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n=3 Increasing
energy orbits
n=2 /
n=1
Emitted photon

with energy E =h f

Kinetic momentum is “quantized” J = nh, where n e N.
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Some history Zum Quantensatz von Sommerfeld und Epstein

Typus b): es treten unendlich viele p;-Systeme an der be-
trachteten Stelle auf. In diesem Falle lassen sich die p; nicht
als Funktionen der ¢; darstellen.

Man bemerkt sogleich, da der Typus b) die im § 2 formu-
lierte Quantenbedingung 11) ausschlieBt. Andererseits bezieht sich
die klassische statistische Mechanik im wesentlichen nur auf den
Typus b); denn nur in diesem Falle ist die mikrokanonische Ge-
samtheit der auf ein System sich beziehenden Zeitgesamtheit
dquivalent ).

1) In der mikrokanonischen Gesamtheit sind Systeme vorhanden, welche

bei gegebenen g; beliebig gegebene (mit dem Energiewert vereinbare) p;
besitzen.
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Zum Quantensatz von Sommerfeld und Epstein

Type b): There are infinitely many p ;-systems at the location under consideration,
In this case the p, cannot be represented as functions of the g;.

One notices immediately that type b) excludes the quantum condition we
formulated in §2. On the other hand, classical statistical mechanics deals essentially
only with type b); because only in this case is the microcanonic ensemble of one
system equivalent to the time ensemble.®

In summarizing we can say: The application of the quantum condition (1 1)
demands that there exist orbits such that a single otbit determines the p,-field for
which a potential J* exists.
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* Heisenberg : physical observables are operators (matrices)
SAClEL Y obeying certain commutation rules

[5. ] =inl.

The “spectrum” is obtained by computing eigenvalues of
the energy operator H.
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1925 : operators / wave mechanics

* Heisenberg : physical observables are operators (matrices)
obeying certain commutation rules

[5. ] =inl.

The “spectrum” is obtained by computing eigenvalues of
the energy operator H.

* De Broglie (1923) : wave particle duality.

e Schrodinger (1925) : wave mechanics

ih%z (—QH;AJr v)zp

¥(x,y,z,t) is the wave function.
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1925 : operators / wave mechanics

In Heisenberg's picture the spectrum is computed by

diagonalizing the operator H .
2

In Schrodinger’s picture, we must diagonalize (— 2—A + V).
m
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1925 : operators / wave mechanics

In Heisenberg'’s picture the spectrum is computed by
diagonalizing the operator H .

h2
In Schrodinger’s picture, we must diagonalize (— 2—A + V).
m

The two theories are mathematically equivalent : Schrodinger's
picture corresponds to a representation of the Heisenberg
algebra on the Hilbert space L?(R3).

But not physically equivalent !
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Wigner 1950° Random Matrix
model for heavy nuclei
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Figure: Left : nearest neighbour spacing histogram for nuclear data
ensemble (NDE). Right : Dyson-Mehta statistic A for NDE. Source
O. Bohigas
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0.5

Spectral statistics for hydrogen
atom in strong magnetic field
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Figure: Source Delande.
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In classical mechanics, billiard flow ¢* : (x,&) — (x + t§,€).

. . dy B2
In quantum mechanics, ih = (— —A+ O)’L/).
dt 2m

2/
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Spectral statistics for several
billiard tables
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Ficure: Random matrices and chaotic dvnamics
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A list of questions and conjectures

For classically ergodic / chaotic systems,
® show that the spectrum of the quantum system resembles
that of large random matrices (Bohigas-Giannoni-Schmit

conjecture);
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For classically ergodic / chaotic systems,
® show that the spectrum of the quantum system resembles
that of large random matrices (Bohigas-Giannoni-Schmit
conjecture);

e study the probability density |1(x) |, where ¥(x) is a
solution to the Schrédinger equation (Quantum Unique
Ergodicity conjecture);
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Some history

For classically ergodic / chaotic systems,
® show that the spectrum of the quantum system resembles
that of large random matrices (Bohigas-Giannoni-Schmit
conjecture);

e study the probability density |1(x) |, where ¥(x) is a
solution to the Schrédinger equation (Quantum Unique
Ergodicity conjecture);

* show that 1/(x) resembles a gaussian process
(x € B(xo, RR), R » 1) (Berry conjecture).
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This is

A list of questions and conjectures

meant in the limit 7 — 0 (small wavelength).

(

h2
- —A+V
2m *

Jo=Ep — V|~
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Quantum ergodicity

M a billiard table / compact Riemannian manifold, of
dimension d.

In classical mechanics, billiard flow ¢* : (x,&) — (x + t&,€)
(or more generally, the geodesic flow = motion with zero

acceleration).
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Quantum ergodicity

M a billiard table / compact Riemannian manifold, of
dimension d.

In quantum mechanics :

ind? _ (—h2A+o)¢

dt 2m
h2

— 5D = E,
2m

in the limit of small wavelengths.
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Figure: Billiard trajectories and eigenfunctions in a disk. Source A.

Backer.
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Figure: Spherical harmonics
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Square / torus
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Figure: umn(x,y) = sin mxsin ny. Source A. Backer.
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Figure 3. Nodal lines for a square membrane.

Figure: umn(x,y) = sin mxsin ny



An
introduction
to quantum

chaos

Nalini Anan-
tharaman

Quantum
ergodicity

N

gagggggkﬁzfﬁiﬁiﬁiﬁ

seoscss SRS

N

d

0JoJ099o,

o) 05

20505080 E
30808080]  [ISKIRISK

n 2 n

FIGURE 1. Nodal lines for the eigenfunction cos(4z — 7y) -+
sin(8z — y) + sin(4z + 7y) (left) and sin(4z + 7y) + sin(dx —
Ty) +sin(8z + y) +sin(8z — y) = 2sin4z cosy(—1+2cos 4+
2cos 2y — 2cos 4y + 2 cos 6y) (right).
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Figure: A few eigenfunctions of the Bunimovich billiard (Heller, 89).
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Figure: Source A. Bicker
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Figure: Propagation of a gaussian wave packet in a cardioid. Source
A. Backer.
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Figure: Propagation of a gaussian
A. Backer.

wave packet in a

cardioid. Source
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Eigenfunctions in the high
frequency limit

M a billiard table / compact Riemannian manifold, of
dimension d.

Ay = =Xk or  — —mAL: = Eq,
Ik 2(my = 1,
in the limit A\ — +o00.

We study the weak limits of the probability measures on M,

|k (x) |7 d Vol (x).



An
introduction
to quantum

chaos

Mo Let (¢ )ken be an orthonormal basis of L2(M), with
oo —Atp = AWk, Ak < Aeg1-
ergodicity

Theorem (QE Theorem (simplified): Shnirelman 74,
Zelditch 85, Colin de Verdiére 85)

Assume that the action of the geodesic flow is ergodic for the
Liouville measure. Let ae C°(M). Then

N(IA) > UM a(X)‘T/Jk(x)‘deol(x)—J a(x)d Vol (x)| — 0.

<A M -
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Theorem (QE Theorem (simplified): Shnirelman 74,
Zelditch 85, Colin de Verdiére 85)

Assume that the action of the geodesic flow is ergodic for the
Liouville measure. Let ae C°(M). Then

N(IA) > UM a(X)‘T/Jk(x)‘deol(x)—J a(x)d Vol (x)| — 0.

<A M -
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uantum 2
Juanan f a(x)|1/)k(x)’ dVol(x) J a(x)d Vol(x).
M k—>+00 M
keS
Equivalently,
|k (x) |? Vol (x) d Vol (x)
k—>+00
keS

in the weak topology.
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Quantum
dicit * *
SETEY T M:{(x,f),xe M, €& e TXI\/I}.

For a = a(x, &) a “reasonable” function on phase space, we can
define an operator on L?(M),

a(x, Dy) (DX = 10X>.



On M = RY, we identify the momentum & with the Fourier
variable, and put

a(x, Dy)F(x) = # JRd alx, ) F(£) e de.

for a a “reasonable” function.
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On M = R, we identify the momentum ¢ with the Fourier
variable, and put

1
(2

a(x, Dy)f(x) = J;@d a(x, &) f(g) ef€X de.

for a a “reasonable” function.

Say a€ S°(T*M) if a is smooth and 0-homogeneous in & (i.e.
a is a smooth function on the sphere bundle SM).
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For ae S%(T*M), we consider

iy a(x, D)V 2(my-



An
introduction
to quantum

chaos

Nalini Anan-
tharaman

Quantum
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=AYy = A\, A < Ayt

For ae S%(T*M), we consider

iy a(x, D)V 2(my-

This amounts to §,, a(x)[¢k(x)[2d Vol (x) if a = a(x).
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Theorem (QE Theorem)

Assume that the action of the geodesic flow is ergodic for the
Liouville measure. Let a(x,&) € S°(T*M). Then

3 [Coeatx DI gy — | alx)axde] o

1
N(A) Ak<A l€l=1
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. Ergodic billiards. Source A. Backer
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Figure: Source A. Bicker
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Conjecture (Quantum Unique Ergodicity conjecture :
Rudnick, Sarnak 94)
Quantum

ergodicity On a negatively curved manifold, we have convergence of the
whole sequence :

<¢k7 alx, D ¢k>L2(M —)J X &.)dXdE

(x,£)eSM
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Conjecture (Quantum Unique Ergodicity conjecture :
Rudnick, Sarnak 94)

On a negatively curved manifold, we have convergence of the
whole sequence :

<¢k, alx, D ¢k>L2(M —)J X &.)dde

(x,£)eSM

Proved by E. Lindenstrauss, in the special case of arithmetic
congruence surfaces, for joint eigenfunctions of the Laplacian,
and the Hecke operators.
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Theorem
Let M have negative curvature and dimension d. Assume

<¢k,a(x, Dx)wk >L2(M) - a(ng)dM(va)'

(x,£)eSM

(1) [A 2005, A-Nonnenmacher 2006] : y1 must have positive
(non vanishing) Kolmogorov-Sinai entropy.

For constant negative curvature, our result implies that the
support of i has dimension > d = dim M.
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Quantum
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Theorem
Let M have negative curvature and dimension d. Assume

<¢k,a(x, Dx)wk >L2(M) - a(ng)dM(va)'

(x,£)eSM

(1) [A 2005, A-Nonnenmacher 2006] : y1 must have positive
(non vanishing) Kolmogorov-Sinai entropy.

For constant negative curvature, our result implies that the
support of i has dimension > d = dim M.

(2) [Dyatlov-Jin+Nonnenmacher 2017-10] : d = 2, negative
curvature, |1 has full support.
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Toy models

Toy models are “simple” models where either
® some explicit calculations are possible,
OR

® numerical calculations are relatively easy.



An
introduction
to quantum

chaos

Nalini Anan-
tharaman

Graphs

Toy models

Toy models are “simple” models where either
® some explicit calculations are possible,
OR

® numerical calculations are relatively easy.

They often have a discrete character.
Instead of studying i — 0 one considers finite dimensional
Hilbert spaces whose dimension N — +00.



Regular graphs

Figure: A (random) 3-regular graph. Source J. Salez.
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Let G = (V,E) be a (q + 1)-regular graph.

Graphs

Discrete laplacian : f : V — C,

Af(x) = ) (fly) = f(x)) = X} fy) = (@ + D)f (x).

y~x y~x

A=A—(qg+1)
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Why do they seem relevant 7

They are locally modelled on the (g + 1)- regular tree T,

Tq may be considered to have curvature —coo.
Harmonic analysis on T is very similar to h.a. on H".

For g = p a prime number, T}, is the symmetric space of
the group SL>(Qp).
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Graphs

Why do they seem relevant 7

They are locally modelled on the (g + 1)- regular tree T,
(cf. H" for hyperbolic manifolds).

Tq may be considered to have curvature —coo.
Harmonic analysis on T is very similar to h.a. on H".

For g = p a prime number, T}, is the symmetric space of
the group SL>(Qp).
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Graphs

Why do they seem relevant 7

They are locally modelled on the (g + 1)- regular tree T,
(cf. H" for hyperbolic manifolds).

Tq may be considered to have curvature —coo.
Harmonic analysis on T is very similar to h.a. on H".

For g = p a prime number, T}, is the symmetric space of

the group SL>(Qp).
H? is the symmetric space of SLy(R).
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A major difference

Sp(A) = [-(g+1),qg +1]
Let |V| = N. We look at the limit N — +o0.



An
introduction
to quantum

chaos

Nalini Anan-
tharaman

Graphs

Recent results : deterministic

Theorem (A-Le Masson, 2013)
Assume that Gy has “few” short loops and that it forms an
expander family = uniform spectral gap for A.

Let (cZJ(N)) be an ONB of eigenfunctions of the laplacian on
Gy.

Let a = ap : Vy — R be such that |a(x)| < 1 for all x € V.
Then

NI—i>T-oo N Z Z | —@ =0

XEVN

where

<a>=% D7 a(x).

XxXe VN
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Graphs

Recent results : deterministic

Theorem (A-Le Masson, 2013)
Assume that Gy has “few” short loops and that it forms an
expander family = uniform spectral gap for A.

Let (cZJ(N)) be an ONB of eigenfunctions of the laplacian on
Gy.

Let a = ap : Vy — R be such that |a(x)| < 1 for all x € V.
Then

53] S st o |0

XEVN

where

<a>=% D7 a(x).

XxXe VN
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Graphs
. 1.y. (N) N\ J2
N|—|>T-OON {/,) Z a(x)|o; " (x)| —<a>‘ > e} =0.

Xe VN
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Recent results : deterministic

Theorem (Brooks-Lindenstrauss, 2011)

Assume that Gy has “few” loops of length < clog N.
For e > 0, there exists 6 > 0 s.t. for every eigenfunction ¢,

B c Wy, Z|¢(X)|2>e — |B| = NY.

xeB

Proof also yields that || ¢, < |log N|~1/4.
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Graphs Deterministic examples :

e the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988

(arithmetic quotients of the g-adic symmetric space
PGL(2,Qq)/PGL(2,Zq));
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Graphs Deterministic examples :

e the Ramanujan graphs of Lubotzky-Phillips-Sarnak 1988
(arithmetic quotients of the g-adic symmetric space
PGL(2,Qq)/PGL(2,Zq));

e Cayley graphs of SLy(Z/pZ), p ranges over the primes,
(Bourgain-Gamburd, based on Helfgott 2005).
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Graphs

Recent results :

Theorem (Bauerschmidt, Huang, Yau)

Letd=q+1

> 3.

random

For the Gy 4 model of random regu/ar graphs,

o 1M e <

log N*
VN

as soon as )\

€[-2/q+¢€2,/9—¢];
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Theorem (Bauerschmidt, Huang, Yau)
Letd=q+1=3.
For the Gy 4 model of random regu/ar graphs,

° | ¢§N) e < '°5% as soon as/\ €[-2\/q+¢€2,/q—¢]

Graphs

* (see also Bauerschmidt—Knowles—Yau) QUE : given
a:{1,...,N} — R,

for all \") € [<2,/ + €,2,/q — €],
i 0|6 () = = Na(x) + O(Iog N.)Ha\l :
x=1 ’ N n N g

with large probability as N — +c0.
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A proof of Shnirelman’s theorem

Graphs

A-Nonnenmacher's result on entropy of eigenfunctions

Dyatlov-Jin-Nonnenmacher's result on support of
semiclassical measures (negatively curved surfaces)

* Quantum ergodicity for large discrete graphs (A-Le
Masson, A-Sabri)

Probabilistic QUE for random matrices / random graphs
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