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Shotld We Copyithe Brain to Build Intelligent Machines?
=d

Y LeCun

# The brain is an existence
proof of intelligent machines

— The way birds and bats
were an existence proof
of heavier-than-air flight

# Shouldn't we just copy it?

— Like Clément Ader
copied the bat?

¥ -
L'Avion III de Clement Ader, 1897
(Musée du CNAM, Paris)

# But we should draw His “Eole” took off from the ground in 1890,

inspiration from it. 13 years before the Wright Brothers.

=l

# The answer is no!



The'Brain

# 85x10° neurons

10" synapses/neuron — 101° synapses
@ 1.4 kg, 1.7 liters

# Cortex: 2500 cm?, 2mm thick

& 180,000 km of “wires”

& 250 million neurons per mm> .

#@ All animals can learn
# Learning is inherent to intelligence

# Learning modifies the efficacies of
synapses
» Learning causes synapses to
strengthen or weaken, to appear or
disappear.



The'Brain: an Amazingly Efficient "Co_mpliter"

Y LeCun

10" neurons, approximately

# 10" synapses per neuron
8 10 “spikes” go through each synapse per second on average

16 u - n

# 10" “operations” per second Motor command
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[Thorpe & Fabre-Thorpe 2001]



Fast ProcessorsyToday

Y LeCun

@ Intel Xeon Phi CPU

» 2x10%2 operations/second
» 240 Watts

» 60 (large) cores

» $3000

# NVIDIA Titan-Z GPU

» 8x10%2 operations/second
» 500 Watts
» 5760 (small) cores
» $3000

=
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& Are we only a factor of 10,000 away from the power of the human brain?
» Probably more like 1 million: synapses are complicated
» A factor of 1 million is 30 years of Moore's Law
» 20457



Y LeCun

Can’'we build Alrsystems by copying the Erain?

@ Are computers only a factor of 10,000 away from the power of
the human brain?

» Probably more like 1 million: synapses are complicated
» A factor of 1 million is 30 years of Moore's Law ==

8 Will computers be as intelligent as human by 2045?
» Compute power is not the whole story
» Moore's Law may not continue for that long

» We need to understand the principles of learning and
intelligence

& Getting inspiration from biology is a good thing
& But blindly copying biology without understanding the
underlying principles is doomed to failure |

» Airplanes were inspired by birds
» They use the same basic principles for flight
» But airplanes don't flap their wings & don't have feathers




Let's be inspired'by nature, but not too mq--ch

R

# It's nice imitate Nature,
# But we also need to understand
» How do we know which
details are important?

» Which details are merely the
result of evolution, and the
constraints of biochemistry?

# For airplanes, we developed
aerodynamics and compressible
fluid dynamics.

» We figured that feathers and
wing flapping weren't crucial
# QUESTION: What is the
equivalent of aerodynamics
for understanding
intelligence?

= Y LeCun
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L'Avion III de Clement Ader, 1897
(Musée du CNAM, Paris)

His “Eole” took off from the ground in 1890,
13 years before the Wright Brothers, but you
probably never heard of it (unless you are french).



Y LeCun

1957 The Perceptron (the first learning:machine)"'

@ A simple simulated neuron with adaptive “synaptic weights”
» Computes a weighted sum of inputs
» QOutput is +1 if the weighted sum is above a thresold, -1 otherwise.

Retina o
Associative area

Treshold element

sign(w’ x)

N
y=sign() W.X .+ b)
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The'Perceptron»a Trainable Classifier [Ro.h'senblatt""1 957]
_ , e Y LeCun

@ Example: classifying letters “A” from “B”
@ Learning: find the weight values that produce +1 for A and -1 for B

# Training set: (X',Y"), X%, Y?),...... (XP,YP)

# Example: (A,+1),(B,-1),(A,+1),(B,-1),(A,+1),(B,-1),...... Su perwsed

Learning




Learning the Weightsiﬁi

# Learning: adjusting the weights so as to obtain the desired result
» Initially, the weights are 0.

Desired: +1




Learning the Weightsi

@ Adjusting the weights when the the output is incorrect
» If the desired output is +1, add pixel values to the weights (Hebbian learning)

Desired: +1




Apprenﬁtissage |

=

@ Adjusting the weights when the the output is incorrect
» If the desired output is -1, subtract pixel values from the weights.

Desired: -1
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Apprentissage |
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@ Adjusting the weights when the the output is incorrect
» If the desired output is -1, subtract pixel values from the weights.

Desired: -1




Problem

@ Write if the writing style varies?

Desired: +1




Problem

@ What if the writing style varies?

Desired: +1




Oy =

Proble/em

@ What if the writing style varies?
» The output may become incorrect

Desired: +1




The'PerceptroniLearning Algorithm
kS Y LeCun

# Training set: (X',Y"),(X2,Y?),.....,(XP,YP)

M Take one sample (Xk,Yk), if the desired output is +1 but the actual output is -1
» Increase the weights whose input is positive
» Decrease the weights whose input is negative

@ If the desired is -1 and actual is +1, do the converse.
# If desired and actual are equal, do nothing

wi(t + 1) = w;(t) + (y; — f(W'XP))z;

Y= f(;wixi-l_WO):f(W'X)

1 Supervised
Learning




Machine Learning in General (supervised kearning)®
N S "\ Y LeCun

Function with —
adjustable parameters
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& Design a machine with adjustable knobs (like the weights in the Perceptron)
# Pick a training sample, run it through, and measure the error.

# Figure out in which direction to adjust the knobs so as to lower the error

#l Repeat with all the training samples until the knobs stabilize



Machine Learning in General (supervised learning)®
a2 | ‘- B\ Y LeCun

Function with —
adjustable parameters
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traffic light: -1 >

A
@ Design a machine with adjustable knobs E(W,X)

& Pick a training sample, run it through

@ Adjust the knobs so as to lower the error
& Repeat until the knobs stabilize N/




Y LeCun

Machine Learning = Function Optimizatiorﬁ

Weight space

Function with Ly
dJustable parameters

3 I N 7 Error
29O g..;;mf@;; Function

-

traffic light: -1

8 It's like walking in the mountains in a fog and
following the direction of steepest descentto
reach the village in the valley :

&l But each sample gives us a noisy estimate of °
the direction. So our path is a bit random.

OE(W,X)
oW,

W.€W.—n # Stochastic Gradient Descent (SGD)



Generallzatlon Ability: e

Y LeCun

recognlzmg instances not seen during tra‘ung

Function with e
adjustable parameters
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& After training:
» Test the machine on samples it has never seen before.

& Can you discover the rule?
-0,2,4,6,8, 10, 12.......
- 3, ,0,7,9,12, 2, ......
5 3 8

5,2,8,1 7
' 9,2,6,5,3,5,8,9, ...



Supervised Learningﬁ

@ We can train a machine on lots of examples of tables, chairs,
dog, cars, and people

& But will it recognize table, chairs, dogs, cars, and people |t has
never seen before? ;
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‘Large-Scale Machine Learning: the reality
=4 \

# Hundreds of millions of “knobs” (or weights)
& Thousands of categories
@ Millions of training samples
#l Recognizing each sample may take billions of operations
» But these operations are simple multiplications and additions




Y LeCun

The'Traditional'Model of Pattern Recogniﬁion

@ The traditional model of pattern recognition (since the late 50's)
» Fixed/engineered features (or fixed kernel) + trainable classifier

hand-crafted “Simple” Trainable
Feature Extractor Classifier
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Feature
Extractor

Deep Learning'= The Entire

Machine is TR

& Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Y LeCun

Trainable
Classifier

Feature Mid-Level Trainable
——
Extractor Features Classifier
#@l Deep Learning: Representations are hierarchical and trained
Low-Level Mid-Level | | High-Level Trainable
—>  —
Features Features Features Classifier




Deep Learning =,Learning Hierarchical Representations
=d Y LeCun

@ It's deep if it has more than one stage of non-linear feature transformation

Low-Level Mid-Level| |[High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]



Trainable Featufe Hierarehy

@ Hierarchy of representations with increasing level of abstraction
# Each stage is a kind of trainable feature transform

@l Image recognition
» Pixel -» edge - texton —» motif - part - object

& Text
» Character -» word - word group — clause —» sentence - story
@ Speech
» Sample - spectral band -» sound - ... - phone » phoneme - word
— — — —
o o o o
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@ "shallow & wide” vs “deep and narrow”
» Look-up table vs algorithm
» Few functions can be computed in two steps without an
exponentially large lookup table
» Using more than 2 steps can reduce the “memory” by an
exponential factor.

I

Shal‘lo_w' vs Deep == lookup tagle VS m_u.lti%step alg___c)frithm

“more memory” vs “more time”
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How does the brain interprets images? ~ &
¥ - Y LeCun

# The ventral (recognition) pathway in the visual cortex has multiple stages
# Retina - LGN - V1 - V2 - V4 - PIT - AIT ....

WHERE? {Motion,
Spatial Relationships) WHAT? {Farm, Color}

[Parietal stream] [Inferotempaoral stream] o
e Categorical judgments, 140-190 ms

viotor.command

-"-_
Simple visual forms
edges, corners
) r
Ay /
! \

=

-

PP | @ ; ﬁ% @ﬁ% AIT, decision making
Nio-nm ms oo

@ PIT 100-130 S pr
ME stream - \ l '1’40-60 e
(magac-dam 3 \
f = - 60-80ms o
?blzllo?-r;;? ne s " 50-70 ms
ID straam . Retina _ / 71 Intermediate visual
{irterb eo-don 20-40 ms AIT 1 fforms. feature
e ~ groups, etc.
/I;D:-IDD ms " —— o
High level object
descriptions,
faces, objects

~—————— To spinal cord
_—160-220 ms

-<——— To finger muscle - e
180-260 ms
1 Origntation — Direction W4, Pattern [zlaid) /!:: Pursl [ 1 - ]
. spstal  go Desary W metior &3 P picture from Simon Thorpe
a'nl Tregquancy L - _ [
AVAY ' {high/low) i wavelengih @ i%tlir?na”eslal 11
Wt Temperal ~ Subjective [Ga ant & ~ an Essen]
S Freauaney L ; Mon-Cartesian o
t ® ¥ corLoLr pattern {(z) Faces

YME (highdlow)



Multi-Layer
Neural Networks




Y LeCun

# Multiple Layers of simple units ReLU (x)=max(x,0)
#@ Each units computes a weighted sum of its inputs }

@ Weighted sum is passed through a non-linear function\

# The learning algorithm changes the weights >

Ceci est une voiture D i

Hidden
Layer




Typical Multilayér Neural Net Architecturg

C(X,Y,0)

Y LeCun

* Complex learning machines can be
built by assembling modules into

Squared Distance

networks

\

W3, B3 Linear

* Linear Module
e Out = W.In+B

* ReLU Module (Rectified Linear Unit)
« Out; =0 if In;<0
e Out; = In; otherwise

* Cost Module: Squared Distance
* C=|[In1l -In2||2

* Objective Function

* L(®)=1/p 2, C(XkYk,0)
0= (W1,B1,W2,B2,W3,B3)

Y (desired output)



Bui'l'd'ii'lg a Network by Assembling Modug o

* All major deep learning frameworks use modules (inspired by SN/Lush, 1991)

* Torch7, Theano, TensorFlow.... -- sizes
ninput = 28*28 -- e.g. for MNIST
nhiddenl = 1000
C(X.Y,0) noutput = 10
* -- network module
NegativeLogLikelihood net = nn.Sequential()
‘ net:add(nn.Linear(ninput, nhidden))
net:add(nn.Threshold())
LOQS;FmAaX net:add(nn.Linear(nhidden, noutput))
. net:add(nn.LogSoftMax()))
w2,B2 Linear
‘ -- cost module
Ritu cost = nn.ClassNLLCriterion()
w1,B1 Linear -- get a training sample
input = trainingset.data[k]
target = trainingset.labels[k]
X Y -- run through the model
input Label output = net:forward(input)

c = cost:forward(output, target)



Traihiﬁg: Stochastic Gradient Descent-_(SC*jD)

Y LeCun
C(X,Y,0) * Objective Fn: average over samples
? * L(®)=1/p 2, C(Xk,YK,0)
I «© =(W1,B1,W2,B2,W3,B3)
Squa;ed Distance » Stochastic Gradient Descent
»1W3,B3 Linear * O « 0 -noC(XkYKkO)/00
A * O « O - n AC(Xk, Yk 0)
ReALU * Noisy estimate of the gradient
e w282 Linear * In practice, we use a “minibatch”
A ‘0 « 0 - n ¥ AC(XK Yk,0)
k
RelLU : y :
A * Typical minibatch size:
w1 B1Linear * 32 to 1024 samples
? * The smaller the better
T * Why use minibatch then?
Parameter X T Y * Because it goes faster on GPUs.

Vector Machine



Computing Gradients by Back-Propagatioh

Y LeCun

A practical Application of Chain Rule

C(X,Y,0)
Cost
Wn =1 Fn(Xn-1,Wn)
dC/dwWn <€ 1

dozdXi B oF X
v ™

Wil Fi(Xi-1,Wi)

dC/dWi <=
i A
dC/dXi-18 & Xi-1
v

::I F1(Xo,W1)

+

X (input)

* Backprop for the state gradients:
« dC/dXi-1 = dC/dXi . dXi/dXi-1
» dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1

* Backprop for the weight gradients:
« dC/dWi = dC/dXi . dXi/dWi
« dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi

Y (desired output)



Y LeCun

@ Any connection graph is permissible
» Directed acyclic graphs (DAG)

» Networks with loops must be “unfolded in
time”.

‘ ‘ # Any module is permissible

» As long as it is continuous and differentiable
1 /_‘ almost everywhere with respect to the

parameters, and with respect to non-
terminal inputs.

@ Most frameworks provide automatic

} A differentiation

‘ I/<_ » Theano, Torch7+autograd,...
f » Programs are turned into computation
‘ DAGs and automatically differentiated.




Y LeCun

Thé'Objective Finction of Multi-layer_NeEs H Nof'Convex

1-1-1 network

— Y = WI*W2*X
Objective: identity function with quadratic loss
One sample: X=1, Y=1 L(W) = (1-W1*W2)"2

\%\%

Solution
Solution

Saddle point






Con'vo.lLitional Network Architecture 7

Y LeCun

SO O 77

/'/‘\‘\ Filter Bank +non-linearity
f Fr ey LTS hﬂl

; Poollng
K o ol
F|lter Bank +non-linearity
E Pooling

//' Filter Bank +non-linearity

'."l::?*
S

@ [LeCun et al. NIPS 1989]



Y LeCun

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3) Filter W1 (3x3x3) Cutput Volume (3x3x2)
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Animation: Andrej Karpathy http://cs231n.github.io/convolutional-networks/



Convolutional Network (vintage 1990)

= Y LeCun

M Filters-tanh — pooling — filters-tanh — pooling — filters-tanh
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Hubel & Wiesel'ssModel of the Architecture of the V"ixsual Cortex

# [Hubel & Wiesel 1962]:
» simple cells detect local features

» complex cells “pool” the outputs of simple
cells within a retinotopic neighborhood.

Ug

‘ _ Y LeCun

O
by
1/ : : “Simple cells”
: “Complex
cells2
““:3 ~[§i ig
input ,//f/ | v L] | I
layer /’//
contrast recognition ’
extraction ST pooling
¥y Multiple subsampling
convolutions
UM / masker

layer

[Fukushima 1982][LeCun 1989, 1998], [Riesenhuber 1999]......



Overall Architecture: multlple écages of

L

Normallzatlon — Filter Bank T Non Lmeantyd—) Poollng e

Filter Non- feature Filter Non- feature
Norm % A K TP Norm [ > > =3t Classifier

Bank | |Linear| |Pooling Bank | |Linear| |Pooling

# Normalization: variation on whitening (optional)

— Subtractive: average removal, high pass filtering

— Divisive: local contrast normalization, variance normalization
# Filter Bank: dimension expansion, projection on overcomplete basis

# Non-Linearity: sparsification, saturation, lateral inhibition....
— Rectification (ReLU), Component-wise shrinkage, tanh,..

ReLU (x)=max(x,0)

# Pooling: aggregation over space or feature type

— Max, Lp norm, log prob.

MAX :Max,(X,); L,:§Xx?; PROB:%log

bX
e
2

~—



LeNet1 Demo from 1993
| N Y LeCun

# Running on a 486 PC with an AT&T DSP32C add-on board (20 Mflops!)

VIDEO: LENET 1992



Multiple Character Recognitionﬁ [Matan et %l 1992}*

Y LeCun

# Every layer is a convolution

Single
Character
Recognizer




Sliding Window ConvNet + Wei'ghted Finite-State Machine
=d

Y LeCun
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Sliding Window ConvNet + Wei'ghted FSM &
=4

Y LeCun

. éﬂ“‘ feNel S | pesearcu
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he 1.1 discriminant cost
ChECk 'Reader i scriminant cos

+&-

(Bell Labs, 1995)

negatlve log-llkellhood 43 _— - ~~._ 3.2 negatlve log-likelihood
_— e
Forward Forward
Graph transformer network trained !

Fraz - ! Ible
to read check amounts. cottect Interpretation o0gy g 4 s ot nidpretations
Trained globally with Negative-Log- 4 ! Grammar
Likelihood loss ——epCompe= Compose 1=~ oty

____""-—-_____. F___-w:i;"__-r
Recognition Graph @ I;",‘Zl:;
“BT234
50% percent correct, 49% reject, | ° e
] correct Character
1% error (detectable later in the |answer Recognizer
process). Segmentatlon Graph lﬁé’; )
# wn| 4B
|
. . . Segmenter
Fielded in 1996, used in many i
. §# 34
banks in the US and Europe. Fleld Graph )
l 45
Field Locator
Processed an estimated 10% to "
20% of all the checks written in the Check Graph o-e
Ingl Mat Bank
US N the eal’ly 20005 not o exeeed HLO00000 L A

three dolirs and 455

[LeCun, Bottou, Bengio, Haffner 1998] AL




Face Detection [Vaillant et al. 93, 94] "

# ConvNet applied to large images

# Heatmaps at multiple scales

# Non-maximum suppression for candidates

# 6 second on a Sparcstation for 256x256 image

Scale 6 Scale 7 Scale 8

20x20

Ax16x16 || 4x8x8

4x1x

Il
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Simuttaneous face detection and pose _estiﬁnation fa

iy < \ Y LeCun




Pedestrian Detection with Convdlutional N;e'-ts
- Y LeCun

VIDEO: PEDESTRIAN DETECTION



Scene Parsing/Labeling | p
Y LeCun

[Farabet et al. ICML 2012, PAMI 2013]


file:///home/fair/text/Talks/videos-2015/lenet1-1993.mp4

Scene

Parsmg/Labellng Multlscale Conngt Archltecture -
Y LeCun

# Each output sees a large input context

» 46x46 window at full rez; 92x92 at 2 rez; 184x184 at Varez

» [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->

» Trained supervised on fully-labeled images

RGE Input

O

il % Categories

Laplacian Level 1 Level 2 Upsampled

Pyramid Features Features Level 2 Features



Method 1: majority over super-pixel regions

Input image

sosayladAy Arepunoq |exid-1adng

19NAUOD 3[eds-NNIA

Superpixel boundaries

=4 Y LeCun

Majority
Vote

Over
Superpixels \ |

B
TR

sV lmana

J191JISSe|D [eUOIIN|OAUOD

Features from

Convolutional net
(d=768 per pixel)

Categories aligned
With region
boundaries

“soft” categories scores

[Farabet et al. IEEE T. PAMI 2013]
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Scene Parsing/Labéting on RGB+Depth Imaggs

Y LeCun

mm wall mm books mm chair mm furniture mm sofa mm object mm TV
mm bed wm ceiling mm floor pict./deco mm table mm window mm uknw
S it nm i

Ground truths

Our results

[Couprie, Farabet, Najman, LeCun ICLR 2013, ICIP 201 3]



Scene Parsing/Labeling .
2 Y LeCun

# No post-processing VIDEO: SCENE PARSING

# Frame-by-frame

# ConvNet runs at 50ms/frame on Virtex-6 FPGA hardware

» But communicating the features over ethernet limits system
performance

[Farabet et al. ICML 2012, PAMI 2013]



ConvNet for Long Range Adapti#e Robot V|S|on
(DARPA LAGR program 2005-2008)

Y LeCun




i "

Long Range Vision with a Cohvolutiona} Net
._ Y LeCun

Pre-processing (125 ms)
* Ground plane estimation
* Horizon leveling
Conversion to YUV + local
contrast normalization
* Scale invariant pyramid of
distance-normalized image
“bands”

12,.2m to IMF, =scale: 1.0

+ '|| i ""I'I“T-,

0. 7m to IMF, scale: 1.4

|l. 1 = |-I ‘1
1 B '._.: ,2m to INF, zcalet 1,9

- -I " il 7 e - u -. L -
_m 5,.8m to 17,6m, scalet 5,0
_m_ 4,1m to 11,3m, scale: 6,7



convolufional NebArchitecture .
Y LeCun

100 features per
3x12x25 input window 100@25x121

VIDEO: LAGR

- e - il ol - =

— e o e T, i e W — T S
..-::;-.: -..-m-:n_-:ﬂ'r—'ﬁ.ﬁ—-#*-::m—- e S —

20@30x484

. 3@36x484
YUYV image band

20-36 pixels tall,
36-500 pixels wide YUV input




Visual Object Recognition with Convolutionﬁl Nets

Y LeCun

& In the mid 2000s, ConvNets were getting decent results on
object classification

@ Dataset: “Caltech101”:
» 101 categories
» 30 training samples per category
& But the results were slightly worse than more “traditional”
computer vision methods, because:
» 1. the datasets were too small
» 2. the computers were too slow

minare



file:///home/fair/text/Talks/videos-2015/pedestrian-wsqp.mp4

Then., two things happened.... A & ‘

o | [P , Y LeCun
Matchstick Sea lion

—

& The ImageNet dataset [Fei-Fei et al. 2012]
» 1.2 million training samples
» 1000 categories

& Fast & Programmable General-Purpose GPUs
» NVIDIA CUDA
» Capable of over 1 trillion operations/second




f Very Deep ConvNet for Object Recognition

i@ 1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic Fox (1.0); ; ;

I i T g Rl il g g R g g g R - L e
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Y LeCun

Very Deep ConVNets Traihed oh GPU & }

# AlexNet [Krizhevski, Sutskever, Hinton 2012]
» 15% top-5 error on ImageNet

8 OverFeat [Sermanet et al. 2013]

» 13.8% FULL 1000/Softmax
# VGG Net [Simonyan, Zisserman 2014] FULL 4096/RelLU
> 7.3% FULL 4096/ReLU
8 GooglLeNet [Szegedy et al. 2014]
. - o MAX POOLING 3x3sub
6.6%
Ml ResNet [He et al. 2015] s e e Ay
» 5.7% CONV 3x3ReLU 384fm
CONYV 3x3/ReLU 384fm

i http://torch.ch
Ml https://github.com/torch/torch7/wiki/Cheatsheet

MAX POOLING 2x2sub
CONYV 7x7/ReLU 256fm

MAX POOL 3x3sub
CONYV 7x7/ReLU 96fm




Y |

@ Small kernels, not much subsampling (fractional subsampling).

o 39 AT BB T 9 HdT8 ST T 8
W 3T Y 9 =H = 9 AN &N 9 1vnm ©Q 1vwnm 9 F
ol 2121 (&1 S] |l ale] [l (&)ells
VGG el ] * 2 2 X 2 2 x > > x > 2 x v
El 8lialladl ElEla] E]E]c] E]E] s |ElE]®] &
=1 G|/ Gl gl 2llSllel cllallel glallegl Qllel el =
L= R L= R o o (S S
H)
 E
GooglLeNet I \
E il E
BB
HEE R i

ResNet
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pool, /2

(=)
s 3
- -
g 8
o m
= -
~

xxxxxxxxx
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o
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FC-1000
softmax
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Kernels: Layer ¥ (11x11) o
u

# Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4

I I

i

.: '



file:///home/fair/text/Talks/videos-2015/scene-parsing.mp4

f Learning in Action

 How the filters in the first layer learn




Deep Learning =,Learning Hierarchical Representations
=d Y LeCun

@ It's deep if it has more than one stage of non-linear feature transformation

Low-Level Mid-Level| |[High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]



ImageNet: Classification
Y LeCun

@ Give the name of the dominant object in the image

& Top-5 error rates: if correct class is not in top 5, count as error
» Black:ConvNet, Purple: no ConvNet
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Object Detection
And
Localization
With
ConvNets




Classification #Localization: multiscate s?}iding window
_ . | | : Y LeCun

@ Apply convnet with a sliding window over the image at multiple scales

@ Important note: it's very cheap to slide a convnet over an image

» Just compute the convolutions over the whole image and replicate the
fully-connected layers

[oEEr comf §.45 [BEEr (EE SRR T 087 bt e S =T T R T 0.7 UL L2 i [ (1 2 P Y 2 e 2 Al Y A 2 e e

(TexIxdxE min: O0SEaT mesn: O 42EE0E max: 0i Oy IOty pes tareh)
bean (15 mex 0.95 avg 0.64)
dag (2 meax 0. 12 avh 0us)
Iswine (1 mizx 0,11 avg 0. 11)
urtle (2 mex 0,11 ava) 0.08)

porcupine (I sk 00E Sva 006

(TexTxy L0 mine D= 2B mean: O S 0TB0E merks U EEE0 0y RE S tanE i F oeHensar)
eEr (S1 max 0.97 ava) 0.60)
porcupime (2imex 0:20 sve 0.18)
oo (1 e OE L0 Sy ey
Bg (27 mex 008 ave 0 E)
vhiale (¥ rme DH0E Evg| U0 5)




CﬂlaSSifiCatiOn + Localization: &

sliding window * bounding box regressioh o

@ Apply convnet with a sliding window over the image at multiple scales

& For each window, predict a class and bounding box parameters

» Evenif the object is not completely contained in the viewing window,
the convnet can predict where it thinks the object is.

LeEr (1S mex 0,95 avg O 64]
dog (2 mex 0.12 ava 0.09)
swine (I msx 0.11 avg 0.11)

urtle (2 meax 0,11 avg 0.08)
Srorcupine (1 mex 0)06/ava 0.06)

o e
vhigle (7 mex 0.08 &vg 0.05)



Res ults: pre-trained on Ima}\letﬁ( ~ <
fine-tuned on ImageNet Detection = 8 e

B

Y LeCun

= Lok Form




Detection Examples

home/snwis/deta/imeneneti2foriginslfdefILSVREZ0T S DETF test/ILSVREZNTE test (00S0IE2EPES
dog conf 3. 419652

[y s S e e
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Detection Examples

IR 00 9. 06




Oy =

Person Detectioh and Pose Estimation £
| , | e .\ Y LeCun

Tompson, Goroshin, Jain, LeCun, Bregler arXiv:1411.4280 (2014)




Ima'ge' Captioning: generating a descriptiye s__enteﬁce -

& [Lebret, Pinheiro, Collobert 2015][Kulkarni 11][Mitchell 12][Vinyals 14][Mao 14]
[Karpathy 14][Donahue 14]...

A man is doing skateboard tricks on a ramp. The girl with blue hair stands under the umbrella.

A man riding skis on a snow covered ski slope.

NP: a man, skis, the snow, a person, a woman, a show covered slope, NP: a skateboard, a man, a trick, his skateboard, the air, a NP: a woman, an umbrella, a man, a person, a girl, umbrellas, that, a
a slope, a snowboard, a skier, man. skateboarder, a ramp, a skate board, a person, a woman. little girl, a cell phone.

VP: wearing, riding, holding, standing on, skiing down. VP: doing, riding, is doing, performing, flying through. VP: holding, wearing, is holding, holds, carrying.

PP: on, in, of, with, down. PP: on, of, in, at, with. PP: with, on, of, in, under.

A man wearing skis on the snow. A man riding a skateboard on a ramp. A woman is holding an umbrella.

S o~ -

A slice of pizza sitting on top of a white plate. A baseball player swinging a bat on a field. A bunch of kites flying in the sky on the beach.
NP: a plate, a white plate, a table, pizza, it, a pizza, food, a sandwich, NP: the ball, a game, a baseball player, a man, a tennis court, a ball, NP: the beach, a beach, a kite, kites, the ocean, the water, the sky,
top, a close. home plate, a baseball game, a batter, a field. people, a sandy beach, a group.

VP: topped with, has, is, sitting on, is on. VP: swinging, to hit, playing, holding, is swinging. VP: flying, flies, is flying, flying in, are.

PP: of, on, with, in, up. PP: on, during, in, at, of. PP: on, of, with, in, at.

A table with a plate of pizza on a white plate. A baseball player swinging a bat on a baseball field. Peaople flying kites on the beach.



£ C3D: Video Classification with 3Dy tean

ConvNet

i [Tran et al. 2015]

VIDEO: COMMON SPORTS

VIDEO: UNCOMMON SPORTS



o

SeQ'méhting and Localizing Objects (Dee-"‘gMa_?k)

# [Pinheiro, Collobert,
Dollar ICCV 2015]

» ConvNet

produces object

VGG

masks

512x14x14

1x1
conv

> | &

56x56

512x14x14

2x2
pool

foegm(X): 224x224
|
foorelX): 1x1
512x7x7 1024x1x1 2048x1x1



DeepMask++ Proposals S P i
| ‘ -\

@ FAIR COCO Team

B
CEEIAL  NIR




Recognition Pipéline

# FAIR COCO Team

, VGG16 Trunk ‘

Foveal Region 1

VGG16 Classifier

fch > fcb

Foveal Reqion 2

\(ﬂi} 96x3)

VGG16 Classifier

fch B fcb

Classifier
Features

Y LeCun

¥
\ 4

Foveal Reqgion 3

VGG16 Classifier

fch B fcb

convi

VGG16 Classifier

fch B fcb

Regression
Features
(4096)

[ [
|

Classifier

s

BBox
Regression




Training N >\

Y LeCun

@ 2.5 days on 8x4 Kepler GPUs with Elastic Avergaing Stochastic Gradient
Descent (EASGD [Zhang, Choromanska, LeCun NIPS 2015]

& “Big Sur”




Results

Y LeCun
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Mistakes
=d Y LeCun
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Supervised ConVNets tha

@l Using ConvNets to Produce Images
& [Dosovitskyi et al. Arxiv:1411:5928

Draw Pictures §

Y LeCun

RGB reconstruction loss

in;th uconyy  eonv-d Target RGB
FC-1 uconv-2 123 (transformed)
FC-2 32 [N 64| s
class E> 3 e Jgi s Nl
¢ g || FC3 Fe4 Fes Y s
= m AP 4 P G - ;
512 & g T NG O - To(x - 5)
32
809 e o 64 -
view N
y BN B 3 Target
4 . 128 A\ segmentation
64 | S R\ (transformed)
512 2 2
O < ST B
transf. = 1024 1024 A
param. |:| ﬁ:_:lE::'sg” TBS
B 8 1536 64‘__ S |
512 32 128

Segmentation reconstruction loss
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Speech Recognition
F With
AR ConvNets
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Speech Recognition with Convolutional Nets .._I_(NYU";/IBM)

Y LeCun
( Max-Norm )
A st s | er
S
& 2Ya ~ aYa aYatlatalalaYae 2
]
- - o @ c c c c
u c c c Q Q o e
c s =] o g g 5 n T
= 313 : HIE HENRHEIREEIEI UL E
g 2| |2 5 HIE S BEIEIBEIEIE S[] #
= v g v z £ HIRIE HIE
Q -
: ]
"/ \/ U (WA VAN, N\ \/
3x40x40 9x9 b4x32x32 4x]1 64x8x32 4x4 64x5x29 1024 1024 1024 3000

& Acoustic Model: ConvNet with 7 layers. 54.4 million parameters.
& Classifies acoustic signal into 3000 context-dependent subphones categories

# ReLU units + dropout for last layers
# Trained on GPU. 4 days of training



Speech Recognition with Convelutional I\@ts .(NYU{/IBM)

Y LeCun

@ Training samples.
» 40 MEL-frequency Cepstral Coefficients
» Window: 40 frames, 10ms each




i
A

Spe'ec.h'Recognition with Convolutional N;ets _(NYU/IBM)

Y LeCun

# Convolution Kernels at Layer 1:
» 64 kernels of size 9x9

ey LR R\ A e
s L P = A
P V2 0 S = S g IS
= NS RN



4 | j? -~y

= | Mu[til_ingual_ recognizer Softmax ||| Softmax Softmax ||| Softmax Softmax ||| Softmax
M Multiscale input FC [ FC || FC || FC || FC || FC
» Large context window FC | FC | FC | FC || FC || FC
EESE“HEEHEHE? FC J[_FC ][ FC
FC | |

N pool

' conv

pool

conv

200




ConvNets are Everywhere
(or soon will be)




NVIDIA: ConvNét-Based Driver Assistance o
| , TP ' — ) 2

Drive-PX2: Open Platform for Driver Assistance

Embedded Super-Computer: 42 TOPS
— (=150 Macbook Pros)




- {Q .ﬁ' -y

Mo'bilI'Eye: ConvNet-Based Driver Assista@ce
_ | : Y LeCun

pixel labeling

Deployed in the latest
Tesla Model S and Model X

path planning




ConvNét in Connectomics [Jain, Turaga,Se‘_:ung 2007]

Y LeCun

@ 3D ConvNet
Volumetric
Images

@ Each voxel labeled as “membrane”
or “non-membrane using a 7x7x7
voxel neighborhood VI D EO

@ Has become a standard method in
connectomics



Brain Tumor Detection

& [Havaei et al. 2015]
» Arxiv:1505.03540
@ InputCascadeCNN
architecture
» 802,368
parameters

& Trained on 30
1 patients.

e 4 State of the art
results on BRAT2013

enhanced tumor,

Necrosis,

-

——
1

/ 64x24x24  64x21x21

1

 — |

1
Conv 3x3 +
Maxout +
Pooling 2x2

\24}(2 1x21

.

# Parameters 802,368

onv I3x13+  160x21x21

\

[}

Y LeCun

non-enhanced tumor,

Conv 21x21 +
Softmax

4




Predicting DNARNA — Protein Binding with ConvNets
' o \ Y LeCun

“Predicting the sequence specificities of DNA- and RNA-binding proteins by
deep learning” by B Alipanahi, A Delong, M Weirauch, B Frey,

Nature Biotech, July 2015.

i - "l VOLUME 33 MUMBER 8 ALGUST 2015 ﬁl N ALYS | 5
Predicting the sequence specificities of DNA- and

-
i - RMNA-binding proteins by deep learning
biotechnology IESOESEEERY

d  Curent batch Motif scans
of inputs

Current model
parameters

Parameter
updates

b 1. Calibrate 2. Train candidates 3. Test final model
Test

”“) - ,‘A" ”(2) i 4 AUC
Evaluate = p— Use best » |

random { 0% B oraion § 0@ 50 * [ Preaci SR
calibrations : : i~ (3 attempts) | 0@ -

3-fold cross validation Average
validation ( Train

Regulatery motif predictions from|deep earning
Bile duct cells from stemicells L

Imaging siRNA release from endosomes

Use all training data T':S('?Q ‘ Use parameters

}— 0.97 of best candidate

. Test data never seen 1
Trg:t\g\ 9 . during calibration or training




'F Deep Learning is Everywhere

(ConvNets are Everywhere)

il Lots of applications at Facebook, Google, Microsoft, Baidu, Twitter, IBM...

» Image recognition for photo collection search
» Image/Video Content filtering: spam, nudity, violence.

» Search, Newsfeed ranking

il People upload 800 million photos on Facebook every day

» (2 billion photos per day if we count Instagram, Messenger and Whatsapp)

i@l Each photo on Facebook goes through two ConvNets within 2 seconds
» One for image recognition/tagging

» One for face recognition (not activated in Europe).

@l Soon ConvNets will really be everywhere:

» self-driving cars, medical imaging, augemnted reality, mobile devices, smart
cameras, robots, toys.....






f Thought Vectors

[0.4,-1.3,2.5,-0.7,....] [0.2,-2.1,0.4, -0.5,....]

f +

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic Fox (1.0);

..... prr e ST Recurrent
T ATIX POoOo/FI7E
AT LT M LTLE - - - """)
Corrvoltion: N e u I‘ al

LT - - - - LT e LT
[ ~

Vo AN 4 Net

CoOFVolrliorn:

“The neighbors' dog was a
samoyed, which looks a lot
like a Siberian husky”

= Pt ,‘- o - Ve

Red Green  Blue




EMBEDDING THE WORLD

oyeux Anniversaire! I#IamOIdI IHappy Birthday® ©® I

.

| #yannsplanes

i

Watched
‘\ John Coltrane
tribute concert
last Sun.

Wow! Checkout
this vintage ramjet.

INSTAGRAM EMBEDDING VIDEO




f Deep Face

#l [Taigman et al. CVPR 2014]

» Alignment
» ConvNet
» Metric Learning

il Deployed at Facebook for Auto-
tagging

» 800 million photos per day

\ =
z |\
@] III‘-,I ? w
o =0
Ll
el \/ 12
z| K12
i '.\ |-
L | L
=14
a | f W
ol
ec |/ '
I B
& : M2: C3: L4 L5: L&: F7: F&:
Calista Flockhart Uﬂﬂ_’?_}'g Frontalization: 32x11x11x3 32x3In3In32 16x9x9x32 16x9xIx16 16x7x7x16 16x5x5%16 4096d 40306

@21x21

Detection & Localization @152x152x3 @142x142 @71x71 @63IxNG3 {@55K55 @525



Y LeCun

Metric Learningiwith a Siamese Architectfire

@ Contrastive Obective Function

_ Make this small Make this large
» Similar objects should
produce outputs that are Dy A Dy A
nearby 1G,, (x)—G, (x| 1G,, (x)—G (x,)]l
o | A A A A
» Dissimilar objects should
produce output that are G, (x,) G, (x,)
far apart.

» DrLIM: Dimensionality
Reduction by Learning
and Invariant Mapping

» [Chopra et al. CVPR 2005] ) | ;
» [Hadsell et al. CVPR 2006] Similar images (neighbors

in the neighborhood graph) (non-neighbors in the
neighborhood graph)

Dissimilar images



-F Representing the world with “thought vectors”

i@l Every object, concept or “thought” can be represented by a vector

»[-0.2,0.3,-4.2,51, ..... ] represent the concept “cat”
» [-0.2,04,-4.0,5.1, ..... ] represent the concept “dog”
» The vectors are similar because cats and dogs have many properties in common

il Reasoning consists in manipulating thought vectors

» Comparing vectors for question answering, information retrieval, content filtering

» Combining and transforming vectors for reasoning, planning, translating
languages

#l Memory stores thought vectors

» MemNN (Memory Neural Network) is an example

il At FAIR we want to “embed the world” in thought vectors



Natural Language
Understanding
(with embeddings)




d.

What about Language? Word Embedding§

@ Word Embedding in continuous vector spaces
» [Bengio 2003][Collobert & Weston 2010]
» Word2Vec [Mikolov 2011]
» Predict a word from previous words and/or following words

Neural net of some kind

bAoA A oA 4

what are the major languages spoken in greece ?

Y LeCun
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Cohi-péSitional Semantic Property

@ Tokyo — Japan = Berlin — Germany Tokyo - Japan + Germany = Berlin
Country and Capital Vectors Projected by PCA
2 1 1 1 1 1 | 1
China«
Beijing
1.5 - Russias .
Japane=— Tokyo =Japan
1k Moscow B
Turkey< AnkarMOKVO
0.5 )
Poland«
0 Germanye= .
Franc:e>< AWarsaw
Berlin — Germany =™ Berlin
-0.5 | Italy< Paris -
Greece« » - »Athens
-1+ Spairx Rome .
x »Madrid
-1.5 | Portugal ‘Lisbon -
-2 1 1 1 1 | | 1

-2 -1.5 ~1 0.5 0 0.5 1 1.5 2




f Question-Answering System

Score How the
A candidate
Embedding answer ﬁ.ts the \W
model question .
Embedding 1 | Embedding
of the of the
question Dot subgraph
Word embeddings product Freebase embeddings
lookup table lookup table
Lhot PP T 7 1 —
encoding encoding
of the of the
question Subgraph y

Freebase
subgraph
K.Preston
P _gower 5

1987

“"Who did Clooney
marry in 1987%?”

\—Questien—‘

Subgraph of a
candidate answer
(here K. Preston)

Detection of @ @
Freebase entity 4
in the question @




'F Question-Answering System

what are bigos?
["stew"] ["stew"]
what are dallas cowboys colors?
[“navy_blue", "royal_blue", "blue",
"white", "royal_blue", "silver"]
how is egyptian money called?
["egyptian_pound"] ["egyptian_pound"]
what are fun things to do in sacramento ca?
["sacramento_zoo0"] ["raging_waters_sacramento”, "sutter_s_fort",
"b_street_theatre", "sacramento_zoo", "california_state_capitol_museum®, ....]
how are john terry's children called?
["georgie_john_terry", "summer_rose_terry"] ["georgie_john_terry",
"summer_rose_terry"]
what are the major languages spoken in greece?
["greek_language”, "albanian_language"] ["greek_language",
what was laura ingalls wilder famous for?

["writer”, "author"] ["writer",

white", "silver"] ["blue”, "navy_blue",

albanian_language"]

journalist”, "teacher",

author"]



Lan'gu.age Translation with Recurrent net*\Norks
' ._ Y LeCun

# [Sutskever et al. NIPS 2014]
» Multiple layers of very large LSTM recurrent modules
» [Hochreiter & Schmidhuber 1997]
» English sentence is read in and encoded
» French sentence is produced after the end of the English sentence

» Accuracy is very close to state of the art.
Ceci est une phrase en anglais

This is a sentence in English



Y LeCun

f But How can Neural Nets Remember Things?

# Recurrent networks cannot remember things for very long

» The cortex only remember things for 20 seconds

@l We need a “hippocampus” (a separate memory module)

» LSTM [Hochreiter 1997], registers

» Memory networks [Weston et 2014] (FAIR), associative memory

» Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)
» NTM [DeepMind 2014], “tape”.

memory ]



file:///home/fair/text/Talks/videos-2015/seung-jain-2007.mp4

Memo ry/Stack-Aug mented Recu rrent' Nets

=

Y LeCun

(a) q

input hidden tput . . .
= @ [Joulin & Mikolov, ArXiv:1503.01007]
» Stack-augmented RNN
] e UL LB " & [Sukhbataar, Szlam, Weston, Fergus NIPS 2015]
» ArXiv:1503.08895]
D .
y # Weakly-supervised MemNN:
S lA S]] » discovers which memory location to use.
St-1 a : St 1
action Predicted / .
stack(t-1) stack(t) O] ’@" W }gﬂ Q”i"er/ . }Ha
Weighted Sum A u 3 ~ Predicted
Ve \ e ™ c - Answer
Embedding C o ;- 'A<3: : kg
R - |
Sentences i @ o2
» [ [T 5| [T |l T TT Itg_ I - </|
S ==t |
I [ I ' | Sentences
Embedding A - | a1
4 Embedding B I
I
Question | Question g



'F Memory Network [Weston, Chopra, Bordes 2014]

# Add a short-term memory to a network http://arxiv.org/abs/1410.3916

I (input feature map) — converts the incoming input to the internal feature

representation. Method F1
G: (generalization) — updates old memories given the new input. (Fader et al., 2013) [4] 0.54
O: (011tp11t feature map) pmduces a new output (:111 the feature representation (Bﬂrdcs ot al 2014) E 0.73
space), given the new input and the current memory. MemNN : 071
R: Flﬂbpﬂﬂ?e) ccr:umejer‘t.b thie out:.pu‘t: ‘mtto the response format desired. For ex- MemNN (with BoW features)|0.79
ample, a textual response or an action.

Bilbo trawvelled to the cave.
Gollum dropped the ring there.

Bilbo took the ring. R 1

Bilbo went back to the Shire. esu tS on

Bilbo left the ring there. . .
Frodo got the ring. QUESUOD ADSWEFIDg
Frodo journeved to Mount-Doom.

Frodo dropped the ring there. TaSk

Sauron died.

Frodo went back to the Shire.

Bilbo travelled to the Grey-havens.
The End.

Where is the ring? A: Mount-Doom
Where is Bilbo now? A: Grey-havens
Where is Frodo now? A: Shire

Fig. 2. An example story with questions correctly answered by a MemNN. The MemNN
ras trained on the simulation described in Section[Z.2]and had never seen many of these
words before, e.g. Bilbo, Frodo and Gollum.



Obstacles to Progress
- In
Ay Artificial Intelligence:
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Four 'mi.ssing pieces for Al (besides comﬁutaf\cion)’"ﬁ\"" |

Theoretical Understanding for Deep Learning

— What is the geometry of the objective function in deep networks?
— Why the ConvNet architecture works so well? [Mallat, Bruna, Tygert..]

Integrating Representation/Deep Learning with Reasoning, Attention, Planning and
Memory

— A lot of recent work on reasoning/planning, attention, memory,
learning “algorithms”.

— Memory-augmented neural nets
— “Differentiable” algorithms

Integrating supervised, unsupervised and reinforcement learning into a single
“algorithm”.

— Boltzmann Machines would be nice if they worked.
— Stacked What-Where Auto-Encoders, Ladder Networks....

Effective ways to do unsupervised Learning

— Discovering the structure and reqularities of the world by observing it
and living in it like animals and humans do.



The Mysterious
Geometry of the
Objective Function




Deep Nets with'ReLUs and Max Pooling: &
' ' ‘ Y LeCun

@ Stack of linear transforms interspersed with Max operators
& Point-wise RelUs:

&

ReLU(x):max(x,O) W31,22
I @ @ 0@
_ W22,14
@0 0 ®O

# Max Pooling
» “switches” from one layer to the next W14,3

@000

/3



Deep, Nets with ReLUs: | & ™

Y LeCun

Objective Function is Piecewise Polynomii

@ If we use a hinge loss, delta now depends on label Yk:

L(W)=),C, (X ,Y,W)((H W) 3

ij)EP
& Piecewise polynomial in W with random W31,22
coefficients
# A lot is known about the distribution of critical O @ O
points of polynomials on the sphere with random
(Gaussian) coefficients [Ben Arous et al.] W22,14
» High-order spherical spin glasses
» Random matrix theory Q O O @ O
A
Ww14,3
Histogram of minima O O (3) O
/3
>

L(W)


file:///home/fair/text/Talks/videos-2015/tsne-2015.mp4

Deep Nets with RelLUs:

Objective Functlon IS PleceW|se Polynomli

Y LeCun

& Train 2-layer nets on scaled-down MNIST (10x10) from multiple initial
conditions. Measure loss on test set.

nhidden
25
50
100
250

20 - 500

count

o R |

1 | |
0.08 0.08 0.0

loss
[Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]



Reinforcement Learning,
Supervised Learning
Unsupervised Learning:
The Three Types of Learning




Three ‘Types ofikearning
| . Y LeCun

Reinforcement Learning

— The machine predicts a scalar
reward given once in a while.

— A few bits for some samples

Supervised Learning

— The machine predicts a category
or a few numbers for each input #°=
— 10-10,000 bits per sample '

Unsupervised Learning

— The machine predicts any part

of its input for any observed
part.

— Predicts future frames in videos
— Millions of bits per sample




the Machin% Need to'Predict?

How. Much Information Does

Y LeCun

Reinforcement Learning (cherry)

— The machine predicts a scalar
reward given once in a while.

— A few bits for some samples

Supervised Learning (icing)
— The machine predicts a category

or a few numbers for each input

— 10-10,000 bits per sample

Unsupervised Learning (cake)

— The machine predicts any part

of its input for any observed
part.

— Predicts future frames in videos
— Millions of bits per sample



Unsupervised Learning is the “Dark Mattér” of Al#
| i Y LeCun

Most of the learning performed by animals and J, 1L

humans is unsupervised {ME
We learn how the world works by observing it v ;
— We learn that the world is 3-dimensional fi

Y =

— We learn that objects can move '
independently of each other | y ‘*»j’
— We learn object permanence ERE O THET

— We learn to predict what the world will i i | (
look like one second or one hour from
now.

We build a model of the world through predictive
unsupervised learning

This predictive model gives us “common sense”

Unsupervised learning discovers regularities
in the world.




d.

Common Sensejthrough Unsljpervised Learning
s Y LeCun

Learning a predictive model of the world gives us common sense.

If I say: “Geérard picks up his bag and leaves the room”

You can infer:

— Gérard stood up, extended his arm, walked towards the door,
opened the door, walked out.

— He and his bag are not in the room anymore.
— He probably didn't dematerialize or fly out.
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y -

Energy-Based Unisupervised Learning _

Energy Function: Takes low value on data manifold, higher values everywhere else

\ )

Push down on the energy of desired outputs
Push up on everything else

Ea
L
...'*i '] | e ]

'=." T agypnr"

Y LeCun



f Generative Adversarial Networks

 [Goodfellow et al. NIPS 2014]
 Generator net maps random numbers to image
 Discriminator learns to tell real from fake images.

 Generator can cheat: it knows the gradient of the output of the
discriminator with respect to its input

Random$ Generator
Vector Network

Discriminator

> Network Real/Fake

Random Training
Index Set




Y LeCun

£ Laplacian GAN: LAPGAN (aka EyeScream)

* Learns to generate images [Denton et al. NIPS 2015]

* Generator net produces coefficients of a Laplacian Pyramid representation
of the image

* Discriminator learns to tell real from fake Laplacian images.

Real/
Generated?

Real/

Generated?

Real/Generated?

Real/Generated?



f “EyeScream”

http://soumith.ch/eyescream/

CIFAR-8

CIFAR-16

Imagenet-32

Imagenet-32

(recursive)

Imagenet-32 ”
(recursive) @&

T;i

-y
<)

w*

T'

'f




Y LeCun

f “EyeScream” / “LAPGAN”

« http://soumith.ch/leyescream/
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Ijisqoyering

Y LeCun

Regularities

DCGAN: adversarial training to generate images.

[Radford, Metz, Chintala 2015]
— Input: random numbers; output: bedrooms.
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Face Algebra (in DCGAN space)

Y LeCun

DCGAN: adversarial training to generate images.
— [Radford, Metz, Chintala 2015]
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~ Predictive Unsupervised Learning:
Video Prediction

ol [Mathieu, Couprie, LeCun ICLR 2016]
arXiv:1511:05440
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Unsupervised Learning is the “Dark Matt?r” of AIﬂc

Y LeCun

Unsupervised learning is the only form of learning that can provide enough
information to train large neural nets with billions of parameters.

— Supervised learning would take too much labeling effort
— Reinforcement learning would take too many trials

But we don't know how to do unsupervised learning (or even formulate it)
— We have lots of ideas and methods
— They just don't work that well yet.

Why is it so hard? The world is unpredictable!
— Predictors produce an average of all
possible futures —» Blurry image.

Predictor (multiscale ConvNet Encoder-Decoder)




-F Multi-Scale ConvNet for Video Prediction

M 4 to 8 frames input — ConvNet with no pooling — 1 to 8 frames output

Input First Second Third Fourth Fifth Output
X feature map feature map feature map feature map feature map G(X)

‘rrr.sorr

conv. ReLU conv. ReLU conv. ReLU conv. ReLU conv. Tanh

Network at
size k:

Gl

Xl
k/2 u Network at T upsample
size k/2: ' =
, ¥ [ -
Xk/2 H / h |
k)2




-F Can't Use Squared Error: blurry predictions

@ The world is unpredictable
@l MSE training predicts
the average of possible
futures:

blurry images.

Ground truth /5 result

EEEERRRR ..

REERERRRRE

. . ‘ : " Ground truth
EEEREREREREE .

EEREEEEEE .

EEEEEEENE . ...
REEEENEEE ...




-F Multi-Scale ConvNet for Video Prediction

@l Examples

Input frames

Adversarial result Adversarial+GDL result



Y LeCun

-F Multi-Scale ConvNet for Video Prediction

@l Examples

Input frames

Ground truth A ¢ result

{1 result GDL /; result

Adversarial result Adversarial+GDL result




-F Multi-Scale ConvNet for Video Prediction

@ Comparison with [Srivastava et al. 2015] who used LSTM.

EEEEREEREE .. ¥YUNNUEEE
REEREERERRERRE ... VEEEEEESR
EEREREER ... ¥ESSENEEN
EEREREEREER ... ¥ENNNEEN
EEREREEREER ... TESEEEEEE
REREEEEEE . YYWWREEE
EEREREEE ... ........
REREARAARAN v SO N O e

Adv. recursive - K 1-
EEREFEREEN .. ... CSEEEEEEE
......: GDL /¢4 recursive ........




Predlctlve Unsupervised Learnlng #, i a "

Y LeCun

s

\
Some success with “adversarial training”
— [Mathieu, Couprie, LeCun arXiv:1511:05440]

But we are far from a complete solution.




PREDICTIVE I
LEARNING



Machine Intelligence
Will be very different from
Human Intelligence




What Will AI BesLike?

Y LeCun

Human and animal behavior has basic “drives” hardwired by evolution
— Fight/flight, hunger, self-preservation, pain avoidance,
desire for social interaction, etc...

Humans do bad things to each other because of these drives (mostly)
— Violence under threat, desire for material resource and social power...

But an AI system will not have these Ce"’"’”"’\ =

drives unless we build them into it. oo /4g- AN \\
N

/ el \

Callosum
It's difficult for us to imagine an G"”"""."\):/' X
N )

intelligent entity without these drives S
f

Basal

WT_‘ o )}
— Although we have plenty of oy’ -""_{hﬁ
examples in the animal world “Vp°"'°'°m05// \),E
.."‘

Amygdala ~

N

Hippocampus
Cerebellum




S T

Y LeCun

How.do we align an Al's “moral” values t? humanalues?

F . | ; _:._._.

We will build a few basic, immutable, hardwired drives:
— To not hurt human and to interact with humans
— To crave positive feedback from trusted human trainers

Human trainers will associate rewards with behaviors that make surrounding
humans happy and comfortable.

Environment “
This is how children (and 8
. . S PPTN, habenula... _
social animals) learn how E — s
to behave in societ 2 2 [fCritic |5
Y' Q o mE (&)
) N i Té@ o
S I 3= N 3
= |8 ~ E
dorsal 2 tal c
Can we prevent unsafe AI? == - ——opamine | £
a anages - 'S
2 |2 o, )
ar \ 8 %E
Yes, the same way we - — ¥ 5 52
" state o
prevent unsafe airplanes Vb s 2] S
and cars.
BRI

[from Yael Niv]



How Will Human-Level Al Emérge

Y LeCun

The emergence of human-level Al will not be an “event”.
— It will be progressive

It will not happen in isolation
— No single entity has a monopoly on good ideas

Advancing Al is a scientific question right now, not a technological challenge
— Formulating unsupervised learning is our biggest challenge

Individual breakthroughs will be quickly reproduced
— Al research is a world-wide community

The majority of good ideas will come from Academia
— Even if the most impressive applications come from industry

It is important to distinguish intelligence from autonomy
— Most intelligent systems will not be autonomous.



f Conclusions

i@l Deep Learning is enabling a new wave of applications

» Today: Image recognition, video understanding: vision now works
» Today: Better speech recognition: speech recognition now works
» Soon: Better language understanding, dialog, and translation

il Deep Learning and Convolutional Nets are being widely deployed

» Today: image understanding at Facebook, Google, Twitter, Microsoft.....
» Soon: better auto-pilots for cars, medical image analysis, robot perception

@l We need hardware (and software) for embedded applications

» For smart cameras, mobile devices, cars, robots, toys....

@ But we are still far from building truly intelligent machines

» We need to integrate reasoning with deep learning
» We need a good architecture for “episodic” (short-term) memory.

» We need to find good principles for unsupervised learning
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