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Our challenge in multiscale simulation

Problem statement: Discrepancy between

• macroscopic level of observation/simulation

• microscopic level of the available model

Example : bacterial chemotaxis

• Microscopic: detailed model for individual bacterium

• Macroscopic: advection-diffusion equation for population
2



Other example applications 

• Deformation of complex (e.g., 
biological) materials

• Heterogeneous microstructure 
(polycrystalline, cellular)
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•
Complex fluid flow: e.g., dilute solution 
of polymers


•
Polymer distribution results in non-
Newtonian stress tensor

taken from Fluent.com 3

• Ionization waves in gases
• Model for collisions between 

individual electrons



Connecting the levels of description

Lifting Restrictie

Simulatie

t* t* + !t

Microscopic level

• known model
• simulation code available

Macroscopic level

• only state variables
• unknown evolution equations
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• Coarse time-stepper is a wrapper around a microscopic simulation
• Generic building block for computational multiscale algorithms

Kevrekidis et al., 2000 - ... / Kevrekidis & S, Annual Review on Physical Chemistry 60:321-344, 2009 



Coarse based bifurcation analysis

U(t) U(t + τ) = Φτ (U(t))

• Time-stepper is a black box

• Directly compute macroscopic steady 

states and their stability

• Use (matrix-free) iterative methods (RPM, 

Newton-Krylov) -> equation-free

Matrix-vector products

Φτ (Ū)

Ū + � · v
Φτ (Ū + � · v)

DΦτ (Ū) · v
Ū

U∗ − Φτ (U∗) = 0

Kevrekidis et al., 2000 - ... / Kevrekidis & S, Annual Review on Physical Chemistry 60:321-344, 2009 
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Acceleration of macroscopic simulation

Exploit a separation in spatial and temporal scales

Coarse projective integration

Extrapolate macroscopic state 
forward in time

x

Patch dynamics

Interpolate between microscopic 
simulation in small subdomains

Gear, Kevrekidis, SISC. 24:1091-1106, 2004 / Lafitte, S, SISC, 2010, submitted.
S, Roose, Kevrekidis, SIAM MMS 4:278-306, 2005 / S, Kevrekidis, Roose, JCP 213(1):264-287, 2006. 
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∆t � δt
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Questions from a numerical analysis viewpoint

During lifting, missing 
microsocpic information is 
filled in based on the 
macroscopic state.

• What are appropriate 
macroscopic state 
variables ?

• How accurate is the 
reconstruction ?

• What is the influence of lifting 
errors on macroscopic 
evolution ?

Lifting Restrictie

Simulatie

t* t* + !t

During restriction, a 
macroscopic state is estimated 
based on the microscopic state.

• How big is the variance of the 
noise during restriction ?

• How can this variance be 
reduced ?

• How is variance affected 
when extrapolating in time ?

• How does extrapolation affect 
stability ?

Gear, Kaper, Kevrekidis, Zagaris. SIAM J. Appl. Dyn. Syst. 4:711-732, 2005.
Frederix, S, Vandekerckhove, Roose, Li, Nies. Discrete Cont Dyn-B 11: 855-874, 2009.
Ghysels, S, Van Liedekerke, Tijskens, Ramon, Roose, Int. J. Multiscale Comp. Engng. 8(4):411-422, 2010.
S, Lelievre, Legat, Computers and Fluids, 2010, in press.

Rousset, S, M3AS, 2010, submitted. 
Frederix, S, Roose, ESIAM: M2AN, 2010, in press.
Debrabant, S, SIAM MMS, 2010, submitted.
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The heterogeneous multiscale methods
An alternative formulation
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• Postulate a general form for the unknown macroscopic equation 

• Supplement this equation with an estimation of missing macroscopic 
quantities from a microscopic simulation

- Initialization of the microscopic model from a given macroscopic state

- Estimation of a macroscopic quantity from microscopic data

• This formulation has advantages from a numerical analysis viewpoint

E, Engquist, Vanden-Eijnden, et al., 2003 - ... 



Plan of the presentation
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• Introduction

• Projective and coarse projective integration for singularly perturbed ODEs

• Micro/macro accelerated Monte Carlo simulation of polymeric fluids

• Micro/macro parallel-in-time (parareal) simulation 

• Concluding remarks



Multiscale ODEs with invariant manifold structure

• We have a multiscale ODE 

• Explicit methods have time-step limitation 

• We know that a macroscopic model exists when

• For this macroscopic model, we have  

dx

dt
= f(x, y)

dy

dt
=

1

�
g(x, y)

� → 0

dX

dt
= F0(X) = f(X, η(X))

lim
t→∞

ϕt
ξ(y) = η(ξ) g(ξ, η(ξ)) = 0

∆t = O(1)

δt = O(�)



Projective (forward Euler) integration 

• Perform              explicit “inner” time steps of size                       

• Extrapolate forward in time on the large time scale : “outer” step size 

δt = O(�)

∆t

uN,k+1 = Sδtu
N,k, tN,k = N∆t+ kδt

uN+1 = uN,K+1 + (∆t− (K + 1)δt)
uN,K+1 − uN,K

δt

K + 1

tN tN+1

tN,k

Gear, Kevrekidis, SISC. 24:1091-1106, 2004 



Stability regions in the limit of infinite scale separation

• We know that, for the scale-
separated problem, we want 

• We therefore look at the limit 

• Then, the projective integration 
is stable if the eigenvalues of       
are inside one of two discs

DPI
1

DPI
2 (K = 2)

DPI
2 (K = 1)

DPI
1 = D

�
1− δt

∆t ,
δt
∆t

�

DPI
2 = D

�
0,
�

δt
∆t

�1/K�

δt = O(�), ∆t = O(1)

δt/∆t → 0

Gear, Kevrekidis, SISC. 24:1091-1106, 2004 



Choice of method parameters : outer time step 

• We consider a linear system with multiple time scales, and its forward Euler 
time discretization  

• Slow mode needs to be in a disc

• Fast mode needs to be in a disc

dx

dt
= λx

dy

dt
= −1

�
y

|λ∆t| < 2
The condition on       is independent of       !!∆t δt

∆t

DPI
1 = D

�
1− δt

∆t ,
δt
∆t

�

xn+1 = xn(1 + λδt) = ρxxn

yn+1 = yn(1− δt/�) = ρy yn

DPI
2 = D

�
0,
�

δt
∆t

�1/K�

ρy = 1− α

δt = α�



Choice of method parameters: number of inner steps K

• Choose K such that the fast eigenvalues are all inside the disc

• With some algebra, this leads to 

DPI
2 (K = 2)

DPI
2 (K = 1)

DPI
2 = D

�
0,
� α�

∆t

�1/K
�

K = C log(�−1)



Consistency of projective forward Euler
Extrapolation of fast modes

• Consider inner forward Euler/projective forward Euler for the fast equation

• Projective integration for the fast modes reads 

• We have 

• Unlike for the slow modes, this is not a good approximation to the time 
derivative (only damping is achieved !) -> we make an               during 
extrapolation, which needs to be damped ->  

dy

dt
= −1

�
y yn+1 = yn(1− α)

yN+1 = yN,K+1 + (∆t− (K + 1)δt)
yN,K+1 − yN,K

δt

yN,K+1 − xN,K

δt
=

((1− α)− 1)(1− α)KyN

α�
=

−(1− α)KyN

�

O(1/�)

K = O(log(1/�))



Coarse projective integration

• Start from a macroscopic state 

• Lift to the corresponding microscopic 
state

• Evolve over a microscopic time step

• Restrict to macroscopic state 

• Extrapolate macroscopic state  

16

X = Xn

s : tn → tn + δt :: (xn, yn) �→
�
xn,δ, yn,δ

�

Xn,δ = xn,δ

Xn+1 = Xn,δ + (∆t− δt)
Xn,δ −Xn

δt

L : X = Xn �→ (xn = Xn, yn ≈ η(Xn))
∆t � δt

δt

tn tn,δ = tn + δt tn+1 = tn +∆t



One strategy for lifting : Picard iteration

yn,m+1 = yn,m + δt g(xn, yn,m), m = 0, . . . ,M

0

0.25

0.5

0.75

1

y

0 0.2 0.4 0.6 0.8 1
x

x = ξ

y = η(ξ)

initial condition of 
lifting iteration

Picard iteration

When we just keep                                   , then   yn,0 = yn−1,K
K = O(1)



Challenge for multiscale SDEs

• We have a multiscale SDE 

• Implicit methods don’t work; explicit methods have a time-step restriction

• We know that a macroscopic model exists when

• For this macroscopic model, we have  

� → 0

∆t = O(1)

dx = f(x, y)dt

dy =
1

�
g(x, y)dt+

1√
�
β(x, y)dW

lim
t→∞

ρξ(y, t) = ρ∞ξ (y)

dX

dt
= F (X) =

�
f(X, y)dµX(y) =

�
f(X, y)ρ∞X (y)dy

δt = O(�)



Coarse projective integration for problems that 
require averaging

• Start from a macroscopic state 

• Lift to the corresponding microscopic state

• Evolve each of the realizations over a microscopic time

• Restrict to macroscopic state 

• Extrapolate macroscopic state  

19

t* t* + !tt* + "t t* t* + !tt* + "t

X = Xn

Xn+1 = Xn,δ + (∆t− δt)
Xn,δ −Xn

δt

L : X = Xn �→ {(xn
i = Xn, yni )}

I
i=1 , yni ∼ µXn(y)

s : tn → tn + δt :: {(xn
i , y

n
i )}

I
i=1 �→

��
xn,δ
i , yn,δi

��I

i=1

Xn,δ =
1

I

I�

i=1

xn,δ
i



Heterogeneous multiscale method for problems 
that require averaging

• Historically, for problems that require averaging, a slightly different algorithm 
was proposed first in the context of the heterogeneous multiscale method

• Propose a numerical method for the unknown macroscopic equation

• Supplement with an estimator for the unknown function F

- Lifting for macroscopic state to microscopic state

- Replace restriction by the required estimation 
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Xn+1 = Xn +∆t F (Xn)

L : X = Xn �→ {(xn
i = Xn, yni )}

I
i=1 , yni ∼ µXn(y)

F (Xn) =
1

I

I�

i=1

f(Xn, yni )



Constrained simulation to sample invariant measure

• We want the invariant distribution of 

• Use ergodicity :

- if a time average is equivalent to an ensemble average, we can simulate 

- and compute the restriction as 

dy =
1

�
g(ξ, y)dt+

1√
�
β(ξ, y)dW

ym+1 = yn + g(ξ, ym)∆t+ β(ξ, ym)∆W

F̂ (Xn) =
1

M

M�

m=1

f(Xn, ym) ≈
�

f(Xn, y)dµXn(y)



Plan of the presentation
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• Introduction

• Projective and coarse projective integration for singularly perturbed ODEs

• Micro/macro accelerated Monte Carlo simulation of polymeric fluids

• Micro/macro parallel-in-time (parareal) simulation 

• Concluding remarks



Micro-macro simulation of dilute polymer solutions
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Macroscopic part : Navier-Stokes equations for solvent

Microscopic part : Stochastic differential equation (SDE) for the 
configuration of an individual polymer

Coupling : non-Newtonian stress tensor 
(Kramers’ formula)

dX =

�
κ(t)X − 1

2We
F (X)

�
dt+

1√
We

dWt,

τp =
�

We
�X ⊗ F (X)� − Id

Re

�
∂u

∂t
+ u · ∇u

�
= (1− �)∆u−∇p + div(τp)

div(u) = 0

Laso, Öttinger, J. Non-Newtonian Fluid Mech. 47 (1993) 1-20.



Example 1 : Linear springs 

• Stress tensor

• Sign of X is irrelevant (length of spring), so 

• Distribution of X evolves towards a Gaussian 

• Closed model for evolution of the variance
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τp ∼ �XF (X)� ∝
�
X2

�

0

0.2

0.4

0.6

0.8

ρ(
y,
t)

−2 −1 0 1 2 3 4

dX =

�
κ(t)X − 1

2We
F (X)

�
dt+

1√
We

dWt, F (X) = X

 
X

dΣ

dt
= −2

�
κ(t)− 1

2We

�
Σ+

2

We

µ = �X� → 0

  

0.35

0.4

0.45

0.5

�(
y
−
µ
)2
�

0 0.1 0.2 0.3 0.4 0.5

t

  

  

t

Σ = �(X − µ)2�
Σ
(t
)

P
(X

,t
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Example 2 : FENE springs

• Finitely extensible nonlinearly elastic (FENE) 

• Distribution becomes non-Gaussian (with sharp peak)
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dX =

�
κ(t)X − 1

2We
F (X)

�
dt+

1√
We

dWt, F (X) =
X

1−X2/b

0

0.1

0.2

0.3

0.4

ϕ
(|X

|)

0 1 2 3 4 5 6 7

|X|

δ = 0.50
δ = 1.00t∗ = 0.5

t∗ = 1

• Impossible to represent exactly 
with a finite number of moments

• Monte Carlo simulation required 
(especially in higher dimensions !)

  

  |X|

P
(|X

|,
t)

U[L] = (Ul)Ll=1

Ul =
�
X2l

�



Coarse time-stepper for Monte Carlo simulation

Lifting Restrictie

Simulatie

t* t* + !t

Microscopic level

Macroscopic level
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dX =

�
κ(t)X − 1

2We
F (X )

�
dt+

1√
We

dWt

L : U �→ X = {Xj}Jj=1

R : X �→ U

Ul =
1
J

�J
j=1 fl(Xj)

dU
dt = H(U, κ(t))

τp = T (U)

from moments to an 
ensemble 

from an ensemble to 
moments

X k+1 = sX(X k, κ(t), δt)

U[L] = (Ul)Ll=1

Ul =
�
X2l

�



Lifting operator : constrained simulation 

• Simulate with constrained macroscopic state until conditional equilibrium

- Time integration, followed by projection onto manifold defined by imposed 
macroscopic state

• The result of the lifting is then given as (for M sufficiently large)

• Consistent initial condition also by projection of a nearby ensemble

27

X ∗,m+1 = sX(X ∗,m, κ∗, δt) + Λ∇XR(X ∗,m+1),

met Λ ∈ RL zodanig dat R(X ∗,m+1) = U∗

X ∗ = L(U∗) := X ∗,M

X ∗,m+1 = argmin
��X ∗,m+1 − sX(X ∗,m,κ∗, δt)

��

with constraint R(X ∗,m+1) = U∗

S, Lelievre, Legat, Computers and Fluids, 2010, in press.



Lifting induces a closure approximation

• Experiment 

- Coarse time-stepper with very small time step

- Macroscopic state variables : 

- (Much more expensive than full microscopic simulation)

• Lifting introduces modeling error that decreases for an increasing number of 
moments
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Extrapolation via coarse projective integration

• Start with a given macroscopic state

• Lift to the corresponding microscopic state

• Simulate the ensemble over      microscopic 
steps 

• Restrict to macroscopic state

• Extrapolate macroscopic state  
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∆t � δt

U = UN

L : U = UN �→ XN = XN,M

K

Kδt

XN,k+1 = sX(XN,k, κ(tN,k), δt), k = 0, . . .K − 1

UN,K = R(XN,K)

UN+1 = UN,K + (∆t−Kδt)
UN,K −UN

Kδt



Efficiency and accuracy of coarse projective integration

• Coarse projective integration is efficient if

- The bigger the time scale separation (                 ), the smaller M can be

- But: in the limit when                  , the macroscopic model is known !

- Real acceleration is only possible for an intermediary regime 

• During extrapolation, estimation noise is amplified with a factor

- A similar statistical error is obtained using less particles and no extrapolation

- For equal statistical error, coarse projective integration requires as much 
computations as a full microscopic simulation (assuming M=0 !)

30

∆t � (M +K)δt
Number of constrained 

steps during lifting

Number of steps to 
estimate time derivative

We → 0

We → 0

∆t/Kδt



An alternative extrapolation strategy 
Multistep state extrapolation

• Projective integration

• Multistep state extrapolation

- Extrapolate using the last point of each sequence of microscopic simulation

- Statistical error is unaffected 

- Systematic error does get amplified with a factor

- But we want to extrapolate just because we can tolerate a larger systematic 
error ! 
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UN+1 = UN,K + (∆t−Kδt)
UN,K −UN−1,K

∆t

Sommeijer, Comput. Math. Appl. 19 (6) (1990) 37–49.

UN+1 = UN,K + (∆t−Kδt)
UN,K −UN

Kδt

∆t/Kδt



Projection: an alternative for lifting

• “Classical” lifting : 

- project an ensemble on                   
onto an extrapolated macroscopic 
state on 

- simulate with macroscopic constraint 
until conditional equilibrium (M steps)

• Alternative : perform projection without 
constrained simulation

- The time gained during extrapolation 
is not lost during constrained 
simulation

- The projected ensemble now also 
depends on the ensemble at the 
previous time step ! 32

∆t � δt
Kδt

t = tN,K

t = tN+1
XN+1 = L(UN+1)XN+1 = P(UN+1;XN,K)

Debrabant, S, SIAM MMS, 2010, submitted.



Accuracy of projection operator
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• Experiment 

- Macroscopic state variables : 

- Simulate until time t* 

- Project                        onto manifold defined by                   and compare with    

• Projection introduces a modeling error that decreases with 

- increasing number of moments

- decreasing extrapolation time step

X (t∗ −∆t)

U[L] = (Ul)
L
l=1, Ul = �X2l�

U[L](t∗) X (t∗)

Error ∼ CL∆t

L p-value

3 0

4 7,00E-06

5 0,28

6 0,25

7 0,84

2-sample K-S test

     

   
  

∆t

E
rr
or



• Experiment

- macroscopic state variables

- strongly time dependent velocity gradient

- adaptive macroscopic time step

• Average gain of factor 4 in regime without strong scale separation

Numerical illustration
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Plan of the presentation
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Conclusions

• Coarse projective integration is a technique to accelerate simulation by 
inducing a numerical closure approximation

• The numerical closure is imposed by the lifting and prohibits convergence to 
the macroscopic image of the microscopic dynamics

• Replacing the lifting by a projection of the microscopic state on the manifold 
defined by a certain macroscopic state allows for full convergence

36



What I did not talk about

• Approximate macroscopic models can be used in a multilevel hierarchy, 
similar to multigrid

• Approximate macroscopic models can be useful to precondition Krylov 
methods in coarse bifurcation analysis

• One can build variance reduction techniques based on a limiting macroscopic 
equation

• Multiscale algorithms of this type can have significant advantages in several 
applications: polycrystalline materials, biological tissue, electromagnetism, ...
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Equation-free time-stepper based bifurcation analysis

U(t) U(t + τ) = Φτ (U(t))

• Time-stepper is a black box

• Directly compute macroscopic steady 

states and their stability

• Use (matrix-free) iterative methods (RPM, 

Newton-Krylov)

Matrix-vector products

Φτ (Ū)

Ū + � · v
Φτ (Ū + � · v)

DΦτ (Ū) · v
Ū

U∗ − Φτ (U∗) = 0

Kevrekidis et al., 2000 - ... / Kevrekidis & S, Annual Review on Physical Chemistry 60:321-344, 2009 
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