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PROGRAM OF THE COURSE

1 Introduction: basic notions of quantum mechanics, bipartite
systems, entanglement, reduced density matrix, entanglement
quantifiers. A toy model of black hole radiation.

2 Dynamics of two qubits in random environment: general setting,
models of environment, basic approximations, random matrix
environment (analytical and numerical results).

3 Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities
(dedicated to the Nobel Prize in Physics 2022)

4 Entanglement entropy in extended systems: setting and basic
facts for translation invariant systems.

5 Entanglement Entropy of Disordered Fermions: setting, Anderson
localization, area law and its violations.
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ENTANGLEMENT ENTROPY FOR DISORDERED
FREE FERMIONS
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Outline

Free Fermions

Large Block Behavior of Entanglement Entropy in Translation
Invariant Case

Large Block Behavior of Entanglement Entropy in Extended
Disordered Case
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Extended Systems
Setting

A bipartite system SAB:

- SAB occupies a cube Ω ∈ Zd of side length N, |Ω| = Nd ,

- SA (block) occupies a subcube Λ ⊂ Ω ∈ Zd of side length L, |Λ| = Ld

- SB occupies Ω \ Λ ⊂ Ω ⊂ Zd

and we assume
1 ≪ L ≪ N. (∗)

PROBLEM: the asymptotic behavior of the block entanglement entropy
in asymptotic regime (∗):

cosmology (black holes, holographic principle), statistical mechanics
(quantum phase transitions, thermalization).
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The most widely used implementation of heuristic inequalities (∗) is:

(1) macroscopic limit N → ∞, (2) asymptotics as L → ∞ (∗∗)

Change of notation: ρAB, ρA, SAB, SA, ⇒ ρΩ, ρΛΩ, SΩ, SΛΩ.

We assume (not too hard to prove usually)

SΛ := lim
Ω↗Zd

SΛΩ

and we are about the asymptotic behavior SΛ as

Λ = [−M,M]d , |Λ| = (2M + 1)d = Ld → ∞.
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Free Fermions
Generalities

We have a many body quantum systems of free (non-interacting
fermions) described by the Hamiltonian

ĤΩ =
∑

j,k∈Ω
Hjkc+

j ck , {cj , c+
k } = δjk

acting in the Hilbert space of dimension 2|Ω|, where

HΩ = {Hjk}j,k∈Ω

is the one body Hamiltonian of free fermions, acting in the Hilbert
space of |Ω| (|Ω| × |Ω| hermitian matrix).
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Denoting H = limΩ↗Zd HΩ (strong limit), we have

SΛ(T ) = TrΛ h(nΛ(T )),

with h(x) = −x log2 x − (1 − x) log2(1 − x), 0 ≤ x ≤ 1, and

nΛ(T ) = n(T )|Λ = {(njk (T )}j,k∈Λ,

n(T ) = {njk (T )}j,k∈Zd = nT (H − EF ),

nT (E) =
(

eE/T + 1
)−1

, T ≥ 0, Fermi distribution,

where EF is the Fermi energy and T is the temperature. In particular

n0(E) = θ(E) =⇒ n(0) := P = θ(EF − H),

with θ being the Heaviside function. P is the Fermi projection of H.
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Translation Invariant Free Fermions: Results

It was found in the last decade that for free translation invariant
fermions, where H = {Hj−k}j,k∈Zd with sufficiently fast decaying
Hj−k , |j − k | → ∞ and spectrum σH , the leading term of asymptotic
formula for SΛ(T ) can be:
(i) if E is in a gap of σH : area law

SΛ(0) = C′
d Ld−1(1 + o(1)), L → ∞;

(ii) if E ∈ σH : enhanced (violation of) area law

SΛ(0) = C′′
d Ld−1 log2 L(1 + o(1)), L → ∞;

(iii) if T > 0 : volume law

SΛ(T ) = C′′′
d Ld(1 + o(1)), T > 0, L → ∞.

H. Widom 1980 (d=1), H. Leschke et al 2013 - 2021 (d ≥ 1).
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Volume Law and Corrections. Write

NnΛ(T )(ν) =
∑
α

δ(ν − να) = TrΛ δ(n̂Λ(T )− ν),

SΛ(T ) =

∫ 1

0
h(ν)NnΛ(T )(ν)dν.

We have (recall statistical mechanics)

NnΛ(T ) = LdDn(T )+Ld−1Cn(T )+o(Ld−1) = bulk +surface+ . . . , L → ∞

SΛ(T ) = Lds0(T ) + Ld−1s1(T ) + o(Ld−1), L → ∞,

s0(T ) =

∫ 1

0
h(ν)|Dn(T )(ν)dν = 0 ⇒ Dn(T ) = αδ0 + (1 − α)δ1,

e.g. n(T ) is an orthogonal projection, i.e., n(0) = θ(H − EF )
= P, σP = {0,1} and the area law is due the "surface" term of the
limiting DOS of PΛ = P|Λ, L → ∞.

LP (ILTPE-IHES) EE-DS 10/ 2022 10 / 29



Exact asymptotic formula for NnΛ(0), d = 1, "singular case"

(H. Landau, H. Widom 1980, H. Leschke et al 2014)

Nn̂Λ(0)(ν) =

(
π − kF

π
δ(ν) +

kF

π
δ(ν − 1)

)
L

+
1

π2ν(1 − ν)
log2 L + o(log2 L), L → ∞

hence s0(0) = 0 and we have instead of |L|d−1s1(T )|d=1 = s1(T ):

SΛ(0) =
1
3
log2 L, L → ∞.
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Bounds for the Entanglement Entropy

The bounds for h(x) := −x log2 x − (1 − x) log2(1 − x), x ∈ [0,1] :

2(x(1 − x))1/2 ≥ h(x) ≥ 4x(1 − x).

imply

2TrΛ(PΛ(1 − PΛ))
1/2 = SΛ(0) = TrΛ h(PΛ) ≥ 4TrΛ PΛ(1 − PΛ),

PΛ = {Pjk}j,k∈Λ, {Pjk}j,k∈Z = P.

Consider 1d case with the discrete Schrodinger operator as H:

(Hu)j = −uj+1 − uj−1 + 2uj + Vjuj , j ∈ Z.

We have for Λ = [−M,M] ⊂ Z, L = |Λ| = 2M + 1 → ∞:

SΛ(0) ≥ C− log2 L, EF ∈ σH , V = const. (=0), enh. area law,
SΛ(0) ≤ C+, EF is in gap of σH , V is periodic, area law.
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Indeed, for V = 0

uκ = {(2π)−1/2eiκj}j∈Z, E(κ) = 4 sin2 κ/2, |κ| ≤ π,

hence, for |κ| < π, EF = 4 sin2 κF ∈ σH =[0,4]

Pjk =
1

2π

∫
|κ|≤κF

eiκ(j−k)dκ =
sinκF (j − k)
π(j − k)

,

SΛ ≥ 4
π2

∑
|j|≤M

∑
|k |≥M+1

sin2 κF (j − k)
(j − k)2 =

4
π2

∞∑
t=1

min(t ,L)
1 − cos2κF t

t2

= C log2 L + O(1), L → ∞, C = (4 log 2)/π2 ,

hence, the first above bound for SΛ that excludes the area law.

Note that C ≃ 85% of the exact coefficient 1/3 known since the 80s in
different context.
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The "mechanism": the weak decay of Pjk as |j − k | → ∞ because of
non-decaying (plane wave) eigenfunctions of H.

For a periodic V there exists the general bound

|Pjk ≤ | ≤ C(EF )e−γ(EF )|j−k |,EF in a gap,

implying the second above bound for SΛ(0) that excludes the
enhanced area law because of the fast decay of Pjk as |j − k | → ∞.
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Disordered Free Fermions

We will show that analogous asymptotic formulas, although under
different conditions, hold in the disordered case as well both for the
expectation of SΛ and for typical realizations.

Consider as H the discrete Schrodinger operator (Anderson model.)

(Hψ)j = −
∑

|j−k |=1

ψk + Vjψj , j ∈ Zd

with random potential V = {Vj}j∈Zd and i.i.d. (short correlated) Vj ’s,

and the continuous Schrodinger operator with random potential

(Hψ)(x) = −(∆ψ)(x) + V (x)ψ(x), x ∈ Rd , V (x) =
∑

j

u(x − xj)

with |u(x)| = 0, |x | > a and {xj}j uniformly distributed over R with
density c.
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Anderson Localization

(i) Density of States of H:

DHΩ
(E) = |Ω|−1

∑
α

δ(E − Eα) →
Ω→Zd ,Rd

DH(E),

and the limit is valid for all typical realizations (with probability 1),
selfaveraging property.

Recall the selfaveraging of the free energy in statistical mechanics and
the same property of conductivity in the solid state theory of
disordered media (bulk properties!).

Next, we have for u ≥ 0 (attractive impurities), σH = [0,∞) and for the
bottom of the spectrum E ↘ 0:

DH(E) =

{
Ed/2−1, u = 0, classical,

∼ exp{−cad/Ed/2}, u ≥ 0, Lifshitz tail.

a1 = π, by a spectral version of large deviation techniques.
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Two Wells

Eigenelements of wells: a = ∞ : (εt , ψt), t = 1,2 and
a <∞ : (Et ,Ψt), t = 1,2. Denote δ = |ε1 − ε2|,

I(a) =
∫
ψ1(x)ψ2(x + a)dx =, a ≫ r .

We have E1,2 = ε1,2 + O(e−a/r ) but
(i) δ ≫ I(a): Ψ1,2 = ψ1,2 + O(−a/r), no resonance tunneling;
(ii) δ ≪ I(a): Ψ1,2 = (ψ1,2 ± ψ2)2−1/2 + O(−a/r), resonance tunneling.
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(ii) Anderson Localization. The analysis of tunneling between two
wells (u(x) ≤ 0, attractive impurities) suggests that the eigenfunctions
of the random Schrodinger operator are localized, i.e.,

ψ(x) ∼ e−|x−x0|/rloc .

The localization is rigorously established in dimension d = 1 for the
whole spectrum and in dimension d ≥ 2 for the bottom of the spectrum
(more generally for the neighborhoods of spectrum edges).

A quite general quantitative result (implying many others)

E{|Pjk |} ≤ Ce−|j−k |/r(EF ), EF ∈ σH , j , k ∈ Zd

is valid for
- any potential if the Fermi energy is in a spectral gap;
- random potential, for all EF , d = 1 and for the bottom of σH , d ≥ 2;
- certain incommensurate (quasiperiodic) potentials and d = 1.
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Asymptotics of Entanglement Entropy

Assume the above exponential bound for the Fermi projection.

(i) Area Law in the Mean (discrete case)

E{SΛ(0)} = cdLd−1(1 + o(1)), L → ∞ ,

cd = 2d E{TrZd
+

h(PZd
+
)}, PZd

+
= P|Zd

+

and Zd
+ is the lattice half-space.

Unlike the translation invariant case with ballistically moving carriers
and the violation of the area law, the disordered case with localized
carriers obeys the area law, although in the mean for EF ∈ σH .

On the other hand, for translation invariant free fermions the area law
is the case only if the Fermi energy is in the gap of the spectrum of H.
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(ii) Entanglement Entropy is Selfaveraging for d ≥ 2.

Var{L−(d−1)SΛ(0)} = O(1/Lαd ), αd = 2(d − 1)/(d + 1),

It is believed that αd = (d − 1) and that

L−(d−1)/2(SΛ(0)− E{SΛ(0)})

is Gaussian as L → ∞, i.e., the CLT for the appropriately normalized
entanglement entropy (recall the Central Limit Theorem).

The area law (the absence of logarithmic corrections) is the case for
d ≥ 2, all typical realizations of random potential and EF belonging to
the part of the spectrum where Fermi projection decays exponentially
(e.g. because of the localization of states).

On the other hand, for translation invariant potentials the area law is
valid in the gaps of the spectrum, a "less interesting case".
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(iii) Entanglement Entropy Is NOT Selfaveraging For d = 1.

There exists a class of random potentials such that we have for the
entanglement entropy and all sufficiently large L = |Λ|

Var{SΛ(0)} := E{(SΛ(0))2} − E2{SΛ} ≥ A[V ] > 0.
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The probability density of SΛ(0) for different values of disorder
parameter δ for H being the Anderson model (uniform distribution of
Vj ’s: p(V ) = 1/2δ, |V | < δ).
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(iv) Enhanced Area Law for d = 1.

(1) Transparency Energies.

(a) V (x) =
∑

j∈Z vjδ(x − ja), {vj > 0}j∈Z are i.i.d., the random

Kronig-Penny, a model for substitutional alloys, e.g. CuZn.

Consider the functions

ψk (x) = C sinπkx/a, k ∈ Z, x ∈ R.

They are solutions (eigenfunctions) of the continuous Schrodinger
equation corresponding to Ek = (πk/a)2 and since for every k

ψk (ja) = 0, j , k ∈ Z,

the functions of the family {ψk}k∈Z, "do not feel" the random potential
(perfect transmission), i.e., Ek = (πk/a)2 are the transparency
energies for all realizations of V .
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(b) V (x) =
∑

xj∈R u(x − xj), yj = xj+1 − xj ≥ 2a i.i.d

and u is the rectangular potential well of depth u0 and width a.

By quantum mechanics the rectangular potential well has the
transparency energies Ek = −u0 + (πk/a)2 (zero reflection coefficient
for u). Hence, any realization of V has Ek as its transparency energies.

(2) Enhanced Area Law in the Mean for d = 1

It can be shown that there exist random potentials with transparency
energies such that

E{SΛ(0)} ≥ C log2 L + o(log2 L), L → ∞.

For free disordered fermions the enhanced area law is "exceptional"
while for the translation invariant free fermions it is "generic".

LP (ILTPE-IHES) EE-DS 10/ 2022 24 / 29



(v) Volume Law and Corrections

Assume that T > 0 or replace nT by a smooth function. Then

SΛ(T ) = Ldsvol(T ) +

{
Ld−1ssurf (T ) + o(Ld−1), trans. invariant,

Ld/2sCLT + o(Ld/2), disordered..

In disordered case and for d = 1 the sub-leading term is random
(unlike the leading one) and is O(L1/2)!

(SΛ(T )− Ldsvol(T ))/L1/2 → sCLT Gaussian,E{sCLT} = 0.

Recall the Imry-Ma phenomenon in statistical mechanics.
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Conclusion

Entanglement: the quantification by the entanglement entropy of the
intuitively clear fact: disorder inhibits quantum correlations.

Cf. Transport: the quantification by the conductivity of the intuitively
clear fact: disorder inhibits transport.
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The above result on the disordered case (the dynamics of two qubits
and the asymptotic behavior of the entanglement entropy of disordered
free fermions) are obtained in the joint works by

E. Bratus, A.Elgart, P. Muller, L.P., R. Schulte, M. Shcherbina, V.
Slavin, 2014 – 2020.
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