Nalini Anantharaman

Some history

Quantum

Graphs

An introduction to quantum chaos

Nalini Anantharaman

November 22, 2022

Nalini Anantharaman

Some history

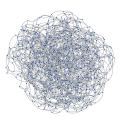
Quantum ergodicity

Graphs

I. Some history

II. Quantum ergodicity

III. Toy model : discrete graphs



Nalini Anantharaman

Some history

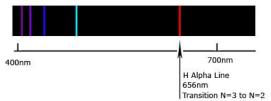
Quantum

Graphs

I. Some history

Hydrogen Absorption Spectrum

Hydrogen Emission Spectrum



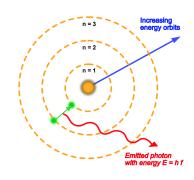
Nalini Anantharaman

Some history

Quantum

Graphs

1913 : Bohr's model of the hydrogen atom



Kinetic momentum is "quantized" J = nh, where $n \in \mathbb{N}$.

Nalini Anantharaman

Some history

Quantum ergodicity

Graph

1917: A paper of Einstein

Zum Quantensatz von Sommerfeld und Epstein

Typus b): es treten unendlich viele p_i -Systeme an der betrachteten Stelle auf. In diesem Falle lassen sich die p_i nicht als Funktionen der q_i darstellen.

Man bemerkt sogleich, daß der Typus b) die im § 2 formulierte Quantenbedingung 11) ausschließt. Andererseits bezieht sich die klassische statistische Mechanik im wesentlichen nur auf den Typus b); denn nur in diesem Falle ist die mikrokanonische Gesamtheit der auf ein System sich beziehenden Zeitgesamtheit äquivalent¹).

¹⁾ In der mikrokanonischen Gesamtheit sind Systeme vorhanden, welche bei gegebenen q_i beliebig gegebene (mit dem Energiewert vereinbare) p_i besitzen.

Nalini Anantharaman

Some history

Quantum

Graph:

1917: A paper of Einstein

Zum Quantensatz von Sommerfeld und Epstein

Type b): There are infinitely many p_i -systems at the location under consideration. In this case the p_i cannot be represented as functions of the q_i .

One notices immediately that type b) excludes the quantum condition we formulated in §2. On the other hand, classical statistical mechanics deals essentially *only* with type b); because only in this case is the microcanonic ensemble of *one* system equivalent to the time ensemble.³

In summarizing we can say: The application of the quantum condition (11) demands that there exist orbits such that a *single* orbit determines the p_i -field for which a potential J^* exists.

Nalini Anantharaman

Some history

Quantum

Graph:

1925 : operators / wave mechanics

 Heisenberg: physical observables are operators (matrices) obeying certain commutation rules

$$[\hat{p}, \hat{q}] = i\hbar I.$$

The "spectrum" is obtained by computing eigenvalues of the energy operator \hat{H} .

1925 : operators / wave mechanics

 Heisenberg: physical observables are operators (matrices) obeying certain commutation rules

$$[\hat{p}, \hat{q}] = i\hbar I.$$

The "spectrum" is obtained by computing eigenvalues of the energy operator \hat{H} .

- De Broglie (1923) : wave particle duality.
- Schrödinger (1925) : wave mechanics

$$i\hbar \frac{\mathrm{d}\psi}{\mathrm{d}t} = \left(-\frac{\hbar^2}{2m}\Delta + V\right)\psi$$

 $\psi(x, y, z, t)$ is the wave function.

Nalini Anantharaman

Some history

Quantum

Graph:

1925 : operators / wave mechanics

In Heisenberg's picture the spectrum is computed by diagonalizing the operator \hat{H} .

In Schrödinger's picture, we must diagonalize $\left(-\frac{\hbar^2}{2m}\Delta + V\right)$.

Nalini Anantharaman

Some history

Quantum

Graph

1925 : operators / wave mechanics

In Heisenberg's picture the spectrum is computed by diagonalizing the operator \widehat{H} .

In Schrödinger's picture, we must diagonalize $\left(-\frac{\hbar^2}{2m}\Delta + V\right)$.

The two theories are mathematically equivalent : Schrödinger's picture corresponds to a representation of the Heisenberg algebra on the Hilbert space $L^2(\mathbb{R}^3)$.

But not physically equivalent!

Nalini Anantharaman

Some history

Quantum

Graphs

Wigner 1950' Random Matrix model for heavy nuclei

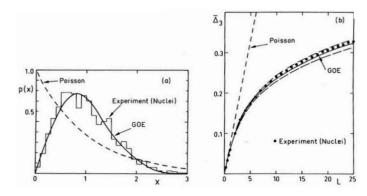


Figure: Left: nearest neighbour spacing histogram for nuclear data ensemble (NDE). Right: Dyson-Mehta statistic $\overline{\Delta}$ for NDE. Source O. Bohigas

Nalini Anantharaman

Some history

Quantum

Granhs

Spectral statistics for hydrogen atom in strong magnetic field

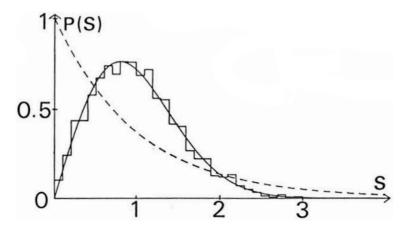


Figure: Source Delande.

Nalini Anantharaman

Some history

Quantum

Graph:

Billiard tables

In classical mechanics, billiard flow $\phi^t: (x, \xi) \mapsto (x + t\xi, \xi)$.

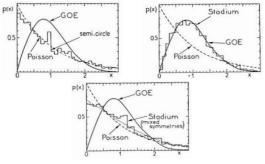
In quantum mechanics,
$$i\hbar\frac{d\psi}{dt}=\Big(-\frac{\hbar^2}{2m}\Delta+0\Big)\psi.$$

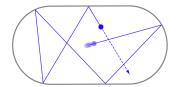
Nalini Anantharaman

Some history

Quantum

Granh





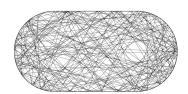


Figure: Random matrices and chaotic dynamics

Nalini Anantharaman

Some history

Quantum ergodicity

Graphs

A list of questions and conjectures

For classically ergodic / chaotic systems,

 show that the spectrum of the quantum system resembles that of large random matrices (Bohigas-Giannoni-Schmit conjecture);

Nalini Anantharaman

Some history

Quantum ergodicit

Graph

A list of questions and conjectures

For classically ergodic / chaotic systems,

- show that the spectrum of the quantum system resembles that of large random matrices (Bohigas-Giannoni-Schmit conjecture);
- study the probability density $|\psi(x)|^2$, where $\psi(x)$ is a solution to the Schrödinger equation (Quantum Unique Ergodicity conjecture);

Nalini Anantharaman

Some history

Quantum ergodicit

Graph

A list of questions and conjectures

For classically ergodic / chaotic systems,

- show that the spectrum of the quantum system resembles that of large random matrices (Bohigas-Giannoni-Schmit conjecture);
- study the probability density $|\psi(x)|^2$, where $\psi(x)$ is a solution to the Schrödinger equation (Quantum Unique Ergodicity conjecture);
- show that $\psi(x)$ resembles a gaussian process $(x \in B(x_0, R\hbar), R \gg 1)$ (Berry conjecture).

Nalini Anantharaman

Some history

Quantum

Graphs

A list of questions and conjectures

This is meant in the limit $\hbar \to 0$ (small wavelength).

$$\left(-\frac{\hbar^2}{2m}\Delta + V\right)\psi = E\psi \implies \|\nabla\psi\| \sim \frac{\sqrt{2mE}}{\hbar}$$

Nalini Anantharaman

Some histor

Quantum ergodicity

Graph:

Quantum ergodicity

M a billiard table / compact Riemannian manifold, of dimension d.

In classical mechanics, billiard flow $\phi^t:(x,\xi)\mapsto (x+t\xi,\xi)$ (or more generally, the geodesic flow = motion with zero acceleration).

Nalini Anantharaman

Some history

Quantum ergodicity

Grapni

Quantum ergodicity

M a billiard table / compact Riemannian manifold, of dimension d.

In quantum mechanics:

$$i\hbar \frac{d\psi}{dt} = \left(-\frac{\hbar^2}{2m}\Delta + 0\right)\psi$$
$$-\frac{\hbar^2}{2m}\Delta\psi = E\psi,$$

in the limit of small wavelengths.

Nalini Anantharaman

Some histon

Quantum ergodicity

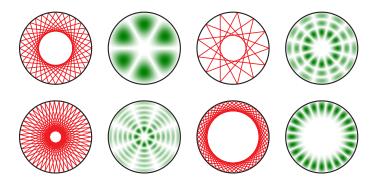


Figure: Billiard trajectories and eigenfunctions in a disk. Source A. Bäcker.

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

Sphere

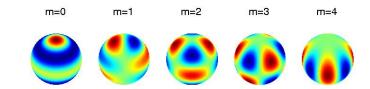


Figure: Spherical harmonics

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

Square / torus

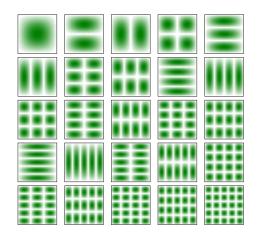


Figure: $u_{mn}(x, y) = \sin mx \sin ny$. Source A. Bäcker.

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

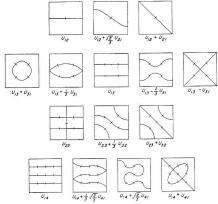


Figure 3. Nodal lines for a square membrane.

Figure: $u_{mn}(x, y) = \sin mx \sin ny$

Nalini Anantharaman

Some histor

Quantum ergodicity

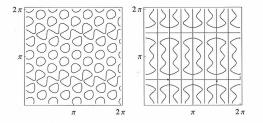


FIGURE 1. Nodal lines for the eigenfunction $\cos(4x-7y)+\sin(8x-y)+\sin(4x+7y)$ (left) and $\sin(4x+7y)+\sin(4x-7y)+\sin(8x-y)=2\sin 4x\cos y(-1+2\cos 4x+2\cos 2y-2\cos 4y+2\cos 6y)$ (right).

Nalini Anantharaman

Some histor

Quantum ergodicity

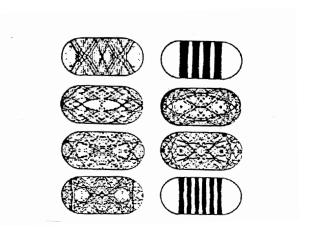


Figure: A few eigenfunctions of the Bunimovich billiard (Heller, 89).

Nalini Anantharaman

Some histor

Quantum ergodicity

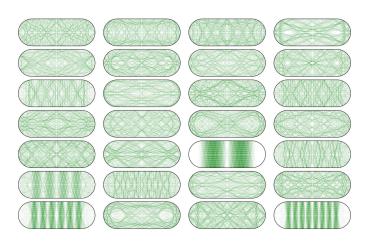


Figure: Source A. Bäcker

Nalini Anantharaman

Some history

Quantum ergodicity

Grapn

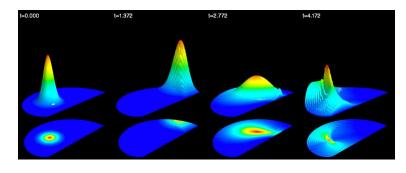


Figure: Propagation of a gaussian wave packet in a cardioid. Source A. Bäcker.

Nalini Anantharaman

Some history

Quantum ergodicity

Grapii

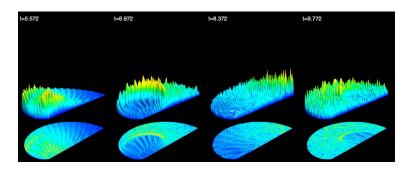


Figure: Propagation of a gaussian wave packet in a cardioid. Source A. Bäcker.

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

Eigenfunctions in the high frequency limit

M a billiard table / compact Riemannian manifold, of dimension d.

$$\Delta \psi_k = -\lambda_k \psi_k \quad \text{or} \quad -\frac{\hbar^2}{2m} \Delta \psi = E \psi,$$

$$\|\psi_k\|_{L^2(M)} = 1,$$

in the limit $\lambda_k \longrightarrow +\infty$.

We study the weak limits of the probability measures on M,

$$|\psi_k(x)|^2 d\operatorname{Vol}(x).$$

Some history

Quantum ergodicity

Graphs

Let $(\psi_k)_{k\in\mathbb{N}}$ be an orthonormal basis of $L^2(M)$, with

$$-\Delta\psi_k = \lambda_k\psi_k, \qquad \lambda_k \leqslant \lambda_{k+1}.$$

Theorem (QE Theorem (simplified): Shnirelman 74, Zelditch 85, Colin de Verdière 85)

Assume that the action of the geodesic flow is **ergodic** for the Liouville measure. Let $a \in C^0(M)$. Then

$$\frac{1}{N(\lambda)} \sum_{\lambda_k \leq \lambda} \left| \int_M a(x) |\psi_k(x)|^2 d\operatorname{Vol}(x) - \int_M a(x) d\operatorname{Vol}(x) \right| \underset{\lambda \to \infty}{\longrightarrow} 0.$$

Some history

Quantum ergodicity

Graphs

Let $(\psi_k)_{k\in\mathbb{N}}$ be an orthonormal basis of $L^2(M)$, with

$$-\Delta\psi_k = \lambda_k\psi_k, \qquad \lambda_k \leqslant \lambda_{k+1}.$$

Theorem (QE Theorem (simplified): Shnirelman 74, Zelditch 85, Colin de Verdière 85)

Assume that the action of the geodesic flow is **ergodic** for the Liouville measure. Let $a \in C^0(M)$. Then

$$\frac{1}{N(\lambda)} \sum_{\lambda_k \leq \lambda} \int_M a(x) \big| \psi_k(x) \big|^2 d\operatorname{Vol}(x) - \int_M a(x) d\operatorname{Vol}(x) \xrightarrow[\lambda \to \infty]{} 0.$$

Some history

Quantum ergodicity

Graphs

Let $(\psi_k)_{k\in\mathbb{N}}$ be an orthonormal basis of $L^2(M)$, with

$$-\Delta\psi_k = \lambda_k\psi_k, \qquad \lambda_k \leqslant \lambda_{k+1}.$$

Theorem (QE Theorem (simplified): Shnirelman 74, Zelditch 85, Colin de Verdière 85)

Assume that the action of the geodesic flow is **ergodic** for the Liouville measure. Let $a \in C^0(M)$. Then

$$\frac{1}{N(\lambda)} \sum_{\lambda_k \leq \lambda} \left| \int_M a(x) |\psi_k(x)|^2 d\operatorname{Vol}(x) - \int_M a(x) d\operatorname{Vol}(x) \right| \underset{\lambda \to \infty}{\longrightarrow} 0.$$

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

Equivalently, there exists a subset $\mathcal{S} \subset \mathbb{N}$ of density 1, such that

$$\int_{M} a(x) \big| \psi_{k}(x) \big|^{2} \, \mathrm{d} \operatorname{Vol}(x) \ \xrightarrow[k \in \mathcal{S}]{} \int_{M} a(x) \, \mathrm{d} \operatorname{Vol}(x).$$

Some history

Quantum ergodicity

Grapns

Equivalently, there exists a subset $\mathcal{S} \subset \mathbb{N}$ of density 1, such that

$$\int_{M} a(x) \big| \psi_{k}(x) \big|^{2} \, \mathrm{d} \operatorname{Vol}(x) \ \xrightarrow[k \in \mathcal{S}]{} \int_{M} a(x) \, \mathrm{d} \operatorname{Vol}(x).$$

Equivalently,

$$|\psi_k(x)|^2 \operatorname{Vol}(x) \xrightarrow[k \in S]{} \operatorname{dVol}(x)$$

in the weak topology.

Nalini Anantharaman

Some history

Quantum ergodicity

Grapns

The full statement uses analysis on phase space, i.e.

$$T^*M = \{(x,\xi), x \in M, \xi \in T_x^*M\}.$$

For $a = a(x, \xi)$ a "reasonable" function on phase space, we can define an operator on $L^2(M)$,

$$a(x, D_x) \quad \left(D_x = \frac{1}{i}\partial_x\right).$$

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

On $M = \mathbb{R}^d$, we identify the momentum ξ with the Fourier variable, and put

$$a(x, D_x)f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} a(x, \xi) \, \widehat{f}(\xi) \, e^{i\xi \cdot x} \, \mathrm{d}\xi.$$

for a a "reasonable" function.

Nalini Anantharaman

Some history

Quantum ergodicity

Graphs

On $M = \mathbb{R}^d$, we identify the momentum ξ with the Fourier variable, and put

$$a(x,D_x)f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} a(x,\xi) \, \widehat{f}(\xi) \, e^{i\xi \cdot x} \, \mathrm{d}\xi.$$

for a a "reasonable" function.

Say $a \in S^0(T^*M)$ if a is smooth and 0-homogeneous in ξ (i.e. a is a smooth function on the sphere bundle SM).

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

$$-\Delta\psi_k = \lambda_k \psi_k, \qquad \lambda_k \leqslant \lambda_{k+1}.$$

For $a \in S^0(T^*M)$, we consider

$$\langle \psi_k, a(x, D_x) \psi_k \rangle_{L^2(M)}.$$

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

$$-\Delta\psi_k = \lambda_k \psi_k, \qquad \lambda_k \leqslant \lambda_{k+1}.$$

For $a \in S^0(T^*M)$, we consider

$$\langle \psi_k, a(x, D_x) \psi_k \rangle_{L^2(M)}.$$

This amounts to $\int_M a(x) |\psi_k(x)|^2 d \operatorname{Vol}(x)$ if a = a(x).

Nalini Anantharaman

Some history

Quantum ergodicity

Graphs

Let $(\psi_k)_{k\in\mathbb{N}}$ be an orthonormal basis of $L^2(M)$, with

$$-\Delta\psi_k = \lambda_k\psi_k, \qquad \lambda_k \leqslant \lambda_{k+1}.$$

Theorem (QE Theorem)

Assume that the action of the geodesic flow is **ergodic** for the Liouville measure. Let $a(x, \xi) \in S^0(T^*M)$. Then

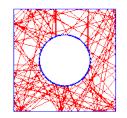
$$\frac{1}{N(\lambda)} \sum_{\lambda_k \leq \lambda} \left| \left\langle \psi_k, a(x, D_x) \psi_k \right\rangle_{L^2(M)} - \int_{|\xi| = 1} a(x, \xi) \, \mathrm{d}x \, \mathrm{d}\xi \right| \longrightarrow 0.$$

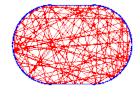
Nalini Anantharaman

Some histon

Quantum ergodicity

Grapns





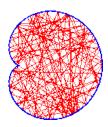


Figure: Ergodic billiards. Source A. Bäcker

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

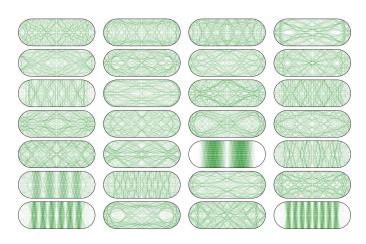


Figure: Source A. Bäcker

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

Conjecture (Quantum Unique Ergodicity conjecture : Rudnick, Sarnak 94)

On a negatively curved manifold, we have convergence of the whole sequence :

$$\langle \psi_k, a(x, D_x) \psi_k \rangle_{L^2(M)} \longrightarrow \int_{(x,\xi) \in SM} a(x,\xi) \, \mathrm{d}x \, \mathrm{d}\xi.$$

Nalini Anantharaman

Some histor

Quantum ergodicity

Conjecture (Quantum Unique Ergodicity conjecture : Rudnick, Sarnak 94)

On a negatively curved manifold, we have convergence of the whole sequence :

$$\langle \psi_k, a(x, D_x) \psi_k \rangle_{L^2(M)} \longrightarrow \int_{(x,\xi) \in SM} a(x,\xi) \, \mathrm{d}x \, \mathrm{d}\xi.$$

Proved by E. Lindenstrauss, in the special case of arithmetic congruence surfaces, for joint eigenfunctions of the Laplacian, and the Hecke operators.

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

Theorem

Let M have negative curvature and dimension d. Assume

$$\langle \psi_k, a(x, D_x) \psi_k \rangle_{L^2(M)} \longrightarrow \int_{(x,\xi) \in SM} a(x,\xi) \, \mathrm{d}\mu(x,\xi).$$

(1) [A 2005, A-Nonnenmacher 2006] : μ must have positive (non vanishing) Kolmogorov-Sinai entropy.

For constant negative curvature, our result implies that the support of μ has dimension $\geqslant d = \dim M$.

Nalini Anantharaman

Some histor

Quantum ergodicity

Graphs

Theorem

Let M have negative curvature and dimension d. Assume

$$\langle \psi_k, a(x, D_x) \psi_k \rangle_{L^2(M)} \longrightarrow \int_{(x,\xi) \in SM} a(x,\xi) \, \mathrm{d}\mu(x,\xi).$$

(1) [A 2005, A-Nonnenmacher 2006] : μ must have positive (non vanishing) Kolmogorov-Sinai entropy.

For constant negative curvature, our result implies that the support of μ has dimension $\geqslant d = \dim M$.

(2) [Dyatlov-Jin+Nonnenmacher 2017-10] : d = 2, negative curvature, μ has full support.

Nalini Anantharaman

Some histor

Quantun ergodicit

Graphs

Toy models

Toy models are "simple" models where either

• some explicit calculations are possible,

OR

numerical calculations are relatively easy.

Nalini Anantharaman

Some histor

Quantun ergodicit

Graphs

Toy models

Toy models are "simple" models where either

• some explicit calculations are possible,

OR

numerical calculations are relatively easy.

They often have a discrete character. Instead of studying $\hbar \to 0$ one considers finite dimensional Hilbert spaces whose dimension $N \to +\infty$.

Nalini Anantharaman

Some histor

Quantum

Graphs

Regular graphs

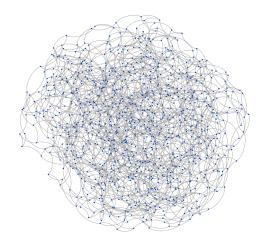


Figure: A (random) 3-regular graph. Source J. Salez.

Regular graphs

Let G = (V, E) be a (q + 1)-regular graph.

Discrete laplacian : $f: V \longrightarrow \mathbb{C}$,

$$\Delta f(x) = \sum_{y \sim x} (f(y) - f(x)) = \sum_{y \sim x} f(y) - (q+1)f(x).$$

$$\Delta = \mathcal{A} - (q+1)I$$

Nalini Anantharaman

Some histor

Quantum

Graphs

Why do they seem relevant?

- ullet They are locally modelled on the (q+1)- regular tree \mathbb{T}_q
- \mathbb{T}_q may be considered to have curvature $-\infty$.
- Harmonic analysis on \mathbb{T}_q is very similar to h.a. on \mathbb{H}^n .
 - For q = p a prime number, \mathbb{T}_p is the symmetric space of the group $SL_2(\mathbb{Q}_p)$.

Nalini Anantharaman

Some histor

Quantum

Graphs

Why do they seem relevant?

- They are locally modelled on the (q+1)- regular tree \mathbb{T}_q (cf. \mathbb{H}^n for hyperbolic manifolds).
- \mathbb{T}_q may be considered to have curvature $-\infty$.
- Harmonic analysis on \mathbb{T}_q is very similar to h.a. on \mathbb{H}^n .
- For q = p a prime number, \mathbb{T}_p is the symmetric space of the group $SL_2(\mathbb{Q}_p)$.

Nalini Anantharaman

Some histor

Quantum

Graphs

Why do they seem relevant?

- They are locally modelled on the (q+1)- regular tree \mathbb{T}_q (cf. \mathbb{H}^n for hyperbolic manifolds).
- \mathbb{T}_q may be considered to have curvature $-\infty$.
- Harmonic analysis on \mathbb{T}_q is very similar to h.a. on \mathbb{H}^n .
- For q=p a prime number, \mathbb{T}_p is the symmetric space of the group $SL_2(\mathbb{Q}_p)$.

 \mathbb{H}^2 is the symmetric space of $SL_2(\mathbb{R})$.

Nalini Anantharaman

Some histor

Quantum

Graphs

A major difference

$$Sp(\mathcal{A}) \subset [-(q+1), q+1]$$

Let |V| = N. We look at the limit $N \to +\infty$.

Recent results: deterministic

Theorem (A-Le Masson, 2013)

Assume that G_N has "few" short loops and that it forms an **expander** family = uniform spectral gap for A.

Let $(\phi_i^{(N)})_{i=1}^N$ be an ONB of eigenfunctions of the laplacian on G_N .

Let $a = a_N : V_N \to \mathbb{R}$ be such that $|a(x)| \le 1$ for all $x \in V_N$. Then

$$\lim_{N\to+\infty}\frac{1}{N}\sum_{i=1}^{N}\sum_{x\in V_N}a(x)\left|\phi_i^{(N)}(x)\right|^2-\langle a\rangle=0,$$

where

$$\langle a \rangle = \frac{1}{N} \sum_{x \in V_N} a(x).$$

Graphs

Recent results: deterministic

Theorem (A-Le Masson, 2013)

Assume that G_N has "few" short loops and that it forms an **expander** family = uniform spectral gap for A.

Let $(\phi_i^{(N)})_{i=1}^N$ be an ONB of eigenfunctions of the laplacian on G_N .

Let $a = a_N : V_N \to \mathbb{R}$ be such that $|a(x)| \le 1$ for all $x \in V_N$. Then

$$\lim_{N\to+\infty}\frac{1}{N}\sum_{i=1}^{N}\Big|\sum_{x\in V_N}a(x)\Big|\phi_i^{(N)}(x)\Big|^2-\langle a\rangle\Big|=0,$$

where

$$\langle a \rangle = \frac{1}{N} \sum_{x \in V_N} a(x).$$

Nalini Anantharaman

Some histor

Quantum

Graphs

For any $\epsilon > 0$,

$$\lim_{N \to +\infty} \frac{1}{N} \sharp \left\{ i, \left| \sum_{x \in V_N} a(x) \left| \phi_i^{(N)}(x) \right|^2 - \left\langle a \right\rangle \right| \geqslant \epsilon \right\} = 0.$$

Graphs

Recent results: deterministic

Theorem (Brooks-Lindenstrauss, 2011)

Assume that G_N has "few" loops of length $\leqslant c \log N$. For $\epsilon > 0$, there exists $\delta > 0$ s.t. for every eigenfunction ϕ ,

$$B \subset V_N, \quad \sum_{x \in B} |\phi(x)|^2 \geqslant \epsilon \implies |B| \geqslant N^{\delta}.$$

Proof also yields that $\|\phi\|_{\infty} \leq |\log N|^{-1/4}$.

Nalini Anantharaman

Some histor

Quantum

Graphs

Examples

Deterministic examples:

• the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988 (arithmetic quotients of the q-adic symmetric space $PGL(2, \mathbb{Q}_q)/PGL(2, \mathbb{Z}_q)$);

Nalini Anantharaman

Some histor

Quantum

Graphs

Examples

Deterministic examples :

- the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988 (arithmetic quotients of the q-adic symmetric space $PGL(2, \mathbb{Q}_q)/PGL(2, \mathbb{Z}_q)$);
- Cayley graphs of $SL_2(\mathbb{Z}/p\mathbb{Z})$, p ranges over the primes, (Bourgain-Gamburd, based on Helfgott 2005).

Nalini Anantharaman

Some history

Quantun

Graphs

Recent results: random

Theorem (Bauerschmidt, Huang, Yau)

Let
$$d = q + 1 \ge 3$$
.

For the $\mathcal{G}_{N,d}$ model of random regular graphs,

$$\bullet \ \| \, \phi_i^{(N)} \, \|_{\ell^\infty} \leqslant \tfrac{\log N^\bullet}{\sqrt{N}} \ \text{as soon as } \lambda_i^{(N)} \in [-2\sqrt{q} + \epsilon, 2\sqrt{q} - \epsilon];$$

Graphs

Recent results: random

Theorem (Bauerschmidt, Huang, Yau)

Let $d = q + 1 \ge 3$.

For the $\mathcal{G}_{N,d}$ model of random regular graphs,

•
$$\|\phi_i^{(N)}\|_{\ell^{\infty}} \leqslant \frac{\log N^{\bullet}}{\sqrt{N}}$$
 as soon as $\lambda_i^{(N)} \in [-2\sqrt{q} + \epsilon, 2\sqrt{q} - \epsilon];$

• (see also Bauerschmidt–Knowles–Yau) *QUE* : given $a:\{1,\ldots,N\}\longrightarrow \mathbb{R}$, for all $\lambda_i^{(N)}\in [-2\sqrt{q}+\epsilon,2\sqrt{q}-\epsilon]$,

$$\sum_{x=1}^{N} a(x) |\phi_{i}^{(N)}(x)|^{2} = \frac{1}{N} \sum_{n} a(x) + O\left(\frac{\log N^{\bullet}}{N}\right) ||a||_{\ell^{2}}$$

with large probability as $N \to +\infty$.

Nalini Anantharaman

Some histor

Quantum

Graphs

Topics for the course

- A proof of Shnirelman's theorem
- A-Nonnenmacher's result on entropy of eigenfunctions
- Dyatlov-Jin-Nonnenmacher's result on support of semiclassical measures (negatively curved surfaces)
- Quantum ergodicity for large discrete graphs (A-Le Masson, A-Sabri)
- Probabilistic QUE for random matrices / random graphs