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|. Beckenstein-Hawking entropy of a black hole
2. Schwarzian theory of SYK fluctuations

and linear-T resistivity

3. Ciritical Fermi surfaces

4. Universal T-linear resistivity in two-
dimensional quantum-critical metals from
spatially random interactions



The Einstein action for gravity in 3+1 dimensions is
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where k% = 87y is the gravitational constant, R4 is the Ricci scalar. The Schwarzschild solution
of the saddle-point equations is

ds® = V(r)dr” +r°dQ; + - B

where d€)3 is the metric of the 2-sphere, and
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The gravitational mass of the black hole is M = 2G ym. The black hole horizon is at » = rg where
Vi(rg) = 0; so
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Quantum mechanics in a spacetime which is periodic as a function of 7 with period 1/7. We have
to ensure that there is no singularity at the horizon r¢g where V(ry) = 0. Let us change radial
co-ordinates to y, where r = rg + y*. Then for small y
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The expression in the square brackets is the metric of the flat plane in polar co-ordinates, with
radial co-ordinate y and angular co-ordinate 8 = V’(ry)7/2. Smoothness requires periodicity in 6

with period 27, and so

A’ = V,(T‘Q)
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The free energy SF = I, where 8 = 1/T. So the entropy is
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However, the metric is 7-independent, and the only explicit dependence of the action is via I = 8H.
Such an action implies S = 0.

The entire contribution to the entropy comes from the vicinity of singularity at » = rg. We evaluate
the action is the small region around this point
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where /C3 1S t.
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ne extrinsic scalar curvature of the 3-dimensional boundary of spacetime. [gg 1s the

Gibbons-Haw.

kKing boundary term, deduced by the requirement that the Euler-Lagrange equations

of Igray co-incide with the Einstein equations, with no additional boundary terms. The entire

contribution t

o the entropy will come from Iqp.
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We evaluate I5y by using the identity
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where n i1s the Gaussian normal co-ordinate of the boundary. Evaluating at y = €, we have
/ d’x\/q, = 2me A
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where A = 47rg is the area of the horizon. Combining everything, we have the famous result of
Hawking




Charged black holes

We consider a charged black hole in Einstein-Maxwell theory of g and a U(1) gauge flux F' = dA
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The saddle-point equations now yield a solution as before with
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where Q is the total charge, the chemical potential is y, and as before the horizon is where V' (ry) = 0,
the temperature T'= V'(rg)/(47), and A = 4nr§.

This defines a two parameter family of charged black hole solutions of Igjs determined by T and Q.



Charged black holes

Now we take the limit 1T° — 0 at fixed O. Then we find the remarkable feature that the horizon

radius remains finite
Q“QF
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In this limit, entropy becomes
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For the near-horizon metric, it is useful to introduce the co-ordinate ¢

so that the horizon at 7' =0 is at ( = oo. Then in the near-horizon regime R; < ( < oo the T'=10
metric 1S

dr? + d¢?
(2
This spacetime is AdSy x SZ.

ds® = R} - RjdQ3



Reissner-Nordstrom black hole of
Einstein-Maxwell theory
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The AdS,; metric
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is invariant under isometries which are SL(2,R)
sranstormations. Verify that the co-ordinate change
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with a,b,c.d real, leaves the AdS, metric invariant.

The co-ordinate transtormation

1 sinh (27T p) sin(277T'7)

¢ = cosh(27T p) — sinh (27T p) cos(2nT'7) " cosh(27T'p) — sinh(27Tp) cos(27T'T)

maps the metric to

ds® = 47*T? [dp® + sinh® (27T p)d7?]



Charged black holes

1. Reduce the 4-spacetime dimensional theory in Ig;s to a 141 dimensional
theory Ignro by taking all fields dependent only upon the radial co-ordinate
r and imaginary time 7.

2. Take the low energy limit of Igps2 by mapping it to a near-horizon theory,
I;7, in a 14+1 dimensional spacetime with a boundary.

3. Compute fluctuations about the AdSs saddle point of [ ;7. Einstein gravity in
1+1 dimensions has no graviton, and is ‘pure gauge’. In the JT-gravity theory
with boundary, there is a remnant degree of freedom which is a boundary
eraviton. The action for this boundary graviton is the Schwarzian theory.
The partition function of this Schwarzian theory can be evaluated exactly:.



Charged black holes

1. Make the metric ansatz

157 = S+ (G, d

where ds3 is an arbitrary metric in the ({,7) spacetime, and ® is a scalar field in
the ({, 7) spacetime.

2. The low energy theory on the ((,7) spacetime involves a metric h, and a scalar
field ®; given by lim¢ o [®((, 7)]* = R; + ®1((, 7), obeying the action
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where Ay = 47 R; is the area of the horizon at T = 0, and K; is the extrinsic
curvature of the one-dimensional boundary ¢ — 0 where
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Charged black holes

3. Remarkably, the partition function of the 1 4+ 1 dimensional JT gravity theory can be evaluated exactly
(here we are ignoring the gauge field path integral, which is subdominant at fixed Q)

Zo = /Dh@@lexp(—IJT)

The action is linear in ®1, and the integral over ®; yields a constraint Ro = —2/R3 i.e. the metric h is rigidly
AdS;. The only dynamical degree of freedom in JT gravity is a time reparameterization along the boundary
T — f(7). To ensure that the bulk metric obeys its boundary condition, we also have to make the spatial
co-ordinate ¢ a function of 7, so we map (7,{) — (f(7),((7)). Then the metric obeys its boundary condition
provided ((7) is related to f(7) by (here (3 is a small constant whose value cancels in the final result)
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Finally, we evaluate Iy along this boundary curve. In this manner we obtain the action
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where v = 327° R} /k* is precisely the linear-T co-efficient in the black hole entropy.
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Charged black holes

3. After a conformal map to finite temperature (and ignoring the contribution of the gauge
field fluctuation), we can write the low energy partition function of a 3+41-dimensional
black hole with charge Q@ = 47 R}, /(kgr), as a path integral over a single field f(7) in one
time dimension:

Zo = exp (2on> / HSL exp (412 /O " {tan (7T f@)),ﬂ»)

where v = 327°R3 /k*, Ag = 47 R;, and f(7) is a monotonic function of 7 obeying

fl(r+1/T)= f(r)+1/T.
We divide by the (infinite) volume of the SL(2,R) group because
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where a, b, ¢, d are constants with ad — bc = 1.



