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Deep Learning Success Stories

Dall-E 2, Imagen, Parti 

Painting of the orange cat Otto von Garfield, 
Count of Bismarck-Schönhausen, Duke of 
Lauenburg, Minister-President of Prussia. 
Depicted wearing a Prussian Pickelhaube 
and eating his favorite meal - lasagna.

A photo of the back of a wombat wearing  
a backpack and holding a walking stick.  
It is next to a waterfall and is staring  
at a distant mountain.



Is Scale All We Need?

• Scale can lead to abstractions  
and generalization across tasks 

• Still difficult to know when  
a model will succeed or fail.  

• How can we scale up to more 
diverse application domains?

The Bitter Lesson 
Rich Sutton, March 13, 2019 
The biggest lesson that can be read 
from 70 years of AI research is that 
general methods that leverage 
computation are ultimately the most 
effective, and by a large margin. 

http://www.incompleteideas.net/IncIdeas/
BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Is Scale All We Need?

https://jacobbuckman.com/
2022-06-14-an-actually-good-
argument-against-naive-ai-scaling/

• Scale can lead to abstractions  
and generalization across tasks 

• Still difficult to know when  
a model will succeed or fail.  

• How can we scale up to more 
diverse application domains?

https://jacobbuckman.com/2022-06-14-an-actually-good-argument-against-naive-ai-scaling/
https://jacobbuckman.com/2022-06-14-an-actually-good-argument-against-naive-ai-scaling/
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Adapting Deep Learning to New Domains

Lessons from deep learning 


1. Gradient descent scales really well 
2. Model engineering scales pretty well



Horizons of AI Research
Healthcare

Many prediction tasks, 
imbalanced data

Science & Engineering

Deep domain knowledge 
but limited data

Autonomous Vehicles

Generalization to 
long tail events

Challenges in emerging domains
1. Incorporating (enough) domain knowledge 
2. Reliable generalization across related tasks 
3. Avoiding overconfident predictions



Planning  
and Robotics

Vision &
Language

What Models are Useful?
Simulation-based

Modeling

Weaker assumptionsStronger assumptions

Known dynamics 
(e.g. PDEs) for system

Some domain knowledge 
(e.g. structure)

More knowledge 
(and edge cases)

(a) (b) (c) (d)

Figure 1: Our PyBullet block stacking setup. (a) a simulated UR5 arm and a 60⇥60 cm workspace with blocks, (b) a simulated
top-down depth camera image of the workspace, (c) and (d) are examples of the goals states of 2 of our 16 block stacking tasks.

manipulation, our approach should generalize well to any problem
in robotics with a large action space.

This paper makes two main contributions. First, we show that a
state-conditioned action prior is an e�ective way to transfer knowl-
edge from previously solved tasks to new tasks in a robotic manipu-
lation domain. Our experimental results indicate that this approach
can dramatically increase the probability of visiting a goal state
during exploration. Second, we introduce a method of learning a
state-conditioned action prior in situations where the previously
learned policies are valid over di�erent regions of the state/action
space. This problem only occurs in large state/action spaces such as
in robotic manipulation, and we believe we are the �rst to address
it.

2 RELATEDWORK
Action priors bias action selection during the exploration phase
of learning towards actions that were previously determined to be
viable. This information can either be speci�ed by an expert [1] or
extracted from policies from previously solved tasks [1, 6, 21, 22, 25].
Note that action priors refer to a di�erent construct than policy
priors [5, 34], as action priors do not involve posterior inference of
policy parameters.

Sherstov and Stone [25] eliminated actions not optimal for any
previous task in a state-agnostic way. Together with their trans-
fer learning algorithm, the state-agnostic action prior increases
learning speed in grid-world mazes. Fernández-Rebollo and Veloso
[6], Rosman and Ramamoorthy [21, 22] explored state-speci�c ac-
tion priors in similar discrete-state-space MDPs. Fernández-Rebollo
and Veloso [6] alternated between rolling out the policy being
learned and a policy sampled from a library. The probability distri-
bution over the library of policies was updated online to maximize
rewards for the current task. Rosman and Ramamoorthy [21, 22]
�lled in the pseudo-counts of Dirichlet distributions used to select
actions in each state by a weighted-sum of actions selected by pre-
viously learned policies. Abel et al. [1] combined action priors and
hand-crafted object-oriented representations [4] to improve the
run time of dynamic programming policy search for a Minecraft
environment and a real-world robotic manipulation task.

In contrast to pre-de�ned factored representations in Abel et al.
[1], we learn the action prior and model-free policies from pixels.
The Dirichlet prior [21, 22] is not easily extensible to continuous
state spaces; instead, we learn the action prior as a convolutional

network. Compared to Fernández-Rebollo and Veloso [6], we can-
not keep a library of policies loaded in memory, as each policy
is parameterized by a large convolutional network–we distill all
policies into a single action prior network.

In concurrent work, Ajay and Agrawal [2], Pertsch et al. [19]
learned action priors over �xed-length sequences of actions (also
called skill priors). Both approaches use varitional autoencoders
to learn representations for action sequences, and can be used to
solve composite robotic manipulation tasks. Singh et al. [26] studied
action priors (here called behavior priors) in a settingwhere training
and testing tasks di�er in terms of the objects being manipulated,
but are otherwise the same.

The topic of e�cient exploration is closely related to action
prior. Methods in this category often do not use additional informa-
tion, such as prior policies. Instead, they use a notion of surprise
or information content of a visited state. These quantities can be
measured by counting the number of times states were visited [27]
or by model-based approaches [11, 17]. Our problem statement is
incomparable with these approaches, as we exploit additional infor-
mation from previously learned tasks, which facilitates much more
targeted exploration compared to the notion of surprise alone.

Transfer learning has been studied extensively both in classi-
cal reinforcement learning [28] and in deep reinforcement learning
[9, 16, 29]. Goyal et al. [9], Teh et al. [29] learned a so-called default
policy while learning multiple specialized policies in a multi-task
or a multi-goal RL. To transfer to new tasks, Teh et al. [29] used the
KL-divergence between the default policy and a new policy as reg-
ularization, and Goyal et al. [9] used their default policy to quantify
the notion of a "decision state": a state in which we need make a
decision based on the task we want to solve (e.g., a crossroads in a
maze). Their agent is then encouraged to explore decision states
by adding an intrinsic reward. Both Goyal et al. [9], Teh et al. [29]
focuses their experimental evaluation on navigation tasks, with the
latter transfer method only being applicable to discrete-state-space
domains (due to them using count-based exploration). Parisotto
et al. [16] distill policies from training tasks into a single student,
which is then used to initialize the testing policy.

3 BACKGROUND
We model the pick and place robotics tasks in this paper as Markov
Decision Processes (MDPs, [3]) M = h(,�, %,', d0,Wi. ( and �
represent the sets of state and actions, % : (⇥� ! %A (() is a

[McInerney et al., 2020][Biza et al., 2021][Smedemark-Margulies et al., 2021]
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The Next 700 
AI Domains



Two Ingredients for a Language


1. Core operations / abstractions 
2. Mechanisms for composition into program



Differentiable Programming

1. Abstractions: Differentiation, Tensor Calculus, Layers

2. Composition: Networks, Objectives, Optimization
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Amortized InferenceModel Learning
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Minimizing the Inclusive KL divergence

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]

Idea 1: Minimize inclusive KL (rather than exclusive KL)
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Minimizing the Inclusive KL divergence

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]
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Amortized Importance Samplers

Importance Sampling

Use proposals qφ(η | x) 
to sample from pθ(η | x)

Variational Inference

Learn proposals qφ(η | x) 
using samples from pθ(η | x)

Better gradient estimates

Better proposals

• Does not rely on differentiable models / reparameterization 
• Often works as well as, or better than, maximizing a lower bound

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



Amortized Importance Samplers

Importance Sampling

Use proposals qφ(η | x) 
to sample from pθ(η | x)

Variational Inference

Learn proposals qφ(η | x) 
using samples from pθ(η | x)

Better gradient estimates

Better proposals

Opportunity: New VI methods based on  
SMC samplers, nested importance samplers, etc

[Bornschein and Bengio, ICLR 2015] [Le, Kosiorek, Siddarth, Teh, Wood, UAI 2019]



• Corpus level (many videos)  
Digit shapes 
Transition dynamics 

• Instances (single videos)  
Object representations 

• Data-points (single frames)  
Object positions

Example (~2019): Amortized Population Gibbs
Task: Unsupervised Tracking

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Classic Chicken-and-Egg Problem

• Easy: Infer object representations 
given object positions 
 

 

• Also Easy: Infer positions given 
object representations 

• Not Easy: Joint inference of 
positions and representations 
 

Example (~2019): Amortized Population Gibbs

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Problem:
Only computable in  

conjugate exponential 
family models 

Classic Solution: Iterate

• Step 0: Initialize representations 
and positions.  

• Update 1: Infer object representations 
given object positions 

• Update 2: Infer object representations 
given object positions 
 z ⇠ p(z | x ,⌘)
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⌘ ⇠ p(⌘ | x , z)
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Example (~2019): Amortized Population Gibbs

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Modern solution: Learn Updates

• Step 0: Initialize representations 
and positions.  

• Update 1: Infer object representations 
given object positions 

• Update 2: Infer object representations 
given object positions 
 z ⇠ q�(z | x ,⌘)
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⌘ ⇠ q�(⌘ | x , z)
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Example (~2019): Amortized Population Gibbs

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]



Example (~2019): Amortized Population Gibbs
ReconstructionsInferred Positions

• Completely unsupervised 
• Computationally efficient (~5 updates, ~10 particles)

[Wu, Zimmermann, Sennesh, Le, van de Meent, ICML 2020]
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Reasoning Compositionally About Inference

Algorithm 1 Amortized Population Gibbs Sampling
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9: for b in 1, . . . , B do . Loop over block updates
10: z̃, w̃ = RESAMPLE(z̃, w̃)
11: for l in 1, . . . , L do . Update particles
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d� log q�(z̃lb | xn, z̃l�b) . Accumulate gradients
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4 Neural Sufficient Statistics131

Gibbs sampling strategies that sample from exact conditionals rely on conjugacy relationships.132

Typically, we assume a prior and likelihood that can both be expressed as exponential families133

p(x | z) = h(x) exp{⌘(z)> T (x)� logA(⌘(z))},
p(z) = h(z) exp{�>T (z)� logA(�)}.

In these densities h(·) is a base measure, T (·) is a vector of sufficient statistics, and A(·) is a log134

normalizer. The two densities are jointly conjugate when135

T (z) = (⌘(z),� logA(⌘(z))) (13)

In this case, the posterior distribution lies in the same exponential family as the prior136

p(z | x) / h(z) exp
�
(�1 + T (x))>T (z)� (�2 + 1) logA(⌘(z))

 
. (14)

Typically, the prior p(z | �) and likelihood p(x | z) are not jointly conjugate, but it is possible to137

identify conjugacy relationships at the level of invididual blocks of variables,138

p(zb | z�b, x) / h(zb) exp{(�b,1 + T (x, z�b))
>T (zb)� (�b,2 + 1) logA(⌘(zb))}. (15)

In the more general setting we consider here, these conjugacy relationships will typically not hold.139

However, we can still take inspiration from such relationships to design variational distributions that140

make use of conditional independencies in a model. We will assume that each of the approximate141

Gibbs updates q�(zb | x, z�b) is an exponential family, whose parameters are computed from a vector142

of prior parameters � and a vector of neural sufficient statistics T�(x, z�b)143

q�(zb | x, z�b) = p(zb | �+ T�(x, z�b)). (16)

This parameterization has a number of desirable properties. Exponential families are the largest-144

entropy distributions that match the moments defined by the sufficient statistics (see e.g. Wainwright145

and Jordan [2008]), which is helpful when minimizing the inclusive KL divergence. In exponential146

families it is also more straightforward to control the entropy of the variational distribution. In147

particular, we can initialize T�(x, z�b) to output values close to zero in order to ensure that we148

initially propose from a prior and/or regularize T�(x, z�b) to help avoid local optima.149

A particularly useful case arises in models where the data x = {x1, . . . , xM} are independent150

conditioned on z. In these models it is often possible to partition the latent variables z = {zG, zL}151

5

• APG is an example of a 
amortized SMC sampler 

• Known building blocks, but 
not trivial to combine correctly 

• Can we define compositional  
methods for importance sampling 
and gradient estimation?

What (inference) DSL could define this sampler / variational method?



Combinators: A DSL for Inference
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def pop_gibbs(target , proposal , kernels , sweeps ):
q = propose(partial(target , suffix =0),

partial(proposal , suffix =0))
for s in range(sweeps ):

for k in kernels:
q = propose(

extend(partial(target , suffix=s+1),
partial(k, suffix=s)),

compose(partial(k, suffix=s+1),
resample(q, dim =0)))

return q

data , opt = ...
target , proposal , kernels = ...
q = pop_gibbs(target , proposal , kernels)
for _ in range (10000):

s0 = State(sample_size =[40, 20],
objective=inc_kl)

s, *outputs = q(s0 , data.next_batch (20))
s.loss.backward ()
opt.step()
opt.zero_grad ()

Figure 1: A combinator-based implementation of amortized population Gibbs sampling (Wu et al., 2020), along with a
procedure for training the target model, initial proposal, and each of the kernels that approximate Gibbs conditionals.

In this notation, the top of the rule lists conditions, and
the bottom states their implications. This rule states that,
for any trace t and density map r that can be generated
by evaluating f(c0), the unnormalized density Jf(c0)Kg(t)
evaluates to the product of the conditional probabilities in
r , whereas the prior density Jf(c0)Kp(t) corresponds to the
product for all unobserved variables. This implies that the
trace is distributed according to the prior, and that the weight
is the ratio between the unnormalized density and the prior

w = g f (t;c0)/p f (t;c0), t ⇠ p f (t;c0).

The above rule implicitly defines the support W f of the
density, in that it only defines the density for traces t that
can be generated by evaluating f(c0). In the languages that
we are interested in here, W f may not be statically deter-
minable through program analysis, but our exposition does
not require its explicit characterization.

Finally, we define the density that a program denotes under
substitution. We will define the unnormalized density to be
invariant under substitution,

Jf(c0)[t 0]Kg(t) = g f [t 0](t;c0) = g f (t;c0).

For the prior under substitution we use the notation

Jf(c0)[t 0]Kp(t) = p f [t 0](t;c0),

to denote a density over newly sampled variables, rather
than over all unobserved variables,

c,t,r,w ;f(c0)[t 0]

Jf(c0)[t 0]Kp(t) = ’
a2dom(t)\dom(t 0)

r(a)

This construction ensures that w = g f [t 0](t;c0)/p f [t 0](t;c0),
as in the case where no substitution is performed.

As previously, the support W f [t 0] is defined implicitly as
the set of traces that can be generated via evaluation under
substitution, which is a subset of the original support

W f [t 0] =
�

t 2 W f : t(a)=t 0(a)8a 2 dom(t)\dom(t 0)
 
.

3 INFERENCE COMBINATORS

We develop a domain-specific language (DSL) for impor-
tance samplers in terms of four combinators, with a grammar
that defines their possible compositions

f ::= A primitive program
p ::= f | extend(p, f)

q ::= p | resample(q) | compose(q0, q) | propose(p, q)

We distinguish between three expression types. We use f
to refer to a primitive program in the modeling language,
with sampler semantics that perform likelihood weighting
as described in the preceding section. We use p to refer to
a target program, which is either a primitive program, or a
composition of primitive programs that defines a density on
an extended space. Finally, we use q to refer to an inference
program that composes inference combinators.

3.1 EXAMPLE: AMORTIZED GIBBS SAMPLING

Before we define operational semantics for each combina-
tor, we illustrate their use in a concrete example. Figure 1
shows a program that makes use of a combinator DSL that is
embedded in Python. This code implements amortized pop-
ulation Gibbs (APG) samplers (Wu et al., 2020), a recently
developed method that combines stochastic variational in-
ference with sequential Monte Carlo (SMC) samplers to
learn a set of conditional proposals that approximate Gibbs
updates. This is an example where combinators are able to
concisely express an algorithm that would be non-trivial to
implement from scratch, even for experts.

We briefly discuss each operation in this algorithm. The
function pop_gibbs (Figure 1, left) accepts programs which
denote a target density, an initial proposal, and kernels.
It returns a program q that performs APG sampling. This
program is evaluated in the right column to generate sam-
ples, compute an objective, and perform gradient descent to
train the initial proposal and the kernels.

APG samplers perform a series of sweeps, where each sweep
iterates over proposals that approximate Gibbs conditionals.

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]
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f ::= A primitive program
p ::= f | extend(p, f)
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extend(partial(target , suffix=s+1),
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data , opt = ...
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q = pop_gibbs(target , proposal , kernels)
for _ in range (10000):

s0 = State(sample_size =[40, 20],
objective=inc_kl)

s, *outputs = q(s0 , data.next_batch (20))
s.loss.backward ()
opt.step()
opt.zero_grad ()

Figure 1: A combinator-based implementation of amortized population Gibbs sampling (Wu et al., 2020), along with a
procedure for training the target model, initial proposal, and each of the kernels that approximate Gibbs conditionals.
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r , whereas the prior density Jf(c0)Kp(t) corresponds to the
product for all unobserved variables. This implies that the
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we are interested in here, W f may not be statically deter-
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not require its explicit characterization.

Finally, we define the density that a program denotes under
substitution. We will define the unnormalized density to be
invariant under substitution,

Jf(c0)[t 0]Kg(t) = g f [t 0](t;c0) = g f (t;c0).

For the prior under substitution we use the notation

Jf(c0)[t 0]Kp(t) = p f [t 0](t;c0),

to denote a density over newly sampled variables, rather
than over all unobserved variables,

c,t,r,w ;f(c0)[t 0]

Jf(c0)[t 0]Kp(t) = ’
a2dom(t)\dom(t 0)

r(a)
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We develop a domain-specific language (DSL) for impor-
tance samplers in terms of four combinators, with a grammar
that defines their possible compositions

f ::= A primitive program
p ::= f | extend(p, f)

q ::= p | resample(q) | compose(q0, q) | propose(p, q)

We distinguish between three expression types. We use f
to refer to a primitive program in the modeling language,
with sampler semantics that perform likelihood weighting
as described in the preceding section. We use p to refer to
a target program, which is either a primitive program, or a
composition of primitive programs that defines a density on
an extended space. Finally, we use q to refer to an inference
program that composes inference combinators.

3.1 EXAMPLE: AMORTIZED GIBBS SAMPLING

Before we define operational semantics for each combina-
tor, we illustrate their use in a concrete example. Figure 1
shows a program that makes use of a combinator DSL that is
embedded in Python. This code implements amortized pop-
ulation Gibbs (APG) samplers (Wu et al., 2020), a recently
developed method that combines stochastic variational in-
ference with sequential Monte Carlo (SMC) samplers to
learn a set of conditional proposals that approximate Gibbs
updates. This is an example where combinators are able to
concisely express an algorithm that would be non-trivial to
implement from scratch, even for experts.

We briefly discuss each operation in this algorithm. The
function pop_gibbs (Figure 1, left) accepts programs which
denote a target density, an initial proposal, and kernels.
It returns a program q that performs APG sampling. This
program is evaluated in the right column to generate sam-
ples, compute an objective, and perform gradient descent to
train the initial proposal and the kernels.

APG samplers perform a series of sweeps, where each sweep
iterates over proposals that approximate Gibbs conditionals.

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]
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for k in kernels:
q = propose(
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return q

data , opt = ...
target , proposal , kernels = ...
q = pop_gibbs(target , proposal , kernels)
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s0 = State(sample_size =[40, 20],
objective=inc_kl)
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s.loss.backward ()
opt.step()
opt.zero_grad ()

Figure 1: A combinator-based implementation of amortized population Gibbs sampling (Wu et al., 2020), along with a
procedure for training the target model, initial proposal, and each of the kernels that approximate Gibbs conditionals.
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f ::= A primitive program
p ::= f | extend(p, f)

q ::= p | resample(q) | compose(q0, q) | propose(p, q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]

def pop_gibbs(target , proposal , kernels , sweeps ):
q = propose(partial(target , suffix =0),

partial(proposal , suffix =0))
for s in range(sweeps ):

for k in kernels:
q = propose(

extend(partial(target , suffix=s+1),
partial(k, suffix=s)),

compose(partial(k, suffix=s+1),
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return q
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s0 = State(sample_size =[40, 20],
objective=inc_kl)

s, *outputs = q(s0 , data.next_batch (20))
s.loss.backward ()
opt.step()
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Figure 1: A combinator-based implementation of amortized population Gibbs sampling (Wu et al., 2020), along with a
procedure for training the target model, initial proposal, and each of the kernels that approximate Gibbs conditionals.
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denote a target density, an initial proposal, and kernels.
It returns a program q that performs APG sampling. This
program is evaluated in the right column to generate sam-
ples, compute an objective, and perform gradient descent to
train the initial proposal and the kernels.

APG samplers perform a series of sweeps, where each sweep
iterates over proposals that approximate Gibbs conditionals.
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f ::= A primitive program
p ::= f | extend(p, f)

q ::= p | resample(q) | compose(q0, q) | propose(p, q)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]

def pop_gibbs(target , proposal , kernels , sweeps ):
q = propose(partial(target , suffix =0),

partial(proposal , suffix =0))
for s in range(sweeps ):

for k in kernels:
q = propose(

extend(partial(target , suffix=s+1),
partial(k, suffix=s)),

compose(partial(k, suffix=s+1),
resample(q, dim =0)))

return q

data , opt = ...
target , proposal , kernels = ...
q = pop_gibbs(target , proposal , kernels)
for _ in range (10000):

s0 = State(sample_size =[40, 20],
objective=inc_kl)

s, *outputs = q(s0 , data.next_batch (20))
s.loss.backward ()
opt.step()
opt.zero_grad ()

Figure 1: A combinator-based implementation of amortized population Gibbs sampling (Wu et al., 2020), along with a
procedure for training the target model, initial proposal, and each of the kernels that approximate Gibbs conditionals.

In this notation, the top of the rule lists conditions, and
the bottom states their implications. This rule states that,
for any trace t and density map r that can be generated
by evaluating f(c0), the unnormalized density Jf(c0)Kg(t)
evaluates to the product of the conditional probabilities in
r , whereas the prior density Jf(c0)Kp(t) corresponds to the
product for all unobserved variables. This implies that the
trace is distributed according to the prior, and that the weight
is the ratio between the unnormalized density and the prior

w = g f (t;c0)/p f (t;c0), t ⇠ p f (t;c0).

The above rule implicitly defines the support W f of the
density, in that it only defines the density for traces t that
can be generated by evaluating f(c0). In the languages that
we are interested in here, W f may not be statically deter-
minable through program analysis, but our exposition does
not require its explicit characterization.

Finally, we define the density that a program denotes under
substitution. We will define the unnormalized density to be
invariant under substitution,

Jf(c0)[t 0]Kg(t) = g f [t 0](t;c0) = g f (t;c0).

For the prior under substitution we use the notation

Jf(c0)[t 0]Kp(t) = p f [t 0](t;c0),

to denote a density over newly sampled variables, rather
than over all unobserved variables,

c,t,r,w ;f(c0)[t 0]

Jf(c0)[t 0]Kp(t) = ’
a2dom(t)\dom(t 0)

r(a)

This construction ensures that w = g f [t 0](t;c0)/p f [t 0](t;c0),
as in the case where no substitution is performed.

As previously, the support W f [t 0] is defined implicitly as
the set of traces that can be generated via evaluation under
substitution, which is a subset of the original support

W f [t 0] =
�

t 2 W f : t(a)=t 0(a)8a 2 dom(t)\dom(t 0)
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3 INFERENCE COMBINATORS

We develop a domain-specific language (DSL) for impor-
tance samplers in terms of four combinators, with a grammar
that defines their possible compositions

f ::= A primitive program
p ::= f | extend(p, f)

q ::= p | resample(q) | compose(q0, q) | propose(p, q)

We distinguish between three expression types. We use f
to refer to a primitive program in the modeling language,
with sampler semantics that perform likelihood weighting
as described in the preceding section. We use p to refer to
a target program, which is either a primitive program, or a
composition of primitive programs that defines a density on
an extended space. Finally, we use q to refer to an inference
program that composes inference combinators.

3.1 EXAMPLE: AMORTIZED GIBBS SAMPLING

Before we define operational semantics for each combina-
tor, we illustrate their use in a concrete example. Figure 1
shows a program that makes use of a combinator DSL that is
embedded in Python. This code implements amortized pop-
ulation Gibbs (APG) samplers (Wu et al., 2020), a recently
developed method that combines stochastic variational in-
ference with sequential Monte Carlo (SMC) samplers to
learn a set of conditional proposals that approximate Gibbs
updates. This is an example where combinators are able to
concisely express an algorithm that would be non-trivial to
implement from scratch, even for experts.

We briefly discuss each operation in this algorithm. The
function pop_gibbs (Figure 1, left) accepts programs which
denote a target density, an initial proposal, and kernels.
It returns a program q that performs APG sampling. This
program is evaluated in the right column to generate sam-
ples, compute an objective, and perform gradient descent to
train the initial proposal and the kernels.

APG samplers perform a series of sweeps, where each sweep
iterates over proposals that approximate Gibbs conditionals.

def pop_gibbs(target , proposal , kernels , sweeps ):
q = propose(partial(target , suffix =0),

partial(proposal , suffix =0))
for s in range(sweeps ):

for k in kernels:
q = propose(

extend(partial(target , suffix=s+1),
partial(k, suffix=s)),

compose(partial(k, suffix=s+1),
resample(q, dim =0)))

return q

data , opt = ...
target , proposal , kernels = ...
q = pop_gibbs(target , proposal , kernels)
for _ in range (10000):

s0 = State(sample_size =[40, 20],
objective=inc_kl)

s, *outputs = q(s0 , data.next_batch (20))
s.loss.backward ()
opt.step()
opt.zero_grad ()

Figure 1: A combinator-based implementation of amortized population Gibbs sampling (Wu et al., 2020), along with a
procedure for training the target model, initial proposal, and each of the kernels that approximate Gibbs conditionals.

In this notation, the top of the rule lists conditions, and
the bottom states their implications. This rule states that,
for any trace t and density map r that can be generated
by evaluating f(c0), the unnormalized density Jf(c0)Kg(t)
evaluates to the product of the conditional probabilities in
r , whereas the prior density Jf(c0)Kp(t) corresponds to the
product for all unobserved variables. This implies that the
trace is distributed according to the prior, and that the weight
is the ratio between the unnormalized density and the prior

w = g f (t;c0)/p f (t;c0), t ⇠ p f (t;c0).

The above rule implicitly defines the support W f of the
density, in that it only defines the density for traces t that
can be generated by evaluating f(c0). In the languages that
we are interested in here, W f may not be statically deter-
minable through program analysis, but our exposition does
not require its explicit characterization.

Finally, we define the density that a program denotes under
substitution. We will define the unnormalized density to be
invariant under substitution,

Jf(c0)[t 0]Kg(t) = g f [t 0](t;c0) = g f (t;c0).

For the prior under substitution we use the notation
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to denote a density over newly sampled variables, rather
than over all unobserved variables,

c,t,r,w ;f(c0)[t 0]

Jf(c0)[t 0]Kp(t) = ’
a2dom(t)\dom(t 0)

r(a)

This construction ensures that w = g f [t 0](t;c0)/p f [t 0](t;c0),
as in the case where no substitution is performed.

As previously, the support W f [t 0] is defined implicitly as
the set of traces that can be generated via evaluation under
substitution, which is a subset of the original support
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3 INFERENCE COMBINATORS

We develop a domain-specific language (DSL) for impor-
tance samplers in terms of four combinators, with a grammar
that defines their possible compositions

f ::= A primitive program
p ::= f | extend(p, f)

q ::= p | resample(q) | compose(q0, q) | propose(p, q)

We distinguish between three expression types. We use f
to refer to a primitive program in the modeling language,
with sampler semantics that perform likelihood weighting
as described in the preceding section. We use p to refer to
a target program, which is either a primitive program, or a
composition of primitive programs that defines a density on
an extended space. Finally, we use q to refer to an inference
program that composes inference combinators.

3.1 EXAMPLE: AMORTIZED GIBBS SAMPLING

Before we define operational semantics for each combina-
tor, we illustrate their use in a concrete example. Figure 1
shows a program that makes use of a combinator DSL that is
embedded in Python. This code implements amortized pop-
ulation Gibbs (APG) samplers (Wu et al., 2020), a recently
developed method that combines stochastic variational in-
ference with sequential Monte Carlo (SMC) samplers to
learn a set of conditional proposals that approximate Gibbs
updates. This is an example where combinators are able to
concisely express an algorithm that would be non-trivial to
implement from scratch, even for experts.

We briefly discuss each operation in this algorithm. The
function pop_gibbs (Figure 1, left) accepts programs which
denote a target density, an initial proposal, and kernels.
It returns a program q that performs APG sampling. This
program is evaluated in the right column to generate sam-
ples, compute an objective, and perform gradient descent to
train the initial proposal and the kernels.

APG samplers perform a series of sweeps, where each sweep
iterates over proposals that approximate Gibbs conditionals.



Core Property: Proper Weighting

[Naesseth, Lindsten, Schön, Foundations and Trends in Machine Learning, 2019]

Definition: A pair w, η is properly weighted with respect  
to a density π(η) when, for all measurable h(η),

Quantity of interest
(return value of program)

Density of interest
(program posterior)

Sampler
(can be a black box)

Constant of proportionality
(marginal likelihood)

Ew,⌘⇠⇧
⇥
w h(⌘)
⇤
= C E⌘⇠⇡
⇥
h(⌘)
⇤
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[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI 2021]

https://github.com/probtorch/combinators 
(Pyro implementation coming this Summer)

Semantics: Composition preserves proper weighting

https://github.com/probtorch/combinators


Example: Amortized Gibbs Samplers
def pop_gibbs(target , proposal , kernels , sweeps ):

q = propose(partial(target , suffix =0),
partial(proposal , suffix =0))

for s in range(sweeps ):
for k in kernels:

q = propose(
extend(partial(target , suffix=s+1),

partial(k, suffix=s)),
compose(partial(k, suffix=s+1),

resample(q, dim =0)))
return q

data , opt = ...
target , proposal , kernels = ...
q = pop_gibbs(target , proposal , kernels)
for _ in range (10000):

s0 = State(sample_size =[40, 20],
objective=inc_kl)

s, *outputs = q(s0 , data.next_batch (20))
s.loss.backward ()
opt.step()
opt.zero_grad ()

Figure 1: A combinator-based implementation of amortized population Gibbs sampling (Wu et al., 2020), along with a
procedure for training the target model, initial proposal, and each of the kernels that approximate Gibbs conditionals.

In this notation, the top of the rule lists conditions, and
the bottom states their implications. This rule states that,
for any trace t and density map r that can be generated
by evaluating f(c0), the unnormalized density Jf(c0)Kg(t)
evaluates to the product of the conditional probabilities in
r , whereas the prior density Jf(c0)Kp(t) corresponds to the
product for all unobserved variables. This implies that the
trace is distributed according to the prior, and that the weight
is the ratio between the unnormalized density and the prior

w = g f (t;c0)/p f (t;c0), t ⇠ p f (t;c0).

The above rule implicitly defines the support W f of the
density, in that it only defines the density for traces t that
can be generated by evaluating f(c0). In the languages that
we are interested in here, W f may not be statically deter-
minable through program analysis, but our exposition does
not require its explicit characterization.

Finally, we define the density that a program denotes under
substitution. We will define the unnormalized density to be
invariant under substitution,

Jf(c0)[t 0]Kg(t) = g f [t 0](t;c0) = g f (t;c0).

For the prior under substitution we use the notation

Jf(c0)[t 0]Kp(t) = p f [t 0](t;c0),

to denote a density over newly sampled variables, rather
than over all unobserved variables,

c,t,r,w ;f(c0)[t 0]

Jf(c0)[t 0]Kp(t) = ’
a2dom(t)\dom(t 0)
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This construction ensures that w = g f [t 0](t;c0)/p f [t 0](t;c0),
as in the case where no substitution is performed.

As previously, the support W f [t 0] is defined implicitly as
the set of traces that can be generated via evaluation under
substitution, which is a subset of the original support

W f [t 0] =
�

t 2 W f : t(a)=t 0(a)8a 2 dom(t)\dom(t 0)
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3 INFERENCE COMBINATORS

We develop a domain-specific language (DSL) for impor-
tance samplers in terms of four combinators, with a grammar
that defines their possible compositions

f ::= A primitive program
p ::= f | extend(p, f)

q ::= p | resample(q) | compose(q0, q) | propose(p, q)

We distinguish between three expression types. We use f
to refer to a primitive program in the modeling language,
with sampler semantics that perform likelihood weighting
as described in the preceding section. We use p to refer to
a target program, which is either a primitive program, or a
composition of primitive programs that defines a density on
an extended space. Finally, we use q to refer to an inference
program that composes inference combinators.

3.1 EXAMPLE: AMORTIZED GIBBS SAMPLING

Before we define operational semantics for each combina-
tor, we illustrate their use in a concrete example. Figure 1
shows a program that makes use of a combinator DSL that is
embedded in Python. This code implements amortized pop-
ulation Gibbs (APG) samplers (Wu et al., 2020), a recently
developed method that combines stochastic variational in-
ference with sequential Monte Carlo (SMC) samplers to
learn a set of conditional proposals that approximate Gibbs
updates. This is an example where combinators are able to
concisely express an algorithm that would be non-trivial to
implement from scratch, even for experts.

We briefly discuss each operation in this algorithm. The
function pop_gibbs (Figure 1, left) accepts programs which
denote a target density, an initial proposal, and kernels.
It returns a program q that performs APG sampling. This
program is evaluated in the right column to generate sam-
ples, compute an objective, and perform gradient descent to
train the initial proposal and the kernels.

APG samplers perform a series of sweeps, where each sweep
iterates over proposals that approximate Gibbs conditionals.

Low-level algorithm description
(weight and gradient computations)

[Stites, Zimmerman, Wu, Sennesh, van de Meent, UAI, 2021]

Algorithm 1 Amortized Population Gibbs Sampling
1: for n in 1, . . . , N do . Loop over batch items
2: G� = 0 . Initialize gradient to 0
3: xn ⇠ pDATA(x)
4: for l in 1, . . . , L do . Initialize particles
5: zn,1,l ⇠ q�(z | xn)
6: wn,1,l  p✓(xn, zn,1,l) / q�(zn,1,l)

7: for k in 2, . . . ,K do . Loop over Gibbs updates
8: z̃, w̃ = zn,k�1, wn,k�1

9: for b in 1, . . . , B do . Loop over block updates
10: z̃, w̃ = RESAMPLE(z̃, w̃)
11: for l in 1, . . . , L do . Update particles
12: z̃0 lb ⇠ q�(· | xn, z̃l�b)

13: w̃l =
p✓(x

n,z̃0 l
b ,z̃l

�b) q�(z̃
l
b|x

n,z̃l
�b)

p✓(xn,z̃ l
b ,z̃

l
�b) q�(z̃

0 l
b |xn,z̃l

�b)
w̃l

14: z̃lb = z̃0 lb
15: G� = G� +

PL
l=1

w̃l
P

l0 w̃
l0

d
d� log q�(z̃lb | xn, z̃l�b) . Accumulate gradients

16: zn,k, wn,k = z̃, w̃

17: return G�, z, w . Output: Gradients, NKL weighted samples

4 Neural Sufficient Statistics131

Gibbs sampling strategies that sample from exact conditionals rely on conjugacy relationships.132

Typically, we assume a prior and likelihood that can both be expressed as exponential families133

p(x | z) = h(x) exp{⌘(z)> T (x)� logA(⌘(z))},
p(z) = h(z) exp{�>T (z)� logA(�)}.

In these densities h(·) is a base measure, T (·) is a vector of sufficient statistics, and A(·) is a log134

normalizer. The two densities are jointly conjugate when135

T (z) = (⌘(z),� logA(⌘(z))) (13)

In this case, the posterior distribution lies in the same exponential family as the prior136

p(z | x) / h(z) exp
�
(�1 + T (x))>T (z)� (�2 + 1) logA(⌘(z))

 
. (14)

Typically, the prior p(z | �) and likelihood p(x | z) are not jointly conjugate, but it is possible to137

identify conjugacy relationships at the level of invididual blocks of variables,138

p(zb | z�b, x) / h(zb) exp{(�b,1 + T (x, z�b))
>T (zb)� (�b,2 + 1) logA(⌘(zb))}. (15)

In the more general setting we consider here, these conjugacy relationships will typically not hold.139

However, we can still take inspiration from such relationships to design variational distributions that140

make use of conditional independencies in a model. We will assume that each of the approximate141

Gibbs updates q�(zb | x, z�b) is an exponential family, whose parameters are computed from a vector142

of prior parameters � and a vector of neural sufficient statistics T�(x, z�b)143

q�(zb | x, z�b) = p(zb | �+ T�(x, z�b)). (16)

This parameterization has a number of desirable properties. Exponential families are the largest-144

entropy distributions that match the moments defined by the sufficient statistics (see e.g. Wainwright145

and Jordan [2008]), which is helpful when minimizing the inclusive KL divergence. In exponential146

families it is also more straightforward to control the entropy of the variational distribution. In147

particular, we can initialize T�(x, z�b) to output values close to zero in order to ensure that we148

initially propose from a prior and/or regularize T�(x, z�b) to help avoid local optima.149

A particularly useful case arises in models where the data x = {x1, . . . , xM} are independent150

conditioned on z. In these models it is often possible to partition the latent variables z = {zG, zL}151

5

High-level algorithm description
(transition operators, resampling)
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User-specified 
variational objectives 

(nested variational inference)

Deep Generative Model 
program pθ(x, z)

Inference Model 
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Better proposals

Importance Sampling
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to sample from pθ(z | x)

Variational Inference

Learn proposals qφ(z | x) 
using samples from pθ(z | x)

Better gradient estimates
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(a) (b) (c) (d)

Figure 1: Our PyBullet block stacking setup. (a) a simulated UR5 arm and a 60⇥60 cm workspace with blocks, (b) a simulated
top-down depth camera image of the workspace, (c) and (d) are examples of the goals states of 2 of our 16 block stacking tasks.

manipulation, our approach should generalize well to any problem
in robotics with a large action space.

This paper makes two main contributions. First, we show that a
state-conditioned action prior is an e�ective way to transfer knowl-
edge from previously solved tasks to new tasks in a robotic manipu-
lation domain. Our experimental results indicate that this approach
can dramatically increase the probability of visiting a goal state
during exploration. Second, we introduce a method of learning a
state-conditioned action prior in situations where the previously
learned policies are valid over di�erent regions of the state/action
space. This problem only occurs in large state/action spaces such as
in robotic manipulation, and we believe we are the �rst to address
it.

2 RELATED WORK
Action priors bias action selection during the exploration phase
of learning towards actions that were previously determined to be
viable. This information can either be speci�ed by an expert [1] or
extracted from policies from previously solved tasks [1, 6, 21, 22, 25].
Note that action priors refer to a di�erent construct than policy
priors [5, 34], as action priors do not involve posterior inference of
policy parameters.

Sherstov and Stone [25] eliminated actions not optimal for any
previous task in a state-agnostic way. Together with their trans-
fer learning algorithm, the state-agnostic action prior increases
learning speed in grid-world mazes. Fernández-Rebollo and Veloso
[6], Rosman and Ramamoorthy [21, 22] explored state-speci�c ac-
tion priors in similar discrete-state-space MDPs. Fernández-Rebollo
and Veloso [6] alternated between rolling out the policy being
learned and a policy sampled from a library. The probability distri-
bution over the library of policies was updated online to maximize
rewards for the current task. Rosman and Ramamoorthy [21, 22]
�lled in the pseudo-counts of Dirichlet distributions used to select
actions in each state by a weighted-sum of actions selected by pre-
viously learned policies. Abel et al. [1] combined action priors and
hand-crafted object-oriented representations [4] to improve the
run time of dynamic programming policy search for a Minecraft
environment and a real-world robotic manipulation task.

In contrast to pre-de�ned factored representations in Abel et al.
[1], we learn the action prior and model-free policies from pixels.
The Dirichlet prior [21, 22] is not easily extensible to continuous
state spaces; instead, we learn the action prior as a convolutional

network. Compared to Fernández-Rebollo and Veloso [6], we can-
not keep a library of policies loaded in memory, as each policy
is parameterized by a large convolutional network–we distill all
policies into a single action prior network.

In concurrent work, Ajay and Agrawal [2], Pertsch et al. [19]
learned action priors over �xed-length sequences of actions (also
called skill priors). Both approaches use varitional autoencoders
to learn representations for action sequences, and can be used to
solve composite robotic manipulation tasks. Singh et al. [26] studied
action priors (here called behavior priors) in a settingwhere training
and testing tasks di�er in terms of the objects being manipulated,
but are otherwise the same.

The topic of e�cient exploration is closely related to action
prior. Methods in this category often do not use additional informa-
tion, such as prior policies. Instead, they use a notion of surprise
or information content of a visited state. These quantities can be
measured by counting the number of times states were visited [27]
or by model-based approaches [11, 17]. Our problem statement is
incomparable with these approaches, as we exploit additional infor-
mation from previously learned tasks, which facilitates much more
targeted exploration compared to the notion of surprise alone.

Transfer learning has been studied extensively both in classi-
cal reinforcement learning [28] and in deep reinforcement learning
[9, 16, 29]. Goyal et al. [9], Teh et al. [29] learned a so-called default
policy while learning multiple specialized policies in a multi-task
or a multi-goal RL. To transfer to new tasks, Teh et al. [29] used the
KL-divergence between the default policy and a new policy as reg-
ularization, and Goyal et al. [9] used their default policy to quantify
the notion of a "decision state": a state in which we need make a
decision based on the task we want to solve (e.g., a crossroads in a
maze). Their agent is then encouraged to explore decision states
by adding an intrinsic reward. Both Goyal et al. [9], Teh et al. [29]
focuses their experimental evaluation on navigation tasks, with the
latter transfer method only being applicable to discrete-state-space
domains (due to them using count-based exploration). Parisotto
et al. [16] distill policies from training tasks into a single student,
which is then used to initialize the testing policy.

3 BACKGROUND
We model the pick and place robotics tasks in this paper as Markov
Decision Processes (MDPs, [3]) M = h(,�, %,', d0,Wi. ( and �
represent the sets of state and actions, % : (⇥� ! %A (() is a
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Figure 3: Monte Carlo Tree Search (MCTS)
Outline of the MCTS online planning algorithm.
In the selection stage, repeatedly select optimally-
promising* state-action pairs deeper in the tree; in
the expansion stage, At a leaf node, instantiate a
new node; in the simulation stage, perform a ”roll-
out” simulation to a specified depth, following a
heuristic policy to get Q(s, a); in the backpropa-
gation stage, backpropagate Q(s, a) and increment
N(s, a) along the simulation’s (s, a) path.

Figure 4: Caption

frequency is high enough, or, equivalently, its compu-
tation time low enough. Second, we care about the
quality of the computed decisions as per our objec-
tive or reward function, and that it be higher than
the baselines we compare against. Our specific system
uses a number of network-theoretic heuristics to guide
the search over decisions. Therefore, as a third test, we
want to determine the e↵ect of fewer or no heuristics
on the decision quality.

Show sample planning trajectory and intervention
plots and timeline [REPLACE]

4.1 Parameter tuning

4.2 Comparison against non-adaptive policies

Don’t know if we should show these as plots or tables

Discussion of MPC policy

5 Conclusion

conclusion
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Figures

Tables

Table 3: Sample table title. This is where the descrip-
tion of the table should go.

B1 B2 B3
A1 0.1 0.2 0.3
A2 ... .. .
A3 .. . .

Additional Files

Additional file 1 — Sample additional file title
Additional file descriptions text (including details of how to view the file, if
it is in a non-standard format or the file extension). This might refer to a
multi-page table or a figure.

0RELOLW\�1HWZRUNV�DV�
6WRFKDVWLF�%ORFN�0RGHOV

䚔 6PDUWSKRQH�ORFDWLRQ�GDWD�DW�SRLQWV�RI�LQWHUHVWV�
�32,��

��'&6%0��'HJUHH�&RUUHFWHG�6WRFKDVWLF�%ORFN�0RGHO��
KWWSV���HQ�ZLNLSHGLD�RUJ�ZLNL�6WRFKDVWLFBEORFNBPRGHO
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'&6%0��
ż 1RGHV�DUH�LQGLYLGXDOV��VWRFKDVWLF�EORFNV�DUH�&%*V
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FR�ORFDWLRQ
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Abstractions for Emerging Problems: 

• Learning surrogate models 
• Modeling search spaces 
• Inferring differential equations
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