L'épigénétique: au-dela du code génétique

Edith Heard




The Genetic Code

e Central Dogma of Molecular Biology
: by A .
The central dogma of molecular biology deals with the detailed
FRANCIS CRICK residue-by-residue transfer of sequential information. It states
mllc '{.a:dontoryofﬁolecular Biclogy, that such information cannot be transferred from protein to either
s Ro;

protein or nucleic acid.
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The Genome: one blueprint, multiple interpretations
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The Genome: one blueprint, multiple interpretations
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The Genome: one blueprint, multiple interpretations
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Different cell fates are adopted and have to be

memorized as the fertilize.d egg forms a complex Conrad H. Waddington (1957)
1 organism The strategy of the genes
PO
TFz AL AasA Waddington proposed that

RNA—* . .
; Pol 1| networks of genes must be involved in

defining an epigenetic landscape



Epigenetics

Heritable changes in gene function

that cannot be explained by changes in DNA sequence.
Russo, V.E.A., R.A. Martienssen & A.D. Riggs Eds. (1996) "Epigenetic mechanisms of gene regulation.” CSHL Press.
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Epigenetics

Heritable changes in gene function

that cannot be explained by changes in DNA sequence.
Russo, V.E.A., R.A. Martienssen & A.D. Riggs Eds. (1996) "Epigenetic mechanisms of gene regulation.” CSHL Press.

Same Genome different Epigenomes

Developmental epigenetics: Stochastic or age-dependent epigenetics: Exogenously or environmentally
Development, sex chromosome dosage Differences in twins, clones... programmed epigenetics :
compensation... Disease « epimutations » Bees, ants - nutrition

\__ - Vernalisation in plants - climate
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Measure human aging from DNA Methylomes
Gender differences
Correlate with gene expression differences
Tumors show faster aging

Weeks of vernalization ( 4°C )~



How to understand the basis of differences between and within
individuals with the same genotype but different phenotypes

Different genotypes

Genetic, stochastic and
environmental factors give rise
to variability between
individuals

Same genotypes

A genotype organismal
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How to understand the basis of differences between and within
individuals with the same genotype but different phenotypes

Developmental and Phenotypic Plasticity, Polyphenism

* Most species can display some degree of
phenotypic plasticity — either distinctly
stable « morphs » - or continuum of traits

* It can be functional (and potentially
adaptive), inevitable (neutral or deleterious)|

* It can an be restricted to a few minutes, to a
whole life time, or to many generations

* How one genotype can give rise to different

phenotypes through environmental effects
1s clearly an EPIGENETICS question

* Back to Waddington’s original definition —
but actual mechanisms are still elusive




Epigenetic and Phenotypic Plasticity in Locusts

Two animals packed within the same genome

& W
o A8

(lifespan, metabolism, immune responses, endocrinology and reproduction) & behaviour
(solitary vs gregarious with population density increase)

* Gregarious morphs exhibit a wider dietary range, display increased locomotory activity, and

fly during daytime, in contrast to isolated locusts, which generally fly at night

- EGE
E"'] g}? 1=LRLA1\:%;3L

Simpson, S.J., McCaffery, A.R., Hagele, B. (1999 Biological Reviews 74: 461-480. j
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Deciphering How Genotype x Environment leads to Phenotypes

Cell cycle Pregnancy/menopause
Individual-intrinsic factors
e
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Can we decipher any logic by looking at chromatin
and epigenetic marks?




Chromatin is the Physiological Template of the Genome

ACTIVITY STATES OF CHROMATIN

| CHROMATIN |
CODING NON-CODING
CHROMATIN CHROMATIN
/ \ Constitutive heterochromatin
Functions other than transcription
i ACTIVE | [ INACTIVE |

No respense to stimuli
for
transcription

[ ACTING | [ RESTING |
Transcribed in response Stimuli for transcription absent
to stimuti Temporary repressors present

Ficure 1.—Classification of eukaryote chromatin according to its functional state.
Genetics 78: 305-309 September, 1974. From M. Lyon, 1974

i lymphocyte |ymphocyte stimulated to proliferate and
increase RNA Polll Activity
24 h or 48 h phytohemagglutinin exposure

Derenzini et al, 2014

Chromosomes during interphase are highly plastic structures.

The relationship between chromatin and the interchromatin space is highly variable
depending upon RNA transcription, cell cycle phases
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Chromatin is the Physiological Template of the Genome

The Nucleosome: Basic Repeat Unit of Chromatin

Ultrastructurally, nucleosomes are flat cylinders with a
diameter of 11 nm &with a height of 5.5 nm.

(Feulgen-like osmium-ammine staining - only DNA is
stained) (review Olins & Olins, 2003)

DNA is wrapped around an octamer of Histones
Histones are small basic proteins consisting of a globular
domain and a more flexible and charged NH2-terminus
(histone “tail”) that protrudes from the nucleosome.
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The 1990’s: New tools for detecting Histone Modifications

Highly specific antibodies raised - discriminating between chemically modified histones at specific
amino acids, => histone modifications could be detected by immunofluorescence (IF) and chromatin
immunoprecitipation (ChiIP)
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Unique tools to explore the differential states of chromatin by
immunofluorescence and by chromatin immunoprecipitation



The Histone “Code” Hypothesis (2000-2001)
The language of covalent histone

modifications [ i m and others...

N \ ! s v
Brian D. Strahl & C. David Allis Bryan Turner C. David Allis

Department of Biochemistry and Molecular Genetics, University of Virginia Health Science Center, Charlottesville, Virgima 22908, USA
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Can histone modifications function in combinations to recruit factors or
facilitate / mediate their roles?
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2002: The Histone “Code” Hypothesis...is still a Hypothesis

Chromosome scale

Inactive chromatin
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The molecular characterisitcs of heterochromatin and euchromatin
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Nucleosome scale
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https://en.wikipedia.org/wiki/Hypothesis
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/Histone

Technologies to understand Epigenomes and 3D Genome Folding
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Deciphering an Epigenetic logic using Epigenomics?
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Roudier et al., EMBO J (2011)
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Deciphering an Epigenetic logic using Epigenomics?
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Understanding the relationship between DNA sequence-specific binding of
transcription factors, changes in chromatin modifications and 3D structure
in gene rgulation and its variability

Time dimension... Genetic analyses...




Following Gene expression and Epigenomic changes over Time

A Epigenetic transitions occur on different time scales B Lineage tracing using genetic or epigenetic memory
P P Unique
@ Transcription factor binding patternof
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c
o o
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Deciphering the Logic of Development

Heritable (somatic) states
(epigenetic barriers)
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Deciphering how Genotype x Environment leads to Phenotypes

Cell cycle Pregnancy/menopause

B Cross-talk between

Metabolism and Epigenetics

Interindividual
variability

Microenvironment
Microenvironment ss g
Pollutants/toxins 8 Daylight ":j;g‘:r':;
Envramoncacrs |
Cell
Physical activity § Prenatal environment vari
9 B

Adapted from Ecker et al, Bioessays 2018

Campit et al, Bioessays 2020
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Measuring Ageing through Epigenetic Changes?

Just how similar are two supposedly genetically identical individuals as they age...

The term ‘epigenetic clock’ is used to denote two

distinct but related things:

- synonym of a highly accurate age estimator based on
DNA methylation levels

- concept of an innate process in the body that
continues inexorably, resulting in ageing

Horvath and Raj, NRG 2018

DNA methylation-based age

Chronological age



Ageing and Epigenetic Changes

Evidence that epigenetic alterations may play a major DNA methylation-based biomarkers
part in the ageing process? and the epigenetic clock theory of ageing
Horvathgd Raj, NI§_§ 2018
Level A~ /,.,.c,ﬁ»»,\

Epigenetic changes during ageing can contribute to RN
changes in genomic instability and changes in gene B
expression profiles that are characterized by an
increase in gene expression noise - associated with
ageing process?

X 2/
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Cell @ Stem cell @ Progenitor cell @ Committed cell @ Senescent cell

m*C
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o (PN INPT |

Continuous readout: DNAm age

1

al
Development Maintenance Decline

Zhang... Izpisua Belmonte 2020 “The ageing epigenome and its rejuvenation” “




Ageing and Epigenetic Changes: Rejuvenation Potential?

Evidence that epigenetic alterations may play a major

part in the ageing process? Kttt
Epigenetic changes during ageing can contribute to ) @ S Banomiciasmbiiity
. .. ore . = * Mitochondrial malfunction
changes in genomic instability and changes in gene \Y) * Metabolic imbalance
. . . I ¢ Chronic inflammation
expression profiles that are characterized by an i « Accumulation of
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increase in gene expression noise - associated with ‘ » Stem cell exhaustion |
ageing process? Young ou
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Zhang... Izpisua Belmonte 2020 “The ageing epigenome and its rejuvenation”



Ageing and Epigenetic Changes: Rejuvenation Potential?

Evidence that epigenetic alterations may play a major
part in the ageing process?

Epigenetic changes during ageing can contribute to
changes in genomic instability and changes in gene
expression profiles that are characterized by an
increase in gene expression noise - associated with
ageing process?

Zhang... Izpisua Belmonte 2020 “The ageing epigenome and its rejuvenation”
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Where are we today in “decoding” the logic of life
beyond the genome?




Defining Cell Type, Cell Identity and Variation at the Single-Cell Level

VILANLAG, £7 AL SCIENCE 366, EA

" The Human Cell Atlas:
from vision to reality

The human body at cellular resolution: the
NIH Human Biomolecular Atlas Program

HuBMAP Consortium®*
the of th of tissues with
spatial and wmmmmmym the NTH Common Fund Human Biomolecular Atlas Program
(HnnuAl’)hnndsmMehpawﬂely for v the human body at single-
cell resolution by supporting data and spatial HuBMAP will
integrate its efforts with other funding agencies, programs, consortia, and the
towards the shared vision of and cellular atlas of the human

body, in health and under various disease conditions.

Single cell and "omics assays
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Deciphering phenotypic variation within individuals
at the single cell leve over space and time

Single-cell RNA sequencing (scRNA-seq) Single-cell Multi-omics
hOVEseq
= Transcription factor binding scATAC-seq
f Pol. | TF binding interacts with DNA scDNAse-seq
W methylation and chromatin accessibility ’
e Chromosome organization

/ W2 scHIC

f‘?U’/I:'f Transcription and RNA maturation
\ ¥
/ ﬂ">/ Histone modifications

i :

Transcription

i § # Modifications can be active marks
- (e.g., H3K4me3 in green) or repressive

into LADs and TADs
Histone modifications
scChIP-seq

] , }
i ~'||E§#mmmwg4nymawm) scRNA-seq
! y : " , DNA modifications
o/ S c @ s5me
£ > / A 5hmC /5(C / 5caC DNA modifications
Credit: Tobias Wiistefeld/BlueClay Studios . scBS-seq
S | Ch;omosome orgaqnzatmn scAba-seq
Higher-order chromatin organization CLEVER-seq

Single-cell epigenomics: Recording
the past and predicting the future

Gavin Kelsey,"”*1 Oliver Stegle,”**t+ Wolf Reik"*"*t .
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What defines Cell Type or Cell Identity?

A Single-cell sequencing , B Integrated single-cell c Cell phenotype
toolbox 4 Transcriptome  Lineage multi-scale A{
] ' whole-organ phenotype - Chromatin Chromatin x Mutations
gmag typ conformation  accessibility
' : RNA abundance
‘ & localization
e F —p ,\’“\%——
Genome Proteome £ NS
o : v
(o] | 5
D
g“::- E

|

|

[

|

|
"

il

: Genome  Protein abundance
Epigenome | sequence & localization )
L] ”I l TR . - Relative cell composition - Tissue patterning / zonation
HE 1 R Tissue/system _| - Cell-cell interactions - Differentiation trajectories

bt 2 phenotype - Spatial structure - Lineage hierarchy
- " y - Gene network specificity - Cell histories

Camp et al. 2019 “Mapping human cell phenotypes to

genotypes with single-cell genomics”. Science 365, 1401-1405 R COLLEGE
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Spatial-omics atlases

High-resolution RNA capture from tissue by Slide-seq.

A Bead deposition In situ indexing B
: i Total time - 3 hours

Transfer to tube \

' 4
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Rodriques et al. Science 2019;363:1463-1467
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Localization of cell types in the cerebellum and
hippocampus using Slide-seq.
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Spatial-omics atlases

Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and
tissues for spatially indexed sequencing

" : " a = - X . R 4
(1) Image + select ROls for in situ barcoding @ Section fixed mouse retinas @ Immunostain for TH protein Barcode 4-8 TH' calls and bulk Extract Parco;ie, CDNAs for
and perform AT In situ H™ celis per retingl section sequencing, leaving tissue intact
Extract
cDNA
e
¥ drecied
\\ §- " YODAROSDOESE KL 2 barcode
Iterau\{e S . k Fnllnwﬂn’xp " »
barcoding by < stains
rounds
b . d o
Antibedy-guided barcoding Presequencing stains Postsequencing stains

(2) Extract barcoded reads + sequence with bulk NGS

- o> el Optional

Pooled = e : P -

libraries — =S [ ollow-up

from - - NGS o IF, assz;ys
= —- 2% A stains on the
- 7S S QW& same

and = = P sample
e Differential gene

Region ID ‘ expression

Light-Seq enables selective barcoding of custom
selected cells or tissue regions in situ for
transcriptomic sequencing

It enables rare cells to be identified and
transcriptomics to be performed Kishi et al, Mature Methods 2022
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Spatial-omics atlases

Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and
tissues for spatially indexed sequencing

(1) Image + select ROls for in situ barCOdmg ¢ Light-Seq differential genes f Multiplexed RNA FISH validations of markers endched in TH™ DACs
' * Cartpt
*Th
* Slc18a2
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Vgt
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(2) Extract barcoded reads + sequence with bulk NGS 5-“{1’[’2

—‘ Optional Rp1
% [ * Gabre
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selected cells or tissue regions in situ for L
transcriptomic sequencing
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transcriptomics to be performed Kishi et al, Mature Methods 2022

COLLEGE
DE FRANCE

1530




Deciphering Tumor Heterogeneity

Chromatin
tridimensional
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Casado-Pelaez et al, Trends in Cancer, 2022
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Spatial epigenomics
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Aging and Epigenetic changes: importance of the environment

Twin studies
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Dermal fibroblast aging
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The identity of old dermal fibroblasts becomes
undefined and noisy
Loss of cell identity is a possible mechanism
underlying aging

Salzer et al., 2018, Cell 175, 15751590
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Conclusion

Life does not happen in Isolation

Organisms are heterogeneous, due to the environment or to intrinsic biological processes
Deciphering phenotypic variation requires an understanding of the relationship between DNA
sequence variation and epigenetic changes at the cellular and organismal levels over time

We now have the tools!
Although we do not yet know if there is a true epigenetic code, we are closer than ever to a

molecular understanding of development, phenotypic plasticiy, ageing and pathology
And to the hope of truly personalised medicine
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