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Deep Learning Success Stories

Explaining a joke

Prompt
Explain this joke:

Joke: Did you see that Google just hired an eloquent whale for
their TPU team? It showed them how to communicate between two
different pods!

Model Response

Prediction: TPUs are a type of computer chip that Google uses
for deep learning. A "pod” 1s a group of TPUs. A "pod"” 1s also a
group of whales. The joke is that the whale is able to
communicate between two groups of whales, but the speaker 1is
pretending that the whale is able to communicate between two
groups of TPUs.
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Deep Learning Success Stories

Painting of the orange cat Otto von Garfield,
Count of Bismarck-Schonhausen, Duke of
Lauenburg, Minister-President of Prussia.
Depicted wearing a Prussian Pickelhaube
and eating his favorite meal - lasagna.

A photo of the back of a wombat wearing
a backpack and holding a walking stick.
It is next to a waterfall and is staring

at a distant mountain.
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s Scale All We Need?

The Bitter Lesson ® Scale can lead to abstractions

Rich Sutton, March 13, 2019 and generalization across tasks

The biggest lesson that can be read e
from 70 years of Al research is that e Still difficult to know when

general methods that leverage a model will succeed or fall.
computation are ultimately the most

effective, and by a large margin. ® How can we scale up to more

diverse application domains?

http://www.incompleteideas.net/Incldeas/
BitterLesson.html
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s Scale All We Need?

playing as black. This i & transeript ofthe e Scale can lead to abstractions
and generalization across tasks

i e Still difficult to know when
6. 83006 a model will succeed or fail.
0. Bous ® How can we scale up to more

diverse application domains?

https://jacobbuckman.com/
2022-06-14-an-actually-good-
argument-against-naive-ai-scaling/
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Adapting Deep Learning to New Domains
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Lessons from deep learning

1. Gradient descent scales really well

AM.A

\_/Am

2. Model engineering scales pretty well




Horizons of Al Research

Science & Engineering Autonomous Vehicles Healthcare

Deep domain knowledge Generalization to Many prediction tasks,
but limited data long tall events imbalanced data

Challenges in emerging domains

1. Incorporating (enough) domain knowledge
2. Reliable generalization across related tasks
3. Avoiding overconfident predictions
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What Models are Useful?

Simulation-based
Modeling

[Smedemark-Margulies et al., 2021]

Stronger assumptions

<

Planning
and Robotics

J

.
-
y

[Biza et al., 2021]

Know
(e.g. PD

N dynamics

—S) for system

Vision &
Language

[Mclnerney et al., 2020]

Weaker assumptions

More knowledge
(and edge cases)

>

Some domain knowledge
(e.q. structure)
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What Models are Useful?

Simulation-based
Modeling

[Smedemark-Margulies et al., 2021]

Stronger assumptions Weaker assumptions

>

Known dynamics More knowledge Some domain knowledge
(e.g. PDEs) for system (and edge cases) (e.g. structure) ANLAB

Amt
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1he Next 700
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The Next 700 Programming Languages

P. J. Landin
Univac Division of Sperry Rand Corp., New York, New York

“ .. today ... 1,700 special programming languages used to ‘com-
municate’ in over 700 application areas.”' —Compuler Software Issues,
an American Mathematical Association Prospectus, July 1965.

Volume 9 / Number 3 / March, 1966 Communications of the ACM 157

Two Ingredients for a Language

1. Core operations / abstractions

2. Mechanisms for composition Into program
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Differentiable Programming

+  OPylorch

Tensor

1. Abstractions: Differentiation, Tensor Calculus, Layers

2. Composition: Networks, Objectives, Optimization




Deep Probabllistic Programming
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Amortized Inference

Stochastic Simulator Inference Model
(most of science and engineering) (approximate inverse)
’I’) —_— f — X ’l’) — g — X
. model . apProx. network data
PHOT (program) Ikelihooc posterior  (program) distribution

po(x,n)=p(n) p(x | fo(n))

- p(n)pe(x|n)
X)=—————=

po(n | Da(x)



Amortized Inference

Stochastic Simulator Inference Model
(most of science and engineering) (approximate inverse)
’I’) —_— f — X ’l’) — g — X
. model . apProx. network data
PHOT (program) Ikelihooc posterior  (program) distribution

pe(x,m) =p(n) p(x | fo(n))
) pe(x | M) p(M) gy (x,m) =q(x) q(n | g4(x))
x)=—=— ‘- - -

po(n | (1))



Amortized Inference

Generative Model Inference Model
(stochastic simulator) (approximate inverse)
N — f —— X T ' g ' X
. model . approx. network data
PHOT (program) Ikelinood posterior  (program) distribution
Model Learning Amortized Inference

min D(q(x) | po(x))  min E [D(gy(n1x)llpe(n]x))]
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Minimizing the Inclusive KL divergence

ldea 1: Minimize inclusive KL (rather than exclusive KL)

~—
min E [ Dy (qs(n | x)|pe(n | x))] — min E [ D (pe(n | x)[qy(n|x))]
¢ X~q ~—_ ¢ X~q

ldea 2: Use importance sampling to approximate gradient

—V 4 D (po(n %) 11 qe(n1x)) = n~p;‘6-\x)[v¢ logqg(n | x)|
Use importance sampling /
[ _ p@(xn 771) [ N
w 26 (1 1 %) N ~qe(n|x)

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



Minimizing the Inclusive KL divergence

ldea 1: Minimize inclusive KL rather than exclusive KL

—

min E [ Dy (qs(n | x)|pe(n | x))] — min E [ D (pe(n | x)[qy(n|x))]
¢ XxX~q ~_ ¢ X~q

ldea 2: Use importance sampling to approximate gradient

~V4 Da(po(nllgp(nlx)) = E [Vloggy(n|x)]
| | L [
Use importance sampling - | 4% l
L po(2,mY) : _Z Z w vqb Iqu¢(7, ‘X)
w = l N ~qe(n|x) [—1 Lal’
CI¢(7) | X)

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



Amortized Importance Samplers

Better gradient estimates

RN

Importance Sampling Variational Inference
Use proposals go(n | x) Learn proposals go(n | x)
to sample from pe(n | x) using samples from pe(n | x)

Better proposals

* Does not rely on ditferentiable models / reparameterization
o Often works as well as, or better than, maximizing a lower bound

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



Amortized Importance Samplers

Better gradient estimates

RN

Importance Sampling Variational Inference
Use proposals go(n | x) Learn proposals go(n | x)
to sample from pe(n | x) using samples from pe(n | x)

Better proposals

Opportunity: New VI methods based on
SMC samplers, nested importance samplers, etc

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



Example (~2019): Amortized Population Gibbs
Task: Unsupervised Tracking

- Corpus level (many videos)
Digit shapes
Transition dynamics

- Instances (single videos)
Object representations

- Data-points (single frames)
Object positions

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs

Classic Chicken-and-Egg Problem

 Easy: Infer object representations
given object positions

* Also Easy: Infer positions given
object representations

 Not Easy: Joint inference of
positions and representations

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs

Classic Solution: lterate

o Step 0: Initialize representations
and positions.

 Update 1: Infer object representations
given object positions

n~pn|x,z)

 Update 2: Infer object representations
given object positions
z~p(z|x,n) Problem:
Only computable in
conjugate exponential
family models

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs

Modern solution: Learn Updates

o Step 0: Initialize representations
and positions.

 Update 1: Infer object representations
given object positions

n~qenlx,z)

 Update 2: Infer object representations
given object positions

z qub(z ‘ Xﬂ))

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs

Inferred Positions Reconstructions

e Corr

etely unsupervised
e Com |

utationally efficient (~5 updates, ~10 particles)

O O

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]
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Reasoning Compositionally About Inference

What (inference) DSL could define this sampler / variational method?

Algorithm 1 Amortized Population Gibbs Sampling

I: forninl,..., N do
2: G¢ =

431 §0171§DfiA(x,)Ld0 * ADG IS an examp‘e Of a

. 2N~ ge(z ] 2T - amortized SMC sampler

6 W po(a™, 2™ / gz

A  Known building blocks, but

9: forbinl,..., B do T '

o B RoSAMPLE(Z, B) not trivial to combine correctly
11: for/in1,..., L do . o

12: Alal ) * Can we define compositional
N O G T G e ) methods for importance sampling
5 Go= Go+ XoEy 55 logay (3 n, 2L, and gradient estimation?

16: 2R Wk = 2 %

17: return Gy, 2, w > Output: Grac




Combinators: A DSL for Inference

O”O Q O O

«VO O OOO OOO

09 Q O O

Move Resample Propose

f ::= A primitive program

p:.:=1f | extend(p, )

q::=p | resample(q) | compose(q’, q) \ propose(p, Q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Combinators: A DSL for Inference

O O
O o ©° O o0 ©O
O O

Propose

propose(p, Q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Combinators: A DSL for Inference

Resample

resample(q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Combinators: A DSL for Inference

ol =
~O O

OF O

Move

extend(p, f)

compose(q’, q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Combinators: A DSL for Inference

ol =
~O O

OF O

Move

extend(p, f)

compose(q’, q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]



Core Property: Proper Weighting

Definition: A pair w, n is properly weighted with respect
to a density 1(n) when, for all measurable h(n),

E, ~nwh(n)|=€E,., h(n)
/
Sampler Quantlty of interest
(can be a black box) (return value of program)
Constant of proportionality Densr[y of interest
(marginal likelihood) (program posterior)

[Naesseth, Lindsten, Schon, Foundations and Trends in Machine Learning, 2019]



Combinators: A DSL for Inference

d»o Q O O

«VO O OOO OOO

09 Q O O

Move Resample Propose

Semantics: Composition preserves proper weighting

https://github.com/probtorch/combinators
(Pyro implementation coming this Summer)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]


https://github.com/probtorch/combinators

Example: Amortized Giblbs Samplers

def pop_gibbs(target, proposal, kernels, sweeps):

g = propose(partial(target, suffix=0),
partial (proposal, suffix=0))
for s 1n range(sweeps):
for k 1in kernels:
g = propose(

extend(partial (target, suffix=s+1),

partial (k, suffix=s)),
compose (partial (k, suffix=s+1),
resample(q, dim=0)))
return (g

High-level algorithm description
(transition operators, resampling)

Algorithm 1 Amortized Population Gibbs Sampling
I: forninl,..., N do
2: G¢ =0

a:.n ~ pDATA (IIJ)

for/inl,..., L do
n,1,l

z

o ey B e IS

forkin2,..., K do

2’ W = Zn,lc—l) ,wn,k—l
9: forbinl, ..., B do
10: Z,%W = RESAMPLE(Z, W)
11: for/inl,..., L do
: 511 51
12: Zt o~ (- | 2™, 20 ,)
) ~l pe(mnvgél’gl—b) q¢(2é|mnvgl—b) ~1
13: YT pe@m 7, 45 a2 ,)
. =l ozl
14: 2y = 2
15: Go=Gs+ L B dlogg,(3|am, 3,)
: o = ¢ =13, oV dg 2896\ »Z_b
16: 2Rtk = Z @

17: return Gy, 2, w > Output: Grac

Low-level algorithm description
(weight and gradient computations)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UA/, 2021]



Ditferentiable + Probabilistic + Inference Programming

Deep Generative Model Inference Model
program pe(X, z) program qe(z | X)

Better gradient estimates

RN

Importance Sampling Variational Inference
Jse proposals go(z | x) Learn proposals ge(z | X)
to sample from pe(z | x) using samples from pe(z | x)

Better proposals
User-specified User-specified
Importance sampler variational objectives

(inference combinators) (nested variational inference)



Biophysics

3'-Alexass5 =—=9uide DNA

target DNA 3'-(Alexa647),,

5’-biotin binding site
streptavidin a4

i

IThe Next 700 Moaels in Al

Neuroimaging Epidemiology  Astrophysics Computational Molecular .
PTY Fluid Dynamics Design Manutacturing

Abstractions for Emerging Problems:
® | earning surrogate models
® \odeling search spaces

® |nferring differential equations
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Nested Variational Inference
H. Zimmermann, H. Wu, Babak Esmaelli, J.-W. van de Meent

NeurlPS 2021 [https://arxiv.org/abs/2103.00668]

Learning Proposals for Probabilistic Programs with Inference Combinators
S. Stites™, H. Zimmermann*, H. Wu, E. Sennesh, J.-W. van de Meent
UAI 2021 [https://arxiv.org/abs/2103.00668]

Amortized Population Gibbs Samplers with Neural Sufficient Statistics
H. Wu, H. Zimmermann, E. Sennesh, Tuan Anh Le, J.-W. van de Meent
ICML 2020 [https://proceedings.icml.cc/static/paper_files/icml/2020/5881-Paper.pdf]

An Introduction to Probabilistic Programming
J.-W. van de Meent, B. Paige, H. Yang, F. Wood
ArXiv 2018 [https://arxiv.org/abs/1809.10756]
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