

Chaire Innovation technologique Liliane Bettencourt 2021-2022

Énergie solaire photovoltaïque et transition énergétique Daniel Lincot

Photonique et Photovoltaïque

Stéphane COLLIN

Centre de Nanosciences et de Nanotechnologies (C2N)

CNRS, Université Paris-Saclay

COLLOQUE – 21 avril 2022

Énergie solaire et société

solair

et

société

Centre de Nanosciences et de Nanotechnologies (C2N) CNRS, Université Paris-Saclay

Photonique, nanoélectronique, matériaux, microsystèmes et nano-biofluidique. **2800 m² de salles blanches.**

Plateau de Saclay

Paris

Quel peut être l'apport des nanosciences et des nanotechnologies pour le photovoltaïque ?

→ la <u>nanostructuration pour piéger la lumière</u>, ou pour contrôler le passage du courant à travers une interface.
→ la caractérisation des matériaux à l'échelle nanométrique.

Sur le photovoltaïque solaire, l'équipe SUNLIT du C2N travaille en étroite collaboration avec l'IPVF et les laboratoires de la Fédération du PhotoVoltaïque (<u>FedPV</u>).

http://www.c2n.universite-paris-saclay.fr https://sunlit-team.eu

Stéphane Collin, colloque « Energie solaire et société » 21 avril 2022

La lumière du soleil : absorption et pertes optiques dans une cellule solaire

et

3^{ème} enjeu : diminuer l'épaisseur en augmentant le chemin optique d'un facteur F

Stéphane Collin, colloque « Energie solaire et société » 21 avril 2022

Comment absorber + avec – de matière ?

Vers des cellules solaires ultrafines

Pourquoi ?

 \rightarrow moins de matériaux, des procédés plus rapides, pour des cellules moins chères

 \rightarrow des cellules flexibles et légères

pour de nouvelles applications

 \rightarrow des opportunités pour les très hauts rendements

Comment ?

→ défis fondamentaux : où sont les limites ?
(absorption, efficacité, matériaux)
→ défis technologiques : quelles stratégies, quels procédés

pour s'approcher des limites théoriques ?

→ défis industriels : comment passer des preuves de concepts de laboratoires aux modules commerciaux ?

Rêvons un peu...

Une diminution de l'épaisseur d'un facteur 10 à 50 est possible ! Est-ce que quelques dizaines de nanomètres peuvent suffire ?

Nature Energy 5, 959 (2020)

Stéphane Collin, colloque « Energie solaire et société » 21 avril 2022