
Karthikeyan Bhargavan

+ many co-authors at Inria, MSR, CMU, Stuttgart, …

Collège de France, March 31 2022

Verified Implementations for
Real-World Cryptographic Protocols

Is it safe to enter
my pincode?

Secure Channels over Insecure Networks

Web Server

Internet

Web User

• We need a secure (authentic, confidential) channel
• Security against powerful attackers who may

– Read all data sent on the network
– Tamper with the contents of messages
– Impersonate a user or a server

Malicious Tabs

Network Attacker

Malicious Websites

Datacenter

HTTPS

TLS 1.2

ECDHE SIG AE

NIST
P-256

RSA
PKCS#1

AES-
GCM

K = KDF(gxy,[) K = KDF(gxy,[)

Secure Channels in TLS [1994-2008]

skS

K = KDF(gxy,[) K = KDF(gxy,[)

Secure Channels in TLS [1994-2008]

Classic Two-Stage Protocol

1. Authenticated Key Exchange
Both parties compute a
shared secret key K

2. Authenticated Encryption
Both parties exchange streams
of data encrypted under K

• Many variants (IPsec, SSH, TLS)
• Many security models & proofs
• So, is this a solved problem?

skS

Many Attacks on TLS Deployments [2011-16]

• BEAST CBC predictable IVs [Sep’11]
• CRIME Compression before Encryption [Sep’12]
• RC4 Keystream biases [Mar’13]
• Lucky 13 MAC-Encode-Encrypt CBC [May’13]
• 3Shake Insecure resumption [Apr’14]
• POODLE SSLv3 MAC-Encode-Encrypt [Dec’14]
• FREAK Export-grade 512-bit RSA [Mar’15]
• LOGJAM Export-grade 512-bit DH [May’15]
• SLOTH RSA-MD5 signatures [Jan’16]
• DROWN SSLv2 RSA-PKCS#1v1.5 [Mar’16]
• SWEET32 3DES collisions [May’16]

What goes wrong in TLS Deployments?
Crypto Weaknesses
• RC4, 3DES, MD5, PKCS#1 v1.5

Protocol Design Flaws
• Downgrade attacks, Transcript collisions

Implementation Bugs
• State machine bugs, Heartbleed

Often, a mix of all of the above!

CRYPTO

PROTOCOL

IMPLEMENTATION

Crypto Weaknesses

Diffie-Hellman Key Exchange

Diffie-Hellman Assumption

Large Prime
(e.g. 2048 bits)

0 < x,y < p
g fixed

Security Assumption:

Weak Diffie-Hellman Groups

If the prime p is too small,
an attacker can compute the discrete log:

y = log(gy mod p)
and hence compute the session key:

Current discrete log computation records:
• [Joux et al. 2005] 431-bit prime
• [Kleinjung et al. 2007] 530-bit prime
• [Bouvier et al. 2014] 596-bit prime
• [Kleinjung et al. 2017] 768-bit prime
• [Boudot et al. 2019] 795-bit prime

Real-World Diffie-Hellman Groups

Internet-wide scan of HTTPS servers (2015)
• 14.3M hosts, 24% support DHE
• 70,000 distinct groups (p,g)

Many small-sized prime groups used for TLS
• 84% (2.9M) servers use 1024-bit primes
• 2.6% (90K) servers use 768-bit primes
• 0.0008% (2.6K) servers use 512-bit primes

Many servers support both strong and weak groups.

Protecting Protocols from Weak Crypto

Many deployed crypto algorithms are now considered weak
• RC4, MD5, 3DES, RSA-PKCS#1v1.5

The need for backwards compatibility
• Many systems cannot be updated frequently
• Need to continue support for legacy clients/servers

The benefits of cryptographic agility
• Gracefully transition from one algorithm to another
• Can already start supporting Post-Quantum algorithms

Protecting Protocols from Weak Crypto

Prove the security of protocols under weak assumptions
• Do you really need a collision-resistant hash function?
• Do you really need an IND-CCA secure encryption algorithm?

Analyze protocols that support both strong and weak crypto
• Prove security for connections that use strong crypto
• Show that strong crypto cannot be bypassed using weak crypto

Analyzing agile protocols by hand is too hard
• Large models, subtle assumptions and goals
• Need mechanized protocol verification tools

Protocol Design Flaws

K = KDF(gxy,[) K = KDF(gxy,[)

Composing Cryptographic Constructions

skSEach crypto protocol
composes a set of crypto
constructions to achieve some
target security goals

• TLS = DH + Sign + KDF + AE
• Each crypto algorithm may be

individually strong, but they
may not collectively achieve the
desired security goal

Composing Sub-Protocols
Sequential or Vertical Composition
• Values generated by one protocol are used in the next
• e.g. Authenticated Key Exchange + Authenticated Encryption

Protocols with Algorithmic Agility
• Support for multiple algorithms within a single protocol
• e.g. allow weak and strong Diffie-Hellman groups

Parallel or Multi-mode Composition
• Many protocol flows to choose from
• Different sessions may choose a different modes

Agility: Diffie-Hellman Group Negotiation

Supports both strong
and weak groups

Group
Negotiation

Group Downgrade Attack

Computes the discrete log over
the weak group to compute key

Removes Strong Groups

What went wrong?

Logjam Attack [2015]
• Cryptographic weakness: Weak Diffie-Hellman Groups
• Logical protocol flaw: Downgrade from Strong to Weak Group

Many other examples of downgrade+crypto attacks
• FREAK, SLOTH, DROWN, …

These attacks only appear when analyzing
complex composite protocol deployments

Implementation Bugs

Bugs in Protocol Implementations
Bugs when implementing cryptographic algorithms
• Functional correctness bugs, Side-channel leaks, …
• e.g. Lucky13, Bleichenbacher, see OpenSSL CVEs

Bugs when parsing protocol messages and components
• Memory safety bugs (Heartbleed), Error propagation (Gotofail)
• X.509 certificate parsing errors (many CVEs)

Bugs in protocol state machine implementation (next)
• Allowing incorrect protocol flows (FREAK, SKIP)

Many possible protocol modes of TLS
Protocol versions

Key exchanges

Authentication modes

Authenticated Encryption Schemes

100s of possible protocol combinations!

State Machine for TLS-RSA Key Exchange
Client Server

Client Server

State Machine for TLS-DHE Key Exchange

Composing Protocol State Machines
RSA

(EC)DHE

Commonly Deployed
TLS State Machine

RSA + DHE + ECDHE
+ Session Resumption
+ Client Authentication

State machine
for common
Web configurations

Full SSL/TLS State Machine

+ Fixed_DH
+ DH_anon
+ PSK
+ SRP
+ Kerberos
+ *_EXPORT
+ …

These are all the
ones implemented
in OpenSSL

Testing TLS State Machines

Do popular TLS libraries conform
to this state machine spec?

We built a fuzzing framework

State machine
for common
Web configurations

Many, Many Bugs
Unexpected state transitions
in OpenSSL, NSS, Java,
SecureTransport, …
• Required messages are

allowed to be skipped
• Unexpected messages are

allowed to be received
• CVEs for many libraries

Incorrectly Composing State Machines
RSA

(EC)DHE

Incorrectly Composing State Machines
Follows Postel’s robustness principle
• "

(BAD for security!)

Introduces unexpected cases at the client
• Server skips ServerKeyExchange in DHE
• Server sends ServerKeyExchange in RSA

Correct clients should reject these cases
• Otherwise, they are not executing TLS anymore,

and lose all its security guarantees

SKIP: skipping Messages to Java Clients
Network attacker impersonates
api.paypal.com to a JSSE client
1. Send PayPal’s cert

SKIP: skipping Messages to Java Clients
Network attacker impersonates
api.paypal.com to a JSSE client
1. Send PayPal’s cert
2. SKIP ServerKeyExchange

(bypass server signature)
3. SKIP ServerHelloDone

SKIP: skipping Messages to Java Clients
Network attacker impersonates
api.paypal.com to a JSSE client
1. Send PayPal’s cert
2. SKIP ServerKeyExchange

(bypass server signature)
3. SKIP ServerHelloDone
4. SKIP ServerCCS

(bypass encryption)
5. Send ServerFinished

using uninitialized MAC key
(bypass handshake integrity)

6. Send ApplicationData
(unencrypted) as S.com

State Machine Attacks

Impact of SKIP on Java TLS Clients
• A network attacker can impersonate any server

(Paypal, Amazon, Google) to any Java TLS client
• Affects all versions of Java until Jan 2015 CPU

Many other State Machine bugs in TLS libraries
• FREAK: combines crypto weakness, protocol

flaw, and implementation bug

Recap: What goes wrong in TLS Deployments?
Crypto Weaknesses
• RC4, 3DES, MD5, PKCS#1 v1.5

Protocol Design Flaws
• Downgrade attacks, Transcript collisions

Implementation Bugs
• State machine bugs, Heartbleed

Often, a mix of all of the above!

CRYPTO

PROTOCOL

IMPLEMENTATION

Idea: Implement the full TLS protocol stack in a
proof-oriented programming language and
formally verify its security and correctness
• Verified Crypto

(correctness, memory safety, side-channel resistance)
• Verified Parsing

(memory safety, correctness)
• Verified Protocol Code

(state machine correctness, security proof)

Verifying Protocol Implementations
in F*

F⭑ a security-oriented language
and verification framework

http://fstar-lang.org

Refinement types

Refinement types, Pre- and Post-Conditions
// Sample type and value declarations in F*

type nat = n:int{ 0 <= n }
val equal: b:bytes -> b’:bytes{ length(b) = length (b’)} -> bool

// Sample cryptographic functional specification in F*
module AES
type key // abstract type for secrets
type block = b:bytes{ Length(b)=16 }
val encrypt: k:key -> p:block -> c:block {c=AES(k,p)}
val decrypt: k:key -> c:block ->

r:option block {forall k,p. c=AES(k,p) ==> r = Some p}

Modular Typing & Runtime Safety
Type safety implies that refinement formulas hold in all executions
• All invariants, pre- and post-conditions are satisfied
• Can be used to enforce a variety of correctness and security goals
• Type-checking is modular, one function at a time, so scales well

F*: verification by type-checking + SMT
1. Write a program as an F* module
2. Specify its properties in an F* interface
3. Your program can call other verified user

modules and trusted system libraries
4. Verify the module by typechecking:
– F* generates proof obligations,

and calls Z3, an SMT solver, to discharge them

5. Compile the module to executable code
– Backends for OCaml, C, and WebAssembly

M.fsti

M.fst

Type
(F*)

Prove
(Z3)

Compile
(OCaml, C)

Erase
types

Lib.fst

Verifying Protocol Components with F*
EverParse: verified zero-copy parsers in C [Usenix ‘19]
• Efficient parsers without memory safety bugs (i.e. no HeartBleed)
• Proofs of functional correctness for parsing
• Applied to TLS, Quic, (X.509), …

HACL*: verified crypto library in C and WebAssembly [CCS’17,’20]
• A full library of modern crypto algorithms
• Verified for memory safety, functional correctness,

and secret independence (e.g. no branches on secrets)

Both written in Low*, a C-like subset of F* [ICFP ‘17]
• Verified code is compiled via KaRaMeL to C and WebAssembly

A Low* Spec for Stateful Crypto Code

// An array of secret (opaque) bytes
type block_p = b:buffer uint8{ length(b)=16 }

// Stateful in-place encryption
val encrypt: k:key_p -> p:block_p ->

Stack unit
(requires (fun h0 ->

live h0 [k;p] /\ disjoint k p))
(ensures (fun h0 _ h1 ->

modifies [p] h0 h1 /\
content h1 p ==
AES(content h0 k, content h0 p))

Verifying Protocol Implementations with F*
Verified protocol components
• EverParse: verified zero-copy parsers in C
• HACL*: verified crypto library in C and WebAssembly

miTLS: a cryptographically verified implementation of TLS
• Based on precise computational crypto assumptions
• Proofs require a combination of manual and F* proofs

DY*: a symbolic protocol verification framework in F*
• Based on abstract symbolic crypto assumptions
• Proofs are fully mechanized in F*

Verified Security for Protocol Code:
miTLS in F*

miTLS [2012-2015]
A verified reference implementation of TLS

Crypto specification and verification using types

Everest: A joint effort by a large research team

DHGroup

DH

CRE

PRF

RSA

Cert

Sig

SessionDB

StAE

LHAE

Enc

MAC

Record

Dispatch

TCP

Untyped Adversary

Encode

LHAEPlain

StPlain

TLSFragment

Alert
Datastream

Handshake (and CCS)

TLSInfoTLSConstants

Handshake/CCS

TLS
Record

AppData

Base Bytes

Untyped API
Adversary

RPC

RPCPlainApplication

TLS API

Alert
Protocol

AppData
Protocol

Nonce

TLS

CoreCrypto

RSAKey

Auth

AuthPlain

Extensions

1

2

3 4

5

6
7

Range

8

9Error

Modular Architecture for miTLS

miTLS Security theorem

Main crypto theorem:
concrete TLS & ideal TLS are
computationally indistinguishable
uses F* typing + crypto reasoning

We then prove that ideal miTLS meets
its secure channel spec
uses F* typing

We transform one module at a time
based on a precise crypto assumption

miTLS
implementation

miTLS typed API

Bytes, Network
lib.fs

Cryptographic Provider

cryptographic assumptions

any program
representing the

adversary

application
data stream

miTLS ideal
implementation

miTLS typed API

application

Safe, except for a
negligible probability

Safe by typing
(info-theoretically)

Example: Message Authentication Codes
module MAC
type text = bytes val macsize
type key = bytes
type mac = bytes

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

basic F*
interface

This interface says nothing
on the security of MACs.

module MAC
type text = bytes val macsize
type key
type mac = bytes

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

MAC keys are abstract

Specifying Message Authentication Codes

module MAC
type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}

val GEN : unit -> key
val MAC : key -> text -> mac
val VERIFY: key -> text -> mac -> bool

MACs are
fixed sized

MAC keys are abstract

Specifying Message Authentication Codes

module MAC
type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}
predicate Msg of key * text
val GEN : unit -> key
val MAC : k:key -> t:text{Msg(k,t)} -> mac
val VERIFY: k:key -> t:text -> mac

-> b:bool{ b=true => Msg(k,t)}

ideal F*
interface

“All verified messages
have been MACed”

MAC keys are abstract

MACs are
fixed sized

Msg is specified by
protocols using MACs

Specifying Message Authentication Codes

module MAC
open System.Security.Cryptography
let macsize = 20
let GEN() = randomBytes 16
let MAC k t = (new HASHMACSHA1(k)).ComputeHash t
let VERIFY k t m = (MAC k t = m)

module MAC
type text = bytes val macsize
type key
type mac = b:bytes{Length(b)=macsize}
predicate Msg of key * text
val GEN : unit -> key
val MAC : k:key -> t:text{Msg(k,t)} -> mac
val VERIFY: k:key -> t:text -> mac

-> b:bool{ b=true => Msg(k,t)}

ideal F*
interface

MAC keys are abstract

MACs are
fixed sized

Msg is specified by
protocols using MACs

concrete F*
implementation

(using real crypto)

“All verified messages
have been MACed”

This can’t be true!
(collisions)

Specifying Message Authentication Codes

Crypto Assumption: INT-CMA
Resistance to Chosen-Message

Existential Forgery Attacks

module INT_CMA_Game
open Mac
Let private k = GEN()
let private log = ref []
let mac t =

log := t::!log
MAC k t

let verify t m =
let v = VERIFY k t m in
if v && not (mem t !log) then FORGERY
v

CMA game
(coded in F*)

Computational Safety
a probabilistic polytime program
calling mac and verify forges a MAC
only with negligible probability ²

protocol adversary
typed against
RPC interface

Computational Safety for Ideal MACs
concrete system

TLS
protocol

Mac

protocol code
typed against
ideal MAC interface

INT-CMA
error correction
making VERIFY returns
false on forgeriesIdeal MAC

Mac

Any p.p.t.
adversary

TLS
protocol

Any p.p.t.
adversary

F# interfaceF* interface

ideal system

secure chan

concrete algorithm
assumed INT-CMA computationally

safe too,
with probability 1 – 1/𝛆

perfectly safe
by typing

≈

IN
T-

CM
A

ad
ve

rs
ar

y

DHGroup

DH

CRE

PRF

RSA

Cert

Sig

SessionDB

StAE

LHAE

Enc

MAC

Record

Dispatch

TCP

Untyped Adversary

Encode

LHAEPlain

StPlain

TLSFragment

Alert
Datastream

Handshake (and CCS)

TLSInfoTLSConstants

Handshake/CCS

TLS
Record

AppData

Base Bytes

Untyped API
Adversary

RPC

RPCPlainApplication

TLS API

Alert
Protocol

AppData
Protocol

Nonce

TLS

CoreCrypto

RSAKey

Auth

AuthPlain

Extensions

1

2

3 4

5

6
7

Range

8

9Error

Modular Architecture for miTLS

A High-Level Secure
Channel API for TLS

type cn // for each local instance of the protocol

// creating new client and server instances
val connect: TcpStream -> params -> (;Client) nullCn Result
val accept: TcpStream -> params -> (;Server) nullCn Result

// triggering new handshakes, and closing connections
val rehandshake: c:cn{Role(c)=Client} -> cn Result
val request: c:cn{Role(c)=Server} -> cn Result
val shutdown: c:cn -> TcpStream Result

// writing data
type (;c:cn,data:(;c) msg_o) ioresult_o =
| WriteComplete of c':cn
| WritePartial of c':cn * rest:(;c') msg_o
| MustRead of c':cn
val write: c:cn -> data:(;c) msg_o -> (;c,data) ioresult_o

// reading data
type (;c:cn) ioresult_i =
| Read of c':cn * data:(;c) msg_i
| CertQuery of c':cn
| Handshake of c':cn
| Close of TcpStream
| Warning of c':cn * a:alertDescription
| Fatal of a:alertDescription
val read : c:cn -> (;c) ioresult_i

• Secrecy and authenticity for
application data

• Multiple ciphers (Agile)
• Multiple protocol modes
• Accounts for key compromise

Prevents large classes of attacks
• no state machine bugs
• no downgrade attacks

miTLS Impact and Verification Effort
First verified implementation of real-world protocol
• 3600 lines of code
• 2000 lines of type annotations
• 30 pages of crypto proofs,

supported by 3000 lines of EasyCrypt proof
• 3 years of concerted effort by a team of 5-10 researchers

Measurable impact on real-world protocol design
• Helped find attacks on TLS: Triple Handshake, SKIP, FREAK, Logjam
• Influenced design of TLS 1.3 at IETF

Can we scale up and generalize this approach to other protocols?

DY* Verification Architecture
[Euro S&P 2021, ACM CCS 2021]

Trace-based symbolic
runtime model in F*

Abstract labeled APIs
proved sound in F*

Executable protocol + app
code verified for security

A taste of DY*

Precise Message Formats
• serialization and parsing

with correctness proofs

Protocol State Machine
• Stateful protocol code
• Session state storage
• Fine-grained compromise

A taste of DY*
Typed Crypto API encodes symbolic crypto assumptions

Using secrecy labels and authentication predicates

Security Label in
Signal Protocol

DY*: scalable symbolic security verification

• Proofs require between 50% and 90% annotation overhead
• Verification time grows linearly with protocol size

Conclusions
End-to-End verification of protocol stacks is now feasible
• Using proof-oriented programming languages like F*
• Crypto (HACL*), Parsers (EverParse), Protocols (miTLS, DY*)

Area is still maturing and is under active research
• Verifying optimized low-level code in C and assembly
• Verifying protocols that use ZK proofs, or MPC, or FHE, or PQ

Many open problems for future work
• Proving the absence of side channel attacks
• Verifying code written by non-verification experts

