

Matériaux et dispositifs à fortes corrélations électroniques II.3 Contrôle sélectif par la lumière et « Phononique non-linéaire »

Cycle 2014-2015 18 mai 2015 – II.3

Can we teach correlated quantum materials to do what we want them to: SELECTIVE CONTROL of <u>structure</u> (and electronic structure)?

"Frontiers in Quantum Materials Control" ERC-Synergy project QMAC A.Cavalleri, A.G., D.Jaksch, J.M. Triscone

http://www.mpsd.mpg.de/48916/Q-MAC-start

European Research Council

Two routes to structural control

Artificial Materials: Strained films and Heterostructures; "Oxytronics"

Many talks at this conference

Selective control with LIGHT

Structure determines Function

Large rotation/distortion Insulating

No rotation/distortion Metallic Undistorted phase not synthesized

Aim: control key electronic energy scales such as:1) Bandwidth 2) energy splitting between orbitals3) Superexchange, etc...

Selective control with resonant light

Incoherent vs. Coherent Control

mid-infra-red

(typically ~ 100 meV Range)

Incoherent excitation heats the material poorly selective Coherent excitation low dissipation due to heat excites only a few degrees of freedom

Pioneering experiments by Andrea Cavalleri et al.

From Zhang and Averitt Ann Rev Mat Res 2014

Pioneering experiment: Metallization of a Manganite by selective excitation of mid-IR structural mode

Exciting an IR-active phonon (up and down shaking of octahedra 71 meV ~ 17 THz) in an insulating manganite *induces an Insulator-to-Metal Transition*

Change of reflectivity at 800nm

From other experiments (B-field): signature of metallization

Optical conductivity <u>increases</u> above 0.8 eV as the <u>insulating</u> <u>state is formed</u> and the gap develops Metallization also seen Directly from Time-resolved dc-conductivity Measurement !

Figure 3 | **Time-dependent transport measurement.** Vibrational excitation of the Mn–O stretching mode results in a $\sim 10^3$ increase in the sample current (upper panel) and a corresponding $\sim 10^5$ increase in the sample conductivity (lower panel). The metastable metallic phase is formed and relaxes within the experimental time resolution of 4 ns. The current oscillations following the main pulse are due to electronic ringing and cannot be converted accurately into sample conductivity, so the derived conductivity oscillations are shown as a dotted line. The dashed line shows the d.c. conductivity of the insulating phase of Pr_{0.7}Ca_{0.3}MnO₃ at 30 K.

Not heating ! PCMO is an insulator for all values of x

Resonant phenomena (with ~70 meV mode)

PUZZLE:

- Light couples directly only to dipolar-active modes

- Distortions most relevant to electronic structure correspond to rotations, tilts, or JT modes

- Those modes do not carry a dipolar moment !

"Non-Linear Phononics"

Key qualitative idea: Först et al. Nature Phys 7, 854 (2011) Microsopic theory: Subedi, Cavalleri and AG, PRB 89 22031R (2014)

PHYSICAL REVIEW B **89**, 220301(R) (2014) Theory of nonlinear phononics for coherent light control of solids

Alaska Subedi,¹ Andrea Cavalleri,^{2,3} and Antoine Georges^{1,4,5}

Energy surface for PrMnO₃ as a function of Raman mode for different amplitudes of pumped IR mode

TABLE I: Calculated zone center phonon frequencies and the symmetries of selected modes of orthorhombic PrMnO₃. The mode number is given in the parenthesis.

Calc. freq. (cm^{-1})	Symmetry
97.43	$A_q(4)$
154.80 Octahedral rotations ~ 19 meV	$A_g(9)$
231.10	$A_g(21)$
267.58	$A_{g}(23)$
351.07	$A_{g}(36)$
479.49	$A_{g}(47)$
552.09	$A_{q}(51)$
622.12 c-axis `shaking' of octahedra ~ 77 meV	$B_{1u}(54)$
633.38	$B_{1u}(56)$
639.95	$B_{2u}(58)$
660.54	$B_{3u}(60)$

$$V(Q_{\rm R}, Q_{\rm IR}) = \frac{1}{2} \Omega_{\rm R}^2 Q_{\rm R}^2 + \frac{1}{2} \Omega_{\rm IR}^2 Q_{\rm IR}^2 + \frac{1}{3} a_3 Q_{\rm R}^3 + \frac{1}{4} b_4 Q_{\rm IR}^4$$
$$-\frac{1}{2} g Q_{\rm R} Q_{\rm IR}^2 \qquad (1)$$

$$\ddot{Q}_{\rm IR} + \Omega_{\rm IR}^2 Q_{\rm IR} = g Q_{\rm R} Q_{\rm IR} - b_4 Q_{\rm IR}^3 + F(t)$$

$$\ddot{Q}_{\rm R} + \Omega_{\rm R}^2 Q_{\rm R} = \frac{1}{2} g Q_{\rm IR}^2 - a_3 Q_{\rm R}^2.$$

Note: $Q_{IR}^2(t) \propto \cos^2 \Omega_{IR} t$ has a finite mean-value !

Effective potential seen by Raman mode, time-averaged over IR mode:

$$V_{\rm eff}(Q_{\rm R}) = \frac{1}{2}\Omega_{\rm R}^2 Q_{\rm R}^2 + \frac{1}{3}a_3 Q_{\rm R}^3 - \frac{1}{4}g Q_{\rm IR,max}^2 Q_{\rm R} \quad (11)$$

The displaced position $\delta Q_{\rm R}$ corresponds to the minimum of this potential given by $a_3 \delta Q_{\rm R}^2 + \Omega_{\rm R}^2 \delta Q_{\rm R} - g Q_{\rm IR,max}^2/4 =$ 0, and thus reads

$$\delta Q_{\rm R} = \frac{\Omega_{\rm R}^2}{2a_3} \left[\sqrt{1 + \frac{a_3 g Q_{\rm IR,max}^2}{\Omega_{\rm R}^4}} - 1 \right]$$
(12)
$$\simeq \frac{g}{4\Omega_{\rm R}^2} Q_{\rm IR,max}^2 - \frac{1}{16} a_3 \frac{g^2 Q_{\rm IR,max}^4}{\Omega_{\rm R}^6} + \cdots$$

The mechanism:

Upon pumping (fast IR mode), the effective potential seen by the slow (Raman-active) mode has a shifted minimum, corresponding to a change of the structure

FIG. 5: Dynamics of the Raman $A_g(9)$ mode for PMO (cubic coupling). Left panel: dynamics without damping. Right panel: dynamics with damping values of 5% for both $B_{1u}(54)$ and $A_g(9)$ modes.

Displacement of the Raman phonon away from equilibrium position

Reducing orthorombic distortion increases bandwidth and leads to metallic phase (can be quantified by a DMFT+DFT calculation:)

- Explains experimental observation of Rini et al.

Provides a quantitative framework to predict how

the structure changes upon resonant excitation of the IR mode

Time-resolved X-ray diffraction (@ Free-Electron Lasers) Direct evidence of displacement of Raman modes

see later in the talk, for YBCO (also Foerst et al. on LSMO, submitted)

Coupling to a symmetrybreaking Raman mode: Q²Q² coupling -> a different universality class ! Non-perturbative phenomena

...yet to be demonstrated experimentally

Q²Q² coupling, parametric oscillators, Kapitza pendulum and all that...

$$V(Q_{\rm R}, Q_{\rm IR}) = \frac{1}{2} \Omega_{\rm R}^2 Q_{\rm R}^2 + \frac{1}{2} \Omega_{\rm IR}^2 Q_{\rm IR}^2 + \frac{1}{4} a_4 Q_{\rm R}^4 + \frac{1}{4} b_4 Q_{\rm IR}^4 - \frac{1}{2} g Q_{\rm R}^2 Q_{\rm IR}^2.$$
(2)

$$\ddot{Q}_{\rm IR} + \Omega_{\rm IR}^2 Q_{\rm IR} = g Q_{\rm R}^2 Q_{\rm IR} - b_4 Q_{\rm IR}^3 + F(t)$$

$$\ddot{Q}_{\rm R} + \Omega_{\rm R}^2 Q_{\rm R} = g Q_{\rm R} Q_{\rm IR}^2 - a_4 Q_{\rm R}^3$$

Very different type of coupling: ~ parametric oscillator Frequency softening. Dynamical instability

Softening of the Raman mode, Dynamical threshold for displacement (driven parametric oscillator)

$$V_{\rm eff}(Q_{\rm R}) = \frac{1}{2} \Omega_{\rm R}^2 Q_{\rm R}^2 \left[1 - \frac{g Q_{\rm IR,max}^2}{2\Omega_{\rm R}^2} \right] + \frac{1}{4} a_4 Q_{\rm R}^4 \quad (16)$$

The motion becomes unstable when this effective potential acquires a negative curvature, so that to first approximation (ie neglecting corrections of order $\Omega_{\rm R}/\Omega_{\rm IR} \ll 1$, see below) the instability threshold is given by:

т

Oscillating Base

Dynamical stabilisation: the dynamical threshold is larger than that corresponding to the instability of the static potential Cf. Kapitsa's pendulum From Light-induced MIT... ... to Light-induced Superconductivity

Light-Induced Superconductivity in a Stripe-Ordered Cuprate D. Fausti et al. *Science* **331**, 189 (2011); DOI: 10.1126/science.1197294

Fig. 1. Schematic phase diagram for La_{1.8-x}Eu_{0.2}Sr_xCuO₄. Superconductivity (yellow area) is quenched at all doping levels (gray area) below 0.2, emerging only at very low temperatures. At 0.125 doping, a static 1D modulation of charges and spins, the stripe state, emerges in the planes. This stripe phase (left inset) is associated with a LTT distortion, in which the oxygen octahedrals in the crystal are tilted (right inset). The red dashed curve marks the boundary for superconductivity in compounds of the type $La_{2-x}Sr_xCuO_{4x}$ in which the LTT structural modulation is less pronounced.

> compound down to the lowest temperatures. (C) Transient c-axis reflectance of LESCO_{1/8}, normalized to the static reflectance. Measurements are taken at 10 K, after excitation with IR pulses at 16 μ m wavelength. The appearance of a plasma edge at 60 cm⁻¹ demonstrates that the photoinduced state is superconducting.

Report of Light-induced SC in YBCO far above T_c!

PHYSICAL REVIEW B 89, 184516 (2014)

arXiv:1205.4661

Optically induced coherent transport far above T_c in underdoped YBa₂Cu₃O_{6+ δ}

S. Kaiser,^{1,*} C. R. Hunt,^{1,4} D. Nicoletti,¹ W. Hu,¹ I. Gierz,¹ H. Y. Liu,¹ M. Le Tacon,² T. Loew,² D. Haug,² B. Keimer,² and A. Cavalleri^{1,3,†}

mature materials

PUBLISHED ONLINE: 11 MAY 2014 | DOI: 10.1038/NMAT3963

Optically enhanced coherent transport in YBa₂Cu₃O_{6.5} by ultrafast redistribution of interlayer coupling

W. Hu^{1†}, S. Kaiser^{1†}, D. Nicoletti^{1†}, C. R. Hunt^{1,2†}, I. Gierz¹, M. C. Hoffmann¹, M. Le Tacon³, T. Loew³, B. Keimer³ and A. Cavalleri^{1,4*}

Pump 20THz B_{1u} mode: shaking apical oxygens

Below T_c: Enhancement of superconductivity mpsd

W. Hu. S. Kaiser, D. Nicoletti, C.S. Hunt et al. *Nature Materials* 13, 705 (2014)S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Above T_c increase in σ_2 : same as by cooling mpsd

W. Hu. S. Kaiser, D. Nicoletti, C.S. Hunt et al. Nature Materials (2014)S. Kaiser, D. Nicoletti, C. Hunt et al., *Phys. Rev. B* 89, 184516 (2014)

Diagnostics: Josephson Plasma Resonance

Josephson Plasma Resonance

T. Tajima et al., Physical Review Letters 86, 500 (2001)

Above Tc : $YBCO_{6.45}$ 1 ps after excitation

Dotted grey : increase of sigma2 when cooling below Tc at equilibrium

Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa₂Cu₃O_{6.5}

R. Mankowsky^{1,2,3}*, A. Subedi⁴*, M. Först^{1,3}, S. O. Mariager⁵, M. Chollet⁶, H. T. Lemke⁶, J. S. Robinson⁶, J. M. Glownia⁶, M. P. Minitti⁶, A. Frano⁷, M. Fechner⁸, N. A. Spaldin⁸, T. Loew⁷, B. Keimer⁷, A. Georges^{4,9,10} & A. Cavalleri^{1,2,3,11}

Time-resolved measurements of 4 Bragg peaks

Slide courtesy A.Cavalleri ;R. Mankowski et al. Nature (2014)

A zoo of phonons...

Fit of experiment to theory: 1 overall amplitude (and 2 decay constants)

Buckling of planes **INCREASES** Apical oxygen _ distance DECREASES slightly (~pm) Staggered motion of planes: intra-bilayer distance increases Inter bilayer decreases

Possible mechanisms from observed/calculated transient structural changes

1) Staggered motion of the planes

Slide by courtesy of A.Cavalleri

(caution: from LDA) O-deficient chain band

moves lower in energy

LDA calculations show more x²-y²

Slide by courtesy of A.Cavalleri

Charge transfer from the planes to the chains mps

See also UBC EELS Nature Communications

Slide by courtesy of A.Cavalleri

3) Charge order is melted ($YBCO_{6.6}$)

Other possible explanations...

- New driven (Floquet) state by direct coupling of the pumped mode to electronic structure
- Effective cooling of phase fluctuations
- Other ...?

Take-Home Message: Selective Control of Quantum Materials through Non-Linear Phononics

125.19cm⁻¹

Qualitative idea: Först et al. Nature Phys 7, 854 (2011) Microsopic theory: Subedi, Cavalleri and AG, PRB 89 22031R (2014)

Transient structure of driven YBCO: Mankowsky et al. Nature 516, 71 (2014)