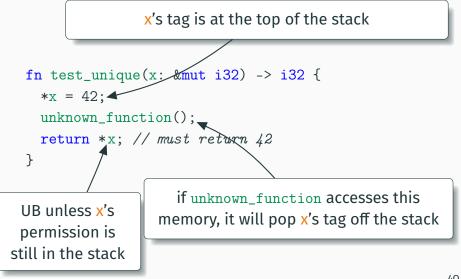
- Stacked Borrows is restrictive enough to enable useful optimizations
 ✓ formal proof
- Stacked Borrows is permissive enough to enable programming
 - checked standard library test suite by instrumenting the Rust interpreter Miri


Stacked Borrows

 Stacked Borrows is restrictive enough to enable useful optimizations


🗸 formal proof 🦆

```
fn test_unique(x: &mut i32) -> i32 {
 *x = 42;
 unknown_function();
 return *x; // must return 42
}
```


Incomplete proof sketch

Incomplete proof sketch

Incomplete proof sketch

Stacked Borrows

 Stacked Borrows is restrictive enough to enable useful optimizations

🗸 formal proof 🦆

Stacked Borrows

- Stacked Borrows is permissive enough to enable programming
 - checked standard library test suite by instrumenting the Rust interpreter Miri

1: static mut ALIAS: *mut i32 = std::ptr::null_mut(); 2: **fn** main() { 3: **let** mut 1 = 13; 4: unsafe { ALIAS = &mut 1 as *mut i32; } 5: let answer = test_unique(&mut 1); 6: println!("The answer is {}", answer); // prints 7 7: } Stack: [1, x] 8: fn unknown_function() { 9: unsafe { *ALIAS = 7; } _ ALIAS is not on the stack 💥 10: } 11: fn test_unique(x: &mut i32) -> i32 { 12: *x = 42;13: unknown_function(); 14: return *x; // should return 42, but returns 7 15: }

```
8: fn unknown_function() {
```

```
9: unsafe { *ALIAS = 7; }
10: }
```

```
11: fn test_unique(x: &mut i32) -> i32 {
```

```
12: *x = 42;
```

13: unknown_function();

14: return *x; // should return 42, but returns 7
15: }

1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

- 2: fn main() {
- 3: let mut 1 = 13;
- 4: unsafe { ALIAS = &mut 1 as *mut i32; }

```
5: let answer = test_unique(&mut l);
```

We are regularly running the Rust standard library test suite in Miri to catch regressions. Found and fixed 6 aliasing violations.

- 12: *x = 42;
- 13: unknown_function();

14: return *x; // should return 42, but returns 7
15: }

What else? [POPL'20 paper #2]

What I didn't talk about:

- Shared references & interior mutability
- Protectors (enable writes to be moved across unknown code)

Future work:

- Concurrency
- Integrating Stacked Borrows into RustBelt

A dynamic model of Rust's reference checker ensures soundness of type-based optimizations, even in the presence of unsafe code.

Try Miri out yourself!

- Web version: https://play.rust-lang.org/("Tools")
- Installation: rustup component add miri
- Miri website: https://github.com/rust-lang/miri/

Also check out our project website: https://plv.mpi-sws.org/rustbelt

The **RUSTBELT** Team @MPI-SWS

Ralf Jan-Oliver Jung Kaiser

r David Swasey Hai Dang Azalea Raad

Michael J Sammler Y

Joshua Viktor Yanovski Vafeiadis Derek Dreyer

@CNRS @Tel Aviv

Jacques-Henri Jourdan

Ori Lahav

@Delft @Aarhus

Robbert Krebbers

Lars Birkedal

@KAIST @SNU

Jeehoon Kang

Chung-Kil Hur 45