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FOREWORD

Quantum theory provides an extremely accurate description of
fundamental processes in physics.

Quantum Entanglement is a complex and delicate (spooky) quantum
phenomenon (Einstein et al 1935, Schrödinger 1935, Bell 1960’) and a
widely believed resource of quantum information science (Deutsch,
Feynman, Manin 1980’).

It is the Q-analog of the statistical dependence in probability theory
implemented in a special kind of correlations that quantum systems
can have even when no forces or other influence links them.

Entanglement plays an important role in quantum information science
(coding, computation, etc.), quantum statistical mechanics (quantum
phase transitions, thermalization, etc.), cosmology (black holes), etc...
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PROGRAM of the COURSE

1 Introduction: basic notions of quantum mechanics, bipartite
systems, entanglement, reduced density matrix, entanglement
quantifiers. A toy model of black hole radiation.

2 Dynamics of two qubits in random environment: general setting,
models of environment, basic approximations, random matrix
environment (analytical and numerical results).

3 Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities
(dedicated to the Nobel Prize in Physics 2022)

4 Entanglement in extended systems: setting and basic facts for
translation invariant systems.

5 Entanglement for free disordered fermions: Anderson localization,
area law and its violations.
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Quantum Mechanics I
A Physical Theory

Consider a mathematical scheme pertinent to any theoretical
description of physical systems (although not always in explicit form).

1 States. A state is a complete description of a physical system.

2 Observables. An observable is a property (a characteristic) of a
physical system.

3 Dynamics. A dynamics is given by an equation that describes the
time evolution of observables and/or states.

4 Measurements. A measurement is a procedure that provides a
numerical value of a given observable in a given state of a
physical system.

Here are two important implementation of the scheme
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Theory ⇒
Elements ⇓

Classical Mechanics Quantum Mechanics

States Pure (Newton) : points
of phase space M (a
manifold) ;
Mixed (Liouville): prob-
ability distributions
(measures) on M.

Pure (Schrödinger):
vectors of state space H
(a Hilbert space);
Mixed (von Neumann)
density matrices (p.d.o.
of trace 1) in H.

Observables Functions on M. Hermitian operators in
H.

Dynamics
(equations of
motion)

Observables (Hamil-
ton);
States: (Liouville).

Observables Heisen-
berg) ;
States (Schrödinger,
von Neumann).

Measurements:
observables
+ states

Integrals of product of
functions and a mea-
sure of total mass 1.

Traces of product of her-
mitian operators and a
p.d.o. of trace 1.
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Dirac Notations

Hilbert space of dimension n: H, dim H =n: the collections of
n-tuples

”ket” : |x⟩ = (x1, . . . xn) =: {xj}n
j=1, ”bra” : ⟨x | = (x1, . . . xn) =: {xj}n

j=1,

equipped with the operations of superposition

α|x⟩+ β|y⟩ = |αx + βy⟩ = {αxj + βyj}n
j=1

and the inner (scalar) product

⟨x |y⟩ =
n∑

j=1

xjyj , ⟨x |y⟩ = ⟨y |x⟩,

⟨x |β′y ′ + β′′y ′′⟩ = ⟨x |β′y ′⟩+ ⟨x |β′′y ′′⟩ = β′⟨x |y ′⟩+ β′′⟨x |y ′′⟩.

⟨x |x⟩ =
n∑

j=1

|xj |2 =: ||x ||2,
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Linear Operators (Matrices) in H: linear maps A : H → H

A : H → H, A|x⟩ := |Ax⟩
A(α|x⟩+ β|y⟩) = α|Ax⟩+ β|Ay⟩, (αA + βB)|x⟩ = αA|x⟩+ βB|x⟩,

or the collection of n × n "tables"

A = {Ajk}d
j,k=1 =



A11 A12 . . . A1n
A21 A21 . . . A21
. . . . . .
. . . . . .
. . . . . .

An1 An2 . . . Ann

 , (A|x⟩)j =
n∑

k=1

Ajkxk ,

equipped with the operation of multiplication ("row by column")

AB = {(AB)jk}n
j,k=1, (AB)jk =

n∑
l=1

AjlBlk , j , k = 1, . . .n.
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Examples:

- Diagonal matrix {djδjk}, unit matrix 1n := {δjk}n
j,k=1

- Pauli matrices

σ0 = 12 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

σ1σ3 =

(
0 −1
1 0

)
, σ3σ1 =

(
0 1
−1 0

)
= −σ1σ3,

hence, matrix multiplication is noncommutative,

commutator [A,B] := AB − BA ̸= 0 in general.

The set of linear operators in H is denoted B(H) and is an
noncommutative algebra (operations of addition and noncommutative
multiplication), while in a Hilbert space we have only the operation
(addition).
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- Hermitian operators: A = A∗, A = {Ajk}n
j,k=1, A∗ = {Akj}n

j,k=1.

- Positive definite operators (p.d.o.): ⟨x |Ax⟩ = ⟨A∗x |x⟩ =: ⟨x |A|x⟩ ≥ 0.

- Rank-one operators: |u⟩⟨v | = {ujvk}, |u⟩⟨v | · |x⟩ = ⟨v |x⟩|u⟩.
- Orthogonal projection: Pu = |u⟩⟨u|, ||u|| = 1, P2

u = Pu,
since |u⟩⟨u||x⟩ = ⟨u|x⟩|u⟩.

- Spectral theorem for hermitian operators

A =
n∑

t=1

at |ψt⟩⟨ψt |, f (A) =
n∑

t=1

f (at)|ψt⟩⟨ψt |, f : R → C

eigenvalues {at ∈ R}n
t=1, eigenvectors {|ψt⟩}n

t=1, ⟨ψt ′ |ψt ′′⟩ = δt ′t ′′ ,

ρ =
∑n

t=1 pt |ψt⟩⟨ψt |, 0 ≤ pi ≤ 1 is a mixture of pure states.

Trace of operator :

TrA =
n∑

j=1

Ajj , Tr f (A) =
n∑

j=1

f (aj),
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Tensor product of Hilbert spaces: given H′, dimH′ = n′ and
H′′, dimH′′ = n′′, define H′ ⊗H′′ as the collection of n′n′′ tuples

x = {xjk}n′,n′′

j,k=1,

a discrete analog of functions of two variables.
In particular, if |x ′⟩ = {x ′

j }n′

j=1 ∈ H′, |x ′′⟩ = {x ′′
k }n′′

k=1 ∈ H′′, then

|x ′⟩ ⊗ |x ′′⟩ := |x ′x ′′⟩ = {x ′
j x

′′
k }

n′,n′′

j,k=1

is the tensor product of vectors.

Operators in H = H′ ⊗H′′:

A = {Aj ′j ′′,k ′k ′′,}n′n′′

j ′k ′=1,j ′′k ′′=1,

(A|x⟩)j ′j ′′ =
n′′∑

k ′k ′′=1

Aj ′j ′′,k ′k ′′xk ′k ′′ , |x⟩ = {xk ′k ′′}n′n′′

k ′,k ′′=1 ∈ H′ ⊗H′′.
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In particular, if A′ ∈ H′, A′′ ∈ H′′, then

(A′ ⊗ A′′)j ′j ′′,k ′k ′′ = A′
j ′k ′A′′

j ′′k ′′ , A′ ⊗ A′′|x ′⟩ ⊗ |x ′′⟩ = A′|x ′⟩ ⊗ A′′|x ′′⟩.

is the tensor product of operators, in particular

A′ ⊗ 1′′|x ′⟩ ⊗ |x ′′⟩ = A′|x ′⟩ ⊗ |x ′′⟩(cf . partial derivative).

Partial trace: if A = {Aj ′j ′′,k ′k ′′,}n′n′′

j ′k ′=1,j ′′k ′′=1 ∈ H′ ⊗H′′, then

(TrH′ A)j ′′k ′′ =
n′∑

j ′=k ′=1

Aj ′j ′′,k ′k ′′ ,

TrH′(A′ ⊗ A′′) = (TrH′ A′) A′′, TrH′ |u′⟩⟨v ′ | ⊗ |u′′⟩⟨v ′′| = ⟨v ′|u′⟩|u′′⟩⟨v ′′|.

Dirac notation is rather convenient, because virtually anything can put
inside a "bra" and a "ket" as long as its meaning is not ambiguous.
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Comments
Scheme again

Theory ⇒
Elements ⇓

Classical Mechanics Quantum Mechanics

States Pure: x ∈ M - phase
space;
Mixed: µ : M → R+,∫
M µ(x)dx = 1.

Pure: ψ ∈ H - state
space;

Mixed: p.d.o. ρ ∈ B(H),
Tr ρ = 1 .

Observables Real-valued f : M →
R.

Hermitian A ∈B(H).

Dynamics Observables: ∂f
∂t =

{H, f};
States ∂µ

∂t = −{H, µ}.

Observables: ℏ∂A
∂t =

i[H,A];
States: ℏ∂ρ∂t = −i[H, ρ].

Measurements f =
∫
M f (x)µ(x)dx A = TrAρ
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Comments

- Born rule: Given an observable O =
∑

t ot⟨ψt | and a pure state ψ,

Pψ{O .
= ot} := P{O = ot |ψt⟩⟨ψt |} = |⟨ψt |ψ⟩|2 = Tr |ψt⟩⟨ψt | · |ψ⟩⟨ψ|.

- Classical observables commute while quantum observables do not
commute, manifesting "quantumness" via the uncertainty principle.

- Quantum pure states obey the superposition principle, manifesting
quantumness via constructive and destructive superposition.

Classical mechanics (probability theory):

µ1, µ2, states =⇒ µ =
1
2
µ1 +

1
2
µ2, a state.

Quantum mechanics:

ψ1, ψ2, pure orthogonal states =⇒ ψ =
1√
2
ψ1 +

1√
2
ψ2, a pure state.
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For instance, for a classical particle

Pµ{particle ∈ dx} =
1
2

Pµ1{particle ∈ dx}+ 1
2

Pµ2{particle ∈ dx},

while, for a quantum particle (Born rule)

Pψ{particle ∈ dx} = |ψ(x)|2, (ψ(x) is the probability amplitude)

=
1
2
|ψ1(x)|2 +

1
2
|ψ2(x)|2 + ℜψ1(x)ψ2(x) =

=
1
2

Pψ1{particle ∈ dx}+ 1
2

Pψ2{particle ∈ dx}+ TQ(x)

and for ψa = |ψa|eiαa = |Pa|1/2eiαa , a = 1,2

Pψ{particle ∈ dx} =

{
2−1(P1 + P2), α1 − α2 = 0,±2π, cl. mech.,
2−1|P1 − P2|, α1 − α2 = ±π, q. mech..

TQ is due to the "interference" of ψa, a = 1,2, recall wave mechanics
by Schrödinger.
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Quantum Mechanics II

Bipartite System: SAB = SA ∪ SB with the state space HAB
= HA ⊗HB.

Given the Density Matrix ρAB of SAB (Q-analog of joint probability
distribution of probability theory), introduce the
Reduced Density Matrix (RDM) of SA

ρA := TrB ρAB

(Q-analog of a marginal in probability theory).

A pure state ΨAB ∈ HAB is entangled if it is not a product state

ΨA ⊗ΨB, Ψa ∈ Ha, a = A,B

(Q-analog of independence, but do not forget superposition principle!).
A mixed state ρAB of SAB is entangled if it is not a convex linear

combination of product (separable) states ρj
A ⊗ ρj

B, j = 1,2, . . . :

ρAB =
∑

j

pjρ
j
A ⊗ ρj

B, pj ≥ 0,
∑

j

pj = 1.
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"Entanglement is the characteristic trait of quantum mechanics, the
one that enforces its entire departure from classical lines of thought"
Schrödinger 1935.

Decoherence: various processes of entanglement destruction (by
environment).

Qubit: A basic entity of quantum information science (two-level atom,
spin, etc.), H = C2, dimH = 2, with the canonical basis

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
.

In its simplest form entanglement causes two qubits to share a
common pure state but each of them does not have pure state of its
own.

How to quantify the entanglement?
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Entanglement Entropy

von Neumann Entropy: Given a state ρ of a quantum system with the
state space H, introduce

S[ρ] := −Tr ρ log2 ρ = −
n∑

t=1

pt log2 pt ≥ 0.

We have:

(i) ρ = |Ψ⟩⟨Ψ| is pure ⇐⇒ S[ρ] = 0 (faithfulness)

(ii) if dH = dimH, then

max
ρ

S[ρ] = S[1H/dH] = log2 dH

and ρ = 1dH/dH is the maximum entangled state.

S[ρ] is the measure (quantifier) of the state mixedness.

It is algebraic, faithful and invariant respect to unitary transformations
of the state space.
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If ρAB is a state of SAB, ρA := TrB ρAB is the RDM of SA, then

Entanglement Entropy of SA (with the rest SB of SAB) is

SA := S[ρA] = −TrA ρA log2 ρA.

It is algebraic, invariant with respect to local (in SA and SB only) unitary
transformations.

A Bell State: the pure state of two qubits, i.e., dimHA = dimHB = 2

|Φ⟩ = (|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B)/
√

2.

Pure, hence, not entangled and of zero entropy. The RDM ρA = 1A/2
is maximum entangled and of maximum entropy log2 2 = 1 manifesting
the maximum entanglement of qubit A (Alice) with qubit B (Bob).

Entanglement entropy is a measure (a quantifier) of entanglement:
if SAB is in a pure state, SA generally is in a mixed state with nonzero
entropy manifesting its entanglement with SB .
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Entanglement Entropy of the Black Hole Radiation
A Toy Model

A black hole on the initial stage of its evaporation process viewed as
bipartite quantum system SAB = SA ∪ SB, where SA is outgoing
Hawking radiation and SB is the black hole. The idea was that the
generic evaporative dynamics of a black hole may be captured by the
random sampling of subsystems from an initially pure state (D. Page
1993) .

We have HAB = HA ⊗HB and if we index the degrees of freedom of
the radiation and the black hole by l = 1, . . . ,L and k = 1, . . . ,K, then

dimHA = L, dimHB = K, dimHAB = KL =: N.

Assuming the complete ignorance on the black hole, we write its state

|Ψ⟩ = {Ψkl}K,L
k ,l=1

as the random vector uniformly distributed over the surface of the unit
sphere in the N-dimensional state space HAB of the black hole, i.e.,
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K,L∑
k ,l=1

|Ψkl |2 = 1.

Recall the microcanonical ensemble of classical statistical mechanics.

The entries of density matrix ρAB of black hole SAB and the RDM ρA of
the radiation SA are

{(ρAB)k1l1;k2l2}
K,L
k1,k2=1,l1,l2=1 = Ψk1l1Ψk2l2

and

(ρA)l1l2 =
K∑

k=1

Ψkl1Ψkl2 .

It is of interest to find the typical behavior of the corresponding
entanglement entropy SA = −Tr ρA log ρA, a measure (quantifier) of
quantum correlation between the radiation and the black hole.
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Entanglement Entropy of the Black Hole Radiation
Previous Results

It was found, as a first step of the program, that the expectation E{SA}
is

E{SA} =
KL∑

l=K+1

1
l
− L − 1

2K
, L ≤ K.

In particular, the two term asymptotic formula for large K and any L is

E{SA} = log L − L
2K

+ O(1/K), K → ∞. (∗)

Recall that if ρ is L × L, then

max
ρ

S[ρ] = S[1L/L] = log2 L.

Conclusion: the random state of radiation is close in the mean to the
maximally entangled state with the "deficit" L/2K (2nd term in (∗)).
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Moreover:

(i) If K → ∞, L is fixed (early stage of evaporation), then the deficit is
zero in the mean (O(1/K)):

E{SA} = log L + o(1), K → ∞.

(ii) If K → ∞,L → ∞, L/K → λ ∈ (0,∞) (a later, but not too late stage
of evaporation, the dimension of HA is a nonzero fraction of that of
HB), then the deficit is non zero in the mean

E{SA} = log L − λ

2
+ o(1), K → ∞.

L. Pastur (ILTPE-IHES) ENT-DISORD CdF 09/2022 23 / 29



Entanglement Entropy of the Black Hole Radiation
Typicality

Let us show that the standard facts of random matrix theory, that date
back to the late 1960’, imply the validity of the r.h.s. of the above
formulas for a rather wide class of random vectors and not only for the
expectation E{SA of SA, but also for all its typical realization, i.e., with
probability 1.

Let
{Xlk}∞l,k=1, E{Xlk} = E{X 2

lk} = 0, E{|Xlk |2} = 1

be an infinite collection of i.i.d. complex random variables,

XAB = {Xlk}K,L
k ,l=1 ∈ HAB

be the N = KL dimensional random vector and

ZAB :=
L∑

l=1

K∑
k=1

|Xlk |2 = ||XAB||2

be its squared norm.
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Set
ΨAB = XAB/(ZAB)

1/2.

If {Xkl}∞k ,l=1 are the complex Gaussian random variables with zero
mean and unit variance, then ΨN is uniformly distributed over the
N-dimensional unit sphere (D. Page 1993).

View now XAB as a L × K rectangular matrix. Then the RDM ρA is

ρA = XABX ∗
AB/ZAB = WA/YA

with the L × L hermitian

WA = XABX ∗
AB/K, YA = ZAB/K.

Then with log2 → loge =: log

SA = logYA − 1
YA

TrWA logWA

= logYA − 1
YA

∫ ∞

0
w logw DWA(w)dw ,
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where DWA is its Density of State of WA

DWA(w) = L−1
L∑

t=1

δ(w − wt)

and {wt}L
t=1 are its eigenvalues.

By the Strong Law of Large Numbers (SLLN) for the collection
{Xkl}KL

k ,l=1 with probability 1 for any L and K → ∞ :

ZAB/KL =
1

KL

K,L∑
k ,l=1

|Xkl |2 =
1

KL

K,L∑
k ,l=1

E{|Xkl |2}+ o(1)

= 1 + o(1), N := KL → ∞

and the first term on the right of SAB is

logYA = log L + o(1), K → ∞.

i.e., the first term on the right of its asymptotic (just, due to the
normalization factor YA).
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Consider now the second term on the right of SA and write

(WA)l1l2 = K−1
K∑

k=1

Xl1kX ∗
l2k , l1, l2 = 1, . . . ,L.

(i) L is fixed, K → ∞, the very early stage of the evaporation process.
It follows, again from the SLLN with probability 1

(WA)l1l2 → δl1l2 , l1, l2 = 1, . . . ,L ⇐⇒ WA → 1L,

hence,

1
YA

TrWA logWA =
1
L
Tr 1L log 1L + o(1) = 1 log 1 + o(1) → 0,

i.e., in this case with probability 1

lim
K→∞

SA = log L,

and we have the maximum entangled state with zero deficit, valid with
probability 1 for any collection of i.i.d. random variables {Xkl}∞k ,l=1.
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(ii) K → ∞, L → ∞, L/K → λ ∈ (0,∞), the later stage of the
evaporation process.

According to RMT, we have with probability 1

lim
K→∞, L→∞, L/K→λ

DWA(w) =: DW = max{0,1 − λ}δ(w)

+

√
(w+ − w)(w − w−)

2πλw
1[w−,w+], w± = (1 ±

√
λ)2,

hence, by calculating the integral,

SA = log L − λ

2
+ o(1), K → ∞, L → ∞, L/K → λ,

i.e., a close to the maximum entangled state with a finite deficit, valid
again with probability 1 and for any collection of i.i.d. {Xkl}∞k ,l=1 (recall
the macroscopic universality of random matrix theory).
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The plot of limiting density of states DW of matrix WA for λ = 0.2 (red) and its
histogram for 60 × 60 matrices (blue).
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