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Rust – Mozilla’s replacement for C/C++

Rust is the only language to provide. . .

• Low-level control à la C/C++
• Strong safety guarantees
• Modern, functional paradigms
• Industrial development and backing

Core ingredients:

• Sophisticated ownership type system
• Safe encapsulation of unsafe code
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Rust – Mozilla’s replacement for C/C++

Rust is the only language to provide. . .

• Low-level control à la C/C++
• Strong safety guarantees
• Modern, functional paradigms
• Industrial development and backing

Core ingredients:

• Sophisticated ownership type system
• Safe encapsulation of unsafe code

Goal of RustBelt project:
Build first formal foundations

for the Rust language!
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Understanding Rust: λRust
Building an extensible soundness proof of Rust that
covers its core type system as well as standard libraries

Evolving Rust: Stacked Borrows
Defining the semantics of Rust in order to justify
powerful intraprocedural type-based optimizations

3



Understanding Rust: λRust
Building an extensible soundness proof of Rust that
covers its core type system as well as standard libraries

Evolving Rust: Stacked Borrows
Defining the semantics of Rust in order to justify
powerful intraprocedural type-based optimizations

Key challenge: Interaction of
safe and unsafe code
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Understanding Rust: λRust
Building an extensible soundness proof of Rust that
covers its core type system as well as standard libraries

Evolving Rust: Stacked Borrows
Defining the semantics of Rust in order to justify
powerful intraprocedural type-based optimizations
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Rust 101
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Rust 101

Aliasing
+

Mutation
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Ownership

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

v.push(4);
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Ownership

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

v.push(4);

// Send v to another thread

send(v);

Ownership transferred to send:

fn send(Vec<i32>)
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Ownership

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

v.push(4);

// Send v to another thread

send(v);

// Let us try to use v again

v.push(5);
Error: v has been moved.
Prevents possible data race.
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Ownership

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

v.push(4);

// Send v to another thread

send(v);

x: T expresses ownership of x at type T

• Mutation allowed, no aliasing
• We can deallocate x
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Ownership

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

v.push(4);

// Send v to another thread

send(v);

Why is v not moved?
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Borrowing and lifetimes

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

Vec::push(&mut v, 4);

// Send v to another thread

send(v);

Method call was just sugar.
&mut v creates a reference.
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Borrowing and lifetimes

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

Vec::push(&mut v, 4);

// Send v to another thread

send(v);

Pass-by-reference: Vec::push borrows ownership temporarily

Pass-by-value: Ownership moved to send permanently
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Borrowing and lifetimes

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

Vec::push(&mut v, 4);

// Send v to another thread

send(v);

Pass-by-reference: Vec::push borrows ownership temporarily
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Borrowing and lifetimes

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

Vec::push(&mut v, 4);

// Send v to another thread

send(v);

Type of push:
fn Vec::push<’a>(&’a mut Vec<i32>, i32)
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Borrowing and lifetimes

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

Vec::push(&mut v, 4);

// Send v to another thread

send(v);

Type of push:
fn Vec::push<’a>(&’a mut Vec<i32>, i32)

Lifetime ’a is inferred by Rust.
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Borrowing and lifetimes

// Allocate v on the heap

let mut v: Vec<i32> = vec![1, 2, 3];

Vec::push(&mut v, 4);

// Send v to another thread

send(v);

&mut x creates a mutable reference of type
&’a mut T:
• Ownership temporarily borrowed
• Borrow lasts for inferred lifetime ’a

• Mutation, no aliasing
• Unique pointer
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Shared Borrowing

let mut x = 1;

join(|| println!("Thread 1: {}", &x),

|| println!("Thread 2: {}", &x));

x = 2;
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Shared Borrowing

let mut x = 1;

join(|| println!("Thread 1: {}", &x),

|| println!("Thread 2: {}", &x));

x = 2;

&x creates a shared reference of type &’a T

• Ownership borrowed for lifetime ’a

• Can be aliased
• Does not allow mutation
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Shared Borrowing

let mut x = 1;

join(|| println!("Thread 1: {}", &x),

|| println!("Thread 2: {}", &x));

x = 2;

A�er ’a has ended, x is writeable again.

7



Rust’s type system is based
on ownership and borrowing:

1. Full ownership: T
2. Mutable (borrowed)
reference: &’a mut T

3. Shared (borrowed)
reference: &’a T

Lifetimes ’a decide how
long borrows last.

Aliasing
+

Mutation
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But what if I need aliased mutable state?

Pointer-based data structures:
• Doubly-linked lists, . . .

Synchronization mechanisms:
• Locks, channels, semaphores, . . .

Memory management:
• Reference counting, . . .
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let m = Mutex::new(1); // m : Mutex<i32>

// Concurrent increment:

// Acquire lock, mutate, release (implicit)

join(|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.get_mut().unwrap())
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let m = Mutex::new(1); // m : Mutex<i32>

// Concurrent increment:

// Acquire lock, mutate, release (implicit)

join(|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.get_mut().unwrap())

Type of lock:
fn lock<’a>(&’a Mutex<i32>)

-> LockResult<MutexGuard<’a, i32>>
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let m = Mutex::new(1); // m : Mutex<i32>

// Concurrent increment:

// Acquire lock, mutate, release (implicit)

join(|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.get_mut().unwrap())

Type of lock:
fn lock<’a>(&’a Mutex<i32>)

-> &’a mut i32
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let m = Mutex::new(1); // m : Mutex<i32>

// Concurrent increment:

// Acquire lock, mutate, release (implicit)

join(|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.get_mut().unwrap())

Type of lock:
fn lock<’a>(&’a Mutex<i32>)

-> &’a mut i32

Shared mutable state:
Interior mutability
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let m = Mutex::new(1); // m : Mutex<i32>

// Concurrent increment:

// Acquire lock, mutate, release (implicit)

join(|| *(&m).lock().unwrap() += 1,

|| *(&m).lock().unwrap() += 1);

// Unique owner: no need to lock

println!("{}", m.get_mut().unwrap())

Type of lock:
fn lock<’a>(&’a Mutex<i32>)

-> &’a mut i32

Shared mutable state:
Interior mutability

Aliasing
+

Mutation
?

10



unsafe

fn lock<’a>(&’a self) -> LockResult<MutexGuard<’a, T>>

{

unsafe {

libc::pthread_mutex_lock(self.inner.get());

MutexGuard::new(self)

}

}
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unsafe

fn lock<’a>(&’a self) -> LockResult<MutexGuard<’a, T>>

{

unsafe {

libc::pthread_mutex_lock(self.inner.get());

MutexGuard::new(self)

}

}

Mutex has an unsafe implementation. But
the interface (API) is safe:
fn lock<’a>(&’a Mutex<i32>) -> &’a mut T
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unsafe

fn lock<’a>(&’a self) -> LockResult<MutexGuard<’a, T>>

{

unsafe {

libc::pthread_mutex_lock(self.inner.get());

MutexGuard::new(self)

}

}

Mutex has an unsafe implementation. But
the interface (API) is safe:
fn lock<’a>(&’a Mutex<i32>) -> &’a mut T

Similar for join: unsafely implemented user
library, safe interface.
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Goal: Prove safety of Rust and its
standard library.

Safety proof needs to be extensible.
12



The λRust type system

τ ::= bool | int | ownn τ | &κ

mut τ | &κ

shr τ | µα. τ | . . .
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The λRust type system

τ ::= bool | int | ownn τ | &κ

mut τ | &κ

shr τ | µα. τ | . . .

T ::= ∅ | T,p ⊳ τ | . . .

Typing context assigns types to paths p
(denoting fields of structures)
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The λRust type system

τ ::= bool | int | ownn τ | &κ

mut τ | &κ

shr τ | µα. τ | . . .

T ::= ∅ | T,p ⊳ τ | . . .

Core substructural typing judgments:

E, L; T1 ⊢ I ⊣ x. T2 E, L; K, T ⊢ F

Typing individual instructions I
(E and L track lifetimes)

Typing whole functions F
(K tracks continuations)
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The λRust type system

τ ::= bool | int | ownn τ | &κ

mut τ | &κ
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The λRust type system

τ ::= bool | int | ownn τ | &κ

mut τ | &κ

shr τ | µα. τ | . . .

T ::= ∅ | T,p ⊳ τ | . . .

Core substructural typing judgments:

E, L; T1 ⊢ I ⊣ x. T2 E, L; K, T ⊢ F
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Syntactic type soundness

E, L; K, T ⊢ F =⇒ F is safe

Usually proven by progress and preservation.
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Syntactic type soundness

E, L; K, T ⊢ F =⇒ F is safe

Usually proven by progress and preservation.

But says nothing about unsafe code!
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Syntactic type soundness

E, L; K, T ⊢ F =⇒ F is safe

Usually proven by progress and preservation.

But says nothing about unsafe code!

Instead, we prove semantic type soundness using
the method of logical relations.
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Syntactic type soundness

E, L; K, T ⊢ F =⇒ F is safe

Usually proven by progress and preservation.

But says nothing about unsafe code!

Instead, we prove semantic type soundness using
the method of logical relations.

Logical relations in four “easy” steps:
1. Semantic interpretation of types (JτK)
2. Li� that to all judgments (�)
3. Prove “compatibility lemmas”
4. Profit!
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1. Semantic interpretation of types

Define ownership predicate for every type τ :

JτK.own(t, v)
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1. Semantic interpretation of types

Define ownership predicate for every type τ :

JτK.own(t, v)

Owning thread’s ID Data in memory
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1. Semantic interpretation of types

Define ownership predicate for every type τ :

JτK.own(t, v)

Owning thread’s ID Data in memory

What logic should we use to assert
ownership?
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Separation 
Logic

to the 
Rescue!
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Separation 
Logic

to the 
Rescue!

Extension of Hoare logic (O’Hearn-Reynolds-…, 1999) 

• For reasoning about pointer-manipulating programs 

Major influence on many verification & analysis tools 

• e.g. Infer, VeriFast, Viper, Bedrock, jStar, … 

Separation logic = Ownership logic 

• Perfect fit for modeling Rust’s ownership types!
17



1. Semantic interpretation of types

Define ownership predicate for every type τ :

JτK.own(t, v)

Owning thread’s ID Data in memory
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1. Semantic interpretation of types

Define ownership predicate for every type τ :

JτK.own(t, v)

Owning thread’s ID Data in memory

We use a modern, higher-order, concurrent
separation logic framework called Iris:
• Implemented in the Coq proof assistant
• Designed to derive new reasoning principles
inside the logic 18



2. Li� to all judgments

Define ownership predicate for every type τ :

JτK.own(t, v)

Li� to semantic contexts JTK(t):

Jp1 ⊳ τ1,p2 ⊳ τ2K(t) :=

Jτ1K.own(t, [p1]) ∗ Jτ2K.own(t, [p2])
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2. Li� to all judgments

Define ownership predicate for every type τ :

JτK.own(t, v)

Li� to semantic contexts JTK(t):

Jp1 ⊳ τ1,p2 ⊳ τ2K(t) :=

Jτ1K.own(t, [p1]) ∗ Jτ2K.own(t, [p2])

Separating conjunction
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2. Li� to all judgments

Define ownership predicate for every type τ :

JτK.own(t, v)

Li� to semantic typing judgments:

E, L; T1 |= I |=T2 :=

∀t. {JEK ∗ JLK ∗ JT1K(t)} I {JEK ∗ JLK ∗ JT2K(t)}

Crucially, semantic typing implies safety.
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3. Compatibility lemmas

Connect logical relation to type system:
Semantic versions of all syntactic typing rules.

E, L ⊢ κ alive
E, L; p1 ⊳ &κ

mut τ,p2 ⊳ τ ⊢ p1 := p2 ⊣ p1 ⊳ &κ

mut τ

E, L; T1 ⊢ I ⊣ x. T2 E, L; K; T2, T ⊢ F
E, L; K; T1, T ⊢ let x = I in F

19



3. Compatibility lemmas

Connect logical relation to type system:
Semantic versions of all syntactic typing rules.

E, L |= κ alive
E, L; p1 ⊳ &κ

mut τ,p2 ⊳ τ |= p1 := p2 |=p1 ⊳ &κ

mut τ

E, L; T1 |= I |=x. T2 E, L; K; T2, T |= F
E, L; K; T1, T |= let x = I in F
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3. Compatibility lemmas

Connect logical relation to type system:
Semantic versions of all syntactic typing rules.

E, L |= κ alive
E, L; p1 ⊳ &κ

mut τ,p2 ⊳ τ |= p1 := p2 |=p1 ⊳ &κ

mut τ

E, L; T1 |= I |=x. T2 E, L; K; T2, T |= F
E, L; K; T1, T |= let x = I in F

Well-typed programs can’t go wrong
• No data race
• No invalid memory access
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4. Profit! – Linking with unsafe code

⊢ ⊢ ⊢
⊢
⊢

⊢
Mutex

0

0

0
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4. Profit! – Linking with unsafe code

⊢ ⊢ ⊢
⊢
⊢

⊢
JMutexK

�
�

�
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4. Profit! – Linking with unsafe code

⊢ ⊢ ⊢
⊢
⊢

⊢
JMutexK

�
�

�

The whole program is safe if
the unsafe pieces are safe!
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How do we define
JτK.own(t,v)?

21



Jownn τK.own(t, v) :=
∃ℓ. v = [ℓ] ∗ ⊲

(

∃w. ℓ 7→ w ∗ JτK.own(t,w)
)

∗ . . .
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Jownn τK.own(t, v) :=
∃ℓ. v = [ℓ] ∗ ⊲

(

∃w. ℓ 7→ w ∗ JτK.own(t,w)
)

∗ . . .
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Jownn τK.own(t, v) :=
∃ℓ. v = [ℓ] ∗ ⊲

(

∃w. ℓ 7→ w ∗ JτK.own(t,w)
)

∗ . . .

J&κ

mut τK.own(t, v) :=
∃ℓ. v = [ℓ] ∗ &κ

full
(

∃w. ℓ 7→ w ∗ JτK.own(t,w)
)
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Jownn τK.own(t, v) :=
∃ℓ. v = [ℓ] ∗ ⊲

(

∃w. ℓ 7→ w ∗ JτK.own(t,w)
)

∗ . . .

J&κ

mut τK.own(t, v) :=
∃ℓ. v = [ℓ] ∗ &κ

full
(

∃w. ℓ 7→ w ∗ JτK.own(t,w)
)

Lifetime logic connective

22



Traditionally, P ∗ Q splits
ownership in space.

Lifetime logic allows
splitting ownership in time!

23



P ⇛ &κ
full P ∗

(

[†κ] ⇛ P
)

now [†κ]

time

κ alive κ dead
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P ⇛ &κ
full P ∗

(

[†κ] ⇛ P
)

now [†κ]

time

Access to P while κ lasts

24



P ⇛ &κ
full P ∗

(

[†κ] ⇛ P
)

now [†κ]

time

Access to P while κ lasts
Access to P when κ has ended
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P ⇛ &κ
full P ∗

(

[†κ] ⇛ P
)

now [†κ]

time

Access to P while κ lasts
Access to P when κ has endedThe lifetime logic has been

fully derived inside Iris.
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What else? [POPL’18 and POPL’20 papers]
• More details about λRust, the type system, and the
lifetime logic

• How to handle interior mutability that is safe for
subtle reasons (e.g., mutual exclusion)
• Mutex, Cell, RefCell, Rc, Arc, RwLock
• Found bugs in Mutex, Arc, . . .

• Scaling from sequentially consistent concurrency
model to a more realistic relaxed memory model

Still missing from λRust:
• Trait objects (existential types), drop, . . .

25



Logical relations are the tool of choice
for proving safety of languages with

unsafe operations.

Advances in separation logic (as
embodied in Iris) make this possible

for a language as sophisticated as Rust!

26



Understanding Rust: λRust
Building an extensible soundness proof of Rust that
covers its core type system as well as standard libraries

Evolving Rust: Stacked Borrows
Defining the semantics of Rust in order to justify
powerful intraprocedural type-based optimizations
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Rust’s type system is based
on ownership and borrowing:

1. Full ownership: T
2. Mutable (borrowed)
reference: &’a mut T

3. Shared (borrowed)
reference: &’a T

Lifetimes ’a decide how
long borrows last.

Aliasing
+

Mutation
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Rust’s type system is based
on ownership and borrowing:

1. Full ownership: T
2. Mutable (borrowed)
reference: &’a mut T

3. Shared (borrowed)
reference: &’a T

Lifetimes ’a decide how
long borrows last.

Aliasing
+

Mutation

Rust’s reference types provide
strong aliasing information.

The Rust compiler should exploit
them for optimization!
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Aliasing guarantees: &mut T Examples

fn test_noalias(x: &mut i32, y: &mut i32) -> i32 {

// x, y cannot alias: they are unique pointers

*x = 42;

*y = 37;

return *x; // must return 42

}

29



Aliasing guarantees: &mut T Examples

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

// unknown_function cannot have an alias to x

unknown_function();

return *x; // must return 42

}
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Aliasing guarantees: &mut T Examples

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

// unknown_function cannot have an alias to x

unknown_function();

return *x; // must return 42

}

escaped pointer

unknown code
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Aliasing guarantees: &T Examples

fn test_noalias_shared(x: &i32, y: &mut i32) -> i32 {

let val = *x;

// cannot mutate x: x points to immutable data

*y = 37;

return *x == val; // must return true

}



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

escaped pointer

unknown code with
access to x



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

These optimizations go beyond the
wildest dreams of C compiler

developers!



Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

These optimizations go beyond the
wildest dreams of C compiler

developers!

But there is a problem:
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Aliasing guarantees: &T Examples

fn test_shared(x: &i32) -> bool {

let val = *x;

// unknown_function_shared cannot mutate x

unknown_function_shared(x);

return *x == val; // must return true

}

These optimizations go beyond the
wildest dreams of C compiler

developers!

But there is a problem:

UNSAFE CODE!

30



11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // must return 42

15: }
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2: fn main() {

3: let mut l = 13;

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer);

7: }

l
x

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // must return 42

15: }
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer);

7: }

l
x

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42

15: }

ALIAS is a raw pointer (*mut T)
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer);

7: }

l
ALIASx

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42

15: }
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

Overwrites *x with 7
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4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

Overwrites *x with 7
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

Overwrites *x with 7Goal: rule out misbehaving programs
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Review: Undefined Behavior

Use of unsafe code imposes
proof obligations on the programmer:
No use of dangling/NULL pointers, no data races, . . .
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Review: Undefined Behavior

Use of unsafe code imposes
proof obligations on the programmer:
No use of dangling/NULL pointers, no data races, . . .

Violation of proof obligation leads to
Undefined Behavior.

Image: dbeast32
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Review: Undefined Behavior

Use of unsafe code imposes
proof obligations on the programmer:
No use of dangling/NULL pointers, no data races, . . .

Violation of proof obligation leads to
Undefined Behavior.

Compilers can rely on these
proof obligations when
justifying optimizations
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

Plan: make this
Undefined Behavior
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Stacked Borrows
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Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations
formal proof

• Stacked Borrows is permissive enough
to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri
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Stacked Borrows: Key Idea

Model proof obligations a�er
existing static “borrow” check

Borrow Checker Stacked Borrows
static dynamic

only safe code safe & unsafe code
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1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l
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3: let b = &mut *a; // b *reborrows* from a
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5: *a = 4;

6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

Conflicting use of a

1. The lender a does not get used until the
lifetime of the loan has expired.
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1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

Conflicting use of a

1. The lender a does not get used until the
lifetime of the loan has expired.

2. The recipient of the borrow b may only be
used while its lifetime is ongoing.
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2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

Conflicting use of a

• Chain of borrows:
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• Well-bracketed: no ABAB
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1: let mut l = 13;

2: let a = &mut l; // a *borrows* from l

3: let b = &mut *a; // b *reborrows* from a

4: *b = 3;

5: *a = 4;

6: *b = 4; // ERROR: lifetime of ‘b‘ has ended

• Chain of borrows:
l borrowed to a reborrowed to b

• Well-bracketed: no ABAB

(Re)borrows are organized
in a stack.
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Stacked Borrows ingredients

Pointer values carry a tag (PtrVal := Loc× N)
Example: (0x40, 1)

references (&mut T) are
identified by a tag
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...
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tagged 0
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Stacked Borrows ingredients

Pointer values carry a tag (PtrVal := Loc× N)
Example: (0x40, 1)

Every location in memory comes with an
associated stack (Mem := Loc fin

−⇀ Byte× Stack)
...

0x40: 0xFE, [0: Unique, 1: Unique]
...

For every use of a reference or raw pointer:
• Extra proof obligation:
⇒ the tag must be in the stack

• Extra operational effect:
⇒ pop elements further up off the stack
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

“Lifetime” of ALIAS
begins here.

Stack: [l, ALIAS]

“Lifetime” ends here:
lender l is used again,

removing ALIAS.
Stack: [l, x]
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

Stack: [l, x]

ALIAS is not on the stack
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Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is restrictive enough
to enable useful optimizations
formal proof

• Stacked Borrows is permissive enough
to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri
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Incomplete proof sketch

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

unknown_function();

return *x; // must return 42

}
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fn test_unique(x: &mut i32) -> i32 {
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unknown_function();

return *x; // must return 42

}

x’s tag is at the top of the stack

if unknown_function accesses this
memory, it will pop x’s tag off the stack
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Incomplete proof sketch

fn test_unique(x: &mut i32) -> i32 {

*x = 42;

unknown_function();

return *x; // must return 42

}

x’s tag is at the top of the stack

UB unless x’s
permission is
still in the stack

if unknown_function accesses this
memory, it will pop x’s tag off the stack
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Stacked Borrows

Aliasing model defining which pointers
may be used to access memory,

ensuring

• uniqueness of mutable references, and
• immutability of shared references.

• Stacked Borrows is permissive enough
to enable programming
checked standard library test suite by
instrumenting the Rust interpreter Miri
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

Stack: [l, x]

ALIAS is not on the stack
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1: static mut ALIAS: *mut i32 = std::ptr::null_mut();

2: fn main() {

3: let mut l = 13;

4: unsafe { ALIAS = &mut l as *mut i32; }

5: let answer = test_unique(&mut l);

6: println!("The answer is {}", answer); // prints 7

7: }

8: fn unknown_function() {

9: unsafe { *ALIAS = 7; }

10: }

11: fn test_unique(x: &mut i32) -> i32 {

12: *x = 42;

13: unknown_function();

14: return *x; // should return 42, but returns 7

15: }

We are regularly running the Rust standard
library test suite in Miri to catch regressions.

Found and fixed 6 aliasing violations.
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What else? [POPL’20 paper #2]

What I didn’t talk about:

• Shared references & interior mutability
• Protectors (enable writes to be moved across
unknown code)

Future work:

• Concurrency
• Integrating Stacked Borrows into RustBelt
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A dynamic model of Rust’s reference
checker ensures soundness of

type-based optimizations, even in the
presence of unsafe code.
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A dynamic model of Rust’s reference
checker ensures soundness of

type-based optimizations, even in the
presence of unsafe code.

Try Miri out yourself!
• Web version: https://play.rust-lang.org/ (“Tools”)
• Installation: rustup component add miri

• Miri website: https://github.com/rust-lang/miri/

Also check out our project website:
https://plv.mpi-sws.org/rustbelt
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