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Black hole

thermodynamics




The Einstein action for gravity in 3+1 dimensions is

1
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where k% = 87(G v is the gravitational constant, R4 is the Ricci scalar. The Schwarzschild solution
of the saddle-point equations is

ds® = V(r)dr” +r°dQ; + - B

where d€)3 is the metric of the 2-sphere, and

Vir)=1

-
The gravitational mass of the black hole is M = 2G ym. The black hole horizon is at » = rg where
Vi(rg) = 0; so
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h/(kpT)

Distance E

1 outside horizon

The T > 0 quantum partition function is obtained in a spacetime which is periodic as a function
of 7 with period A/(kgT). We have to ensure that there is no singularity at the horizon ry where
V(ro) = 0. Let us change radial co-ordinates to y, where r = rq + y?. Then for small y
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y?d6? + dy?| + r5d;

The expression in the square brackets is the metric of the flat plane in polar co-ordinates, with
radial co-ordinate y and angular co-ordinate 8 = V'(rg)7/2. Smoothness requires periodicity in ¢

with period 27, and so
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The free energy SF = Ig, where 8 = 1/T. So the entropy is
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However, the metric is 7-independent, and the only explicit dependence of the action is via I = 8H.
Such an action implies S = 0.

The entire contribution to the entropy comes from the vicinity of the co-ordinate singularity at
r = rg. We evaluate the action is the small region around this point
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ne extrinsic scalar curvature of the 3-dimensional boundary of spacetime. Igg is the

king boundary term, deduced by the requirement that the Euler-Lagrange equations

of Igray co-incide with the Einstein equations, with no additional boundary terms. The entire
contribution to the entropy will come from Iqg.



r=7To \ T
| \J
We evaluate Iy by using the identity

0
/dgx\/%/Cg = —/dgx\/ﬁ
0 on Ja
where n 1s the Gaussian normal co-ordinate of the boundary. Evaluating at y = €, we have
/ d’x\/q, = 2me A
o,

where A = 4mrg is the area of the horizon. Combining everything, we have the famous result of
Hawking




Charged black holes

We consider a charged black hole in Einstein-Maxwell theory of g and a U(1) gauge flux F' = dA
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The saddle-point equations now yield a solution as before with
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where Q is the total charge, the chemical potential is y, and as before the horizon is where V' (ry) = 0,
the temperature T'= V'(rg)/(47), and A = 4nr§.

This defines a two parameter family of charged black hole solutions of Igjs determined by T and Q.



Charged black holes

Now we take the limit T° — 0 at fixed ©O. Then we find the remarkable feature that the horizon

radius remains finite
Q/ng

RhETQ(T%O, Q) — e

In this limit, entropy becomes
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S(T'—0,9) = ao T =g

For the near-horizon metric, it is useful to introduce the co-ordinate ¢

so that the horizon at 7' =0 is at ( = oo. Then in the near-horizon regime R; < ( < oo the T'=10
metric 1s

dr? + d¢?
(2
This spacetime is AdSy x SZ.

ds* = R} - RjdQ3



Reissner-Nordstrom black hole of
Einstein-Maxwell theory
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Dimensional reduction from 341 dimensions
to 1+1 dimensions (AdS;) at low energies!

total
charge O

3+1
dimensional
spacetime




The AdS,; metric

B dr? + d¢?

— %

is invariant under isometries which are SL(2,R)
sranstormations. Verify that the co-ordinate change

ds?

;o a(T+iC) + b
T c(tr+i()+d’ . T

with a,b,c.d real, leaves the AdSs metric invariant.

The co-ordinate transtormation

1 sinh (27T p) sin(277T'7)

¢ = cosh(2nT p) — sinh (27T p) cos(2nT7) " cosh(27T'p) — sinh(27Tp) cos(27T'7)

maps the metric to

ds® = 4w°T* |dp” sinhQ(QWTp)d%Q]



Quantum gravity

and
holography




e Black holes have an entropy and a temperature,
TH — th/(Sﬂ'GMkB)

e The entropy is proportional to their surface area.

S = AkBCS/(4Gh)

J. D. Bekenstein, PRD 7,2333 (1973)
S.W. Hawking, Nature 248, 30 (1974)

Remarkable features:

e Entropy is finite.

e [intropy is not
proportional to volume
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e Black holes have an entropy and a temperature,
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Black Holes Obey Information-Emission

Li m itS April 22,2021 « Physics 14,s47  -Christopher Crockett
G. Carullo, D. Laghi, J.Veitch,W. Del Pozzo, Phys. Rev. Lett. 126, 161102 (2021)

An analysis of the gravitational waves emitted from black hole mergers confirms that black holes are the fastest

known information dissipaters. 5
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A quantum computer simulating
a black hole must have:

e Number of qubits
| proportional to the surtace
area ?.e. 1t 1s a “hologram’

R o No quasiparticles and
Planckian time relaxation to
thermal equilibrium.

T.B. BAKKER / DR.].PVAN DER SCHAAR



Maxwell’s electromagnetism
and Einstein’s general relativity
allow black hole solutions with a net charge




Maxwell’s electromagnetism
and Einstein’s general relativity
allow black hole solutions with a net charge

Zooming into the near-
horizon region of a
charged black hole at
low temperature, yields
a quantum theory in
one space ((') and one
time dimension




Maxwell’s electromagnetism
and Einstein’s general relativity
allow black hole solutions with a net charge
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This should be dual to a
quantum computer in 0

space dimensions:
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The SYK model!




Maxwell’s electromagnetism
and Einstein’s general relativity
allow black hole solutions with a net charge

The quantum versions
of Maxwell’s and
Einstein’s equations in

this two-dimensional

spacetime are also the
equations describing

electron entanglement
in the SYK model!




The Sachdev-Ye-Kitaev (SYK) model

The SYK model has a scale-invariant
entanglement structure:
.e. electrons are entangled
at all distances

In one set of variables, it models the strange
electrical properties of a material called YBCO

. Sachdev, Ye (1993)

In a dual set of variables it describes
charged black holes

Sachdev (2010), Kitaev (2015), Maldacena Stanford (2015)




Thermodynamics of
the SYK model

and charged black holes




SYK model Charged black holes

N(so + v kgT) S(T) L( 4 \fAS/z 2 1. h )
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Ag 1s the area of
the horizon at 1" = 0.

5.5.2010, 2015



SYK model

= N(sg+vkpT)

Charged black holes

S(T) 1 fAS/ 22 k
kb hG 4 h
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Ag 1s the area of
the horizon at 1" = 0.
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5.5.2010, 2015



SYK model Charged black holes

ST = N(so+~kpT) ST 1 ( ; \fAS/Z "k ; )

kp kn kG 2

Ag 1s the area of
the horizon at 1" = 0.
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SYK model
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SYK model Charged black holes
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Energy, in units of U [

- D(Ey + E) ~ 2¢e"®0 sinh(\/QNvE)\
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B, charged black hole

Number Number INn string theory
SYK;r:odeI supersymmeﬁrlirc SYK model
or

charged black hole supersymmetric CFT




Corrections to scaling
at the

SYK saddle point




Conformal Perturbation theory
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Gross, Rosenhaus (2017)
Klebanov, Tarnopolsky (2017)
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Conformal Perturbation theory
We define the three point function

Uh(Tl,TQ,TQ) — <C(’7’1)CT(7'2)O}L(T())> .

In the long time scaling limit, we can drop the bare first time on the right hand side, and obtain the eigenvalue
equation

E’U(Tl,TQ,T()) :/d73d7-4K(7-177-257-377-4)Uh(7-377-477-0)7

where the kernel K is
K(71,72;73,T1) = —3U*G(T13) Gy (T24) G (T34)7

with 7;; = 7; — 7;, and we are interested in the eigenvalue &/ = 1. We can use the limit 79 — 0o, where we
can assume v ~ sgn(712)/|m12/"/?27"; then the eigenvalue equation is

3tan(rh/2 — 7 /4)

E =
2h — 1

= 1.

There are an infinite number of solutions, and the lowest values are h = 2, 3.77354..., 5.567946. . .,
7.63197 ..., .... Consequently, the low T' behavior of the entropy is

S(T) — N [SO i VT i ¥s T2.77354... 4. } .

We will have a particular interest in the h = 2 operator in the remaining discussion.



Random t- model

N
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We consider the hole-doped case, with no double occupancy.

8/ :T lfv {Ciom Cj;@} — 52350457 {Ciow Cjﬁ} =0

Ji; random, J—w 0 J,?j = J?

t;; random, t;; = 0, t?j — t°
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Random t-] model

Solvable in a SYK-like large M limit after fractionalizing
Co, = f4,b" into fermionic spinons and bosonic holons

1 1
b (iwn) Wy + iy — 2p(tWn,) f(iwon) Wy, + o — 2 (iwy)

Sp(1) = —t°Gp(1)G(—7)Go(7), Xp(1) = =J°Gy(1)*Gs(—7) + kt*Gf(1)Gy(T)Gp(—T)

0.1
0.08
0.06 =€ Critical
B‘ non-Fermi-liquid
e : e M. Christos,
0.02 Spin glass D. G. Joshi,
S.S. and

O |

b M. Tikhanovskaya,
0 0.1 0.2 0.3 0.4 0.0

arXiv:2203.16548



Random t-] model

Solvable in a SYK-like large M limit after fractionalizing
Co, = f4,b" into fermionic spinons and bosonic holons
Or C, = boff into bosonic spinons and fermionic holons

Critical metal
. 1
Metallic spin glass Holon: (b(7)b"(0)) ~ o,

1

Condense spinon b, . Spinon: <fa(7)fl(0)> ~ —2A;

(S(7)-S5(0)) ~ constant Ap+Ar=1/2, 0< Ay <1/4.

1
(S(7)-S5(0)) ~ 7_41Af M. Christos,
D. G. Joshi,
(calT)c(0)) ~ - S.$. and

M. Tikhanovskaya,
Pe & arXiv:2203.16548



Random t-| model
Solvable in a SYK-like large M limit after fractionalizing
Co, = f4,b" into fermionic spinons and bosonic holons

The h = 2 operator now leads to corrections to the
Green’s functions of the partons

Gp(7) ~ \/‘17‘ (1 : O{i’f : )

We can compute the resistivity from this in a large-d
model, and find as 1" — 0 that

‘ p(T)zp(O)(l—l—&p?I..).
Haoyu Guo, M. Christos,
Yingfei Guo, The linear-T term arises from the h = 2 operator, which D.G. Joshi,
S. Sachdev, we will see is a ‘time reparameterization soft-mode’, and a ~ S.S.and
Annals of Physics M. Tikhanovskaya,

4 : ) 2
418, 168202 (2020) boundary graviton’ in the charged black hole. TXiv903 16548



The Schwarzian theory:

accounting for the

h=2 operator exactly
in the SYK model as a
time reparameterization soft-mode




(- After introducing replicas a = 1...n, and integrating out the dis-
th order, the partition function can be written as
pa

integral - / , B / S i (0 .
Z = [ Dcio(T) exp ; : drc; 5= — I Cia

U2 b _
D / drdr’ |» el (T)ew(r))
ab VO
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For simplicity, we neglect the replica indices, and introduce the
identity

B
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G-
path
integral

Then the partition function can be written as a path integral with
an action S analogous to a Luttinger-Ward functional

Z = /DG(ﬁ,Tg)DZ(ﬁ,TQ)exp(—NS)
S =lIndet [0(m1 — 72)(0r, + 1) — X(71,7T2)]
—+ /dTldTQ [Z(Tl,TQ)G(TQpTl) -+ (UQ/Z)GZ(T%Tl)G2(7-177_2>}

At frequencies < U, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations
A. Georges and O. Parcollet

PRB 59,5341 (1999)
T = f(0o) A. Kitaev, 2015

S. Sachdev, PRX 5, 041025 (2015)
G(11,m2) = [f'(01)f (02)]

Y(711,72) = [f'(01)f (02

where f(o) and g(o) are arbitrary functions.



G-
path
integral

Reparametrization and phase zero modes

We can write the path integral for the SYK model as
Z = /DG(Tl,Tg)Dz(Tl,Tg)QNS[G’E]

for a known action S|G, X]. We find the saddle point, G, ¥4, and only focus on the
“Nambu-Goldstone” modes associated with breaking reparameterization and U(1)
cauge symmetries by writing

G(1,m2) = [f' (1) f ()] 2 G (f(11) — f(7o))e® (T 7i002)

(and similarly for ). Then the path integral is approximated by
z - / Df (1) D(r)eFo/ T+Nso=NSeaslf.9]

where Fg o< IV is the ground state energy.
J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdey, arXiv.|612.00849;
S.Sachdev, PRX 5, 041025 (2015); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857;
K.Jensen, arXiv:1605.06098; ]. Engelsoy, I.G. Mertens, and H.Verlinde, arXiv:1606.03438



Symmetries of the large N saddle point
Let us write the large N saddle point solutions of S as

GS(71—7'2> -/ (7‘1—7'2)_1/2

So(r— 1) ~ (1 —1) 32

The saddle point will be invariant under a reperamateri-
zation f(7) when choosing G(1,7) = Gs(m — T2) leads
to a transformed G(o1,02) = G4(o1 — 03) (and similarly
for ). It turns out this is true only for the SL(2, R)
transtormations under which

atT + b
f(r) i ad — bc

So the (approximate) reparametrization symmetry is spon-
taneously broken down to SL(2, R) by the saddle point.

A. Kitaev



Symmetries of the large N saddle point
e The saddle-point

6—27T5T(T1—7'2) 1 28
G(ri —m2) =—A
(11 — T2) N (sin(wT(ﬁ — Tz)))

is invariant only under PSL(2, R) transformations which map
the thermal circle onto itself, and an associated gauge trans-
formation

tan(7T'7) b
tan(ml'f (7)) _ T I ad — be — 1
[ tan(wTT) 7 7
C - d
'l
_Z¢(T) — _Z¢O + QWET(T B f(T)> A. Kitaev, 2015

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdev, PRB 95, |55131 (2017)



G-
path
integral

Symmetry arguments, and explicit computations, show that the effective action is

N~y

/T
47T2/0 dr {tan(7T f(71)), T},

where f(7) is a monotonic map from [0,1/7T] to [0,1/T], the couplings K, ~, and &
can be related to thermodynamic derivatives and we have used the Schwarzian:

2
B g/// 3 g//
{g7 T} T g/ 2 (g/ ’

Specifically, an argument constraining the effective at T' = 0 1is

at + b

Seff f(T): CT—|—d7¢(T>:O :Oa

and this is origin of the Schwarzian.

J. Maldacena and D. Stanford, arXiv:1604.07818;

R. Davison,Wenbo Fu,A. Georges,Yingfei Gu, K. Jensen, S. Sachdev, PRB 95, 155131 (2017);
A. Gaikwad, L.K. Joshi, G. Mandal, and S.R.Wadia, arXiv:1802.07746



Low temperature thermodynamics: for kT < U

Irexp ( kHT>
B

50 Df(r)Do(r) 1
o) | st eXp( el “)’W”)

e Feynman path integral over f(7), the
reparameterization of the time of the
SYK model, and ¢(7) a phase con-

jugate to the total charge O.

Z

exp (N

S.Sachdey, Phys. Rev. Lett. 105, 151602 (20
A. Kitaev (20
J. Maldacena and D. Stanford, Phys. Rev.D 94, 106002 (20

0)
6)



The Schwarzian theory:

boundary graviton

(a time reparameterization soft-mode)
In Einstein-Maxwell theory

of charged black holes



Quantum path integral for charged black holes

1. Reduce the 4-spacetime dimensional theory in Ig;s to a 141 dimensional
theory Igaro by taking all fields dependent only upon the radial co-ordinate
r and imaginary time 7.

2. Take the low energy limit of Igps2 by mapping it to a near-horizon theory,
I;r, 1n a 141 dimensional spacetime with a boundary.

3. Compute fluctuations about the AdSs saddle point of [ ;7. Einstein gravity in
1+1 dimensions has no graviton, and is ‘pure gauge’. In the J1T-gravity theory
with boundary, there is a remnant degree of freedom which is a boundary
eraviton. The action for this boundary graviton is the Schwarzian theory.
The partition function of this Schwarzian theory can be evaluated exactly.



Quantum path integral for charged black holes
1. Make the metric ansatz

157 = S+ ()

where ds3 is an arbitrary metric in the ({,7) spacetime, and ® is a scalar field in
the ((,7) spacetime.

2. The low energy theory on the ((,7) spacetime involves a metric h, and a scalar
field ®; given by lim¢ o [®((, 7)]* = R; + ®1((, 7), obeying the action

2w A 2 2 \| 4
]JT — 7T2 0 /dQQE\/E 7;- (I)l (RQ ) /{Z / dﬂ?\/ hb(I)l /Cl
_ _ 9,

3
K K Rh

where Ay = 47 R; is the area of the horizon at T = 0, and K; is the extrinsic
curvature of the one-dimensional boundary ¢ — 0 where

R},
F 9

2R3

hTT(g — O) — ¢




Quantum path integral for charged black holes

3. Remarkably, the partition function of the 1 4+ 1 dimensional JT gravity theory can be evaluated exactly
(here we are ignoring the gauge field path integral, which is subdominant at fixed Q)

Zo = /DhDCI)lexp(—IJT)

The action is linear in @1, and the integral over ®; yields a constraint Ro = —2/R3 i.e. the metric h is rigidly
AdS;. The only dynamical degree of freedom in JT gravity is a time reparameterization along the boundary
7 — f(7). To ensure that the bulk metric obeys its boundary condition, we also have to make the spatial
co-ordinate ¢ a function of 7, so we map (7,{) — (f(7),((7)). Then the metric obeys its boundary condition
provided ((7) is related to f(7) by (here (3 is a small constant whose value cancels in the final result)

G
2 O

Finally, we evaluate Is g along this boundary curve. In this manner we obtain the action

(1) =G f (1) + ¢ (Cy)

271'./4() Y

11/ 3 1\ 2
- Jargon L == (5

where v = 327° Ry /k? is precisely the linear-T' co-efficient in the black hole entropy.

Il,eff[f] —




Quantum path integral for charged black holes

3. After a conformal map to finite temperature (and ignoring the contribution of the gauge
field fluctuation), we can write the low energy partition function of a 341-dimensional
black hole with charge Q = 4w R} /(kgr), as a path integral over a single field f(7) in one
time dimension:

Zo = exp (%AO) / HSL exp (412 /O " {tan (7T f(T)),T})

where v = 327°R3 /k*, A9 = 47 R;, and f(7) is a monotonic function of 7 obeying

fl(r+1/T)= f(r)+1/T.
We divide by the (infinite) volume of the SL(2,R) group because

o af+0b
{f’T}_{Cf—I—d,T}

where a, b, ¢, d are constants with ad — bc = 1.



SYK model

Charged black holes

sin(7w’l't
1 0S8
%lino Nk 0Q = 2me

i 3 l/2
D(E) ~ exp(Nso) sinh (2N7E) | D(E) ~ exp (Aoc )Smh( g S E )

S(T) 1 Apc® ng/Q 2 |
k5 hG h

B A 9

3 | 2
Rl nmeeeyr to
Ay (RG)Y3(kBT/h)

2A
G(T) N 6—2778T7- 1
sin(71'7T)

lim L o5 = 27&

1T—0 ]{?B @Q

AhG

hG he

Large d t-J model with random J;; and SU(M — oo) symmetry: resistivity

p(T') = p(0) [1

a, (T'/J)

..| in a critical metal phase as T" — 0.



