Fractal Uncertainty Principle

Semyon Dyatlov (MIT)

December 13, 2022

Semyon Dyatlov

Fractal Uncertainty Principle

December 13, 2022 1/20

- Applications include lower bound on mass of eigenfunctions on compact surfaces and spectral gaps on noncompact surfaces
- I will discuss the general proof a bit but focus on the simpler case of discrete Cantor sets
- We know FUP for subsets of $\mathbb{R};$ in higher dimensions it is largely an open problem

- Applications include lower bound on mass of eigenfunctions on compact surfaces and spectral gaps on noncompact surfaces
- I will discuss the general proof a bit but focus on the simpler case of discrete Cantor sets
- We know FUP for subsets of $\mathbb{R};$ in higher dimensions it is largely an open problem

- Applications include lower bound on mass of eigenfunctions on compact surfaces and spectral gaps on noncompact surfaces
- I will discuss the general proof a bit but focus on the simpler case of discrete Cantor sets
- We know FUP for subsets of $\mathbb{R};$ in higher dimensions it is largely an open problem

- Applications include lower bound on mass of eigenfunctions on compact surfaces and spectral gaps on noncompact surfaces
- I will discuss the general proof a bit but focus on the simpler case of discrete Cantor sets
- We know FUP for subsets of $\mathbb{R};$ in higher dimensions it is largely an open problem

Unitary semiclassical Fourier transform on $L^2(\mathbb{R})$:

$$\mathcal{F}_{h}f(x) = (2\pi h)^{-\frac{1}{2}} \widehat{f}\left(\frac{x}{h}\right) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h}xy} f(y) \, dy$$

Here $h \to 0$ is the semiclassical parameter. For applications to Laplacian eigenfunctions, $h \sim \lambda^{-1}$ where λ^2 is the eigenvalue.

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Here $\nu > 0$ should be independent of h. For instance we can take $X(h) = X_0 + [-\varepsilon h, \varepsilon h]$ where X_0 is porous up to scale 0.

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous up to scale 0

Unitary semiclassical Fourier transform on $L^2(\mathbb{R})$:

$$\mathcal{F}_{h}f(x) = (2\pi h)^{-\frac{1}{2}} \widehat{f}\left(\frac{x}{h}\right) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h}xy} f(y) \, dy$$

Here $h \to 0$ is the semiclassical parameter. For applications to Laplacian eigenfunctions, $h \sim \lambda^{-1}$ where λ^2 is the eigenvalue.

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Here $\nu > 0$ should be independent of h. For instance we can take $X(h) = X_0 + [-\varepsilon h, \varepsilon h]$ where X_0 is porous up to scale 0.

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous up to scale 0

Unitary semiclassical Fourier transform on $L^2(\mathbb{R})$:

$$\mathcal{F}_{h}f(x) = (2\pi h)^{-\frac{1}{2}} \widehat{f}\left(\frac{x}{h}\right) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h}xy} f(y) \, dy$$

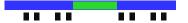
Here $h \to 0$ is the semiclassical parameter. For applications to Laplacian eigenfunctions, $h \sim \lambda^{-1}$ where λ^2 is the eigenvalue.

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Here $\nu > 0$ should be independent of h. For instance we can take $X(h) = X_0 + [-\varepsilon h, \varepsilon h]$ where X_0 is porous up to scale 0.

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous up to scale 0



Statement of Fractal Uncertainty Principle (FUP)

Theorem 1 [Bourgain-D '18]

Let X, Y be ν -porous up to scale h. Then there exist $\beta > 0, C$ depending only on ν such that

$$\|\mathbf{1}_{X} \mathcal{F}_{h} \, \mathbf{1}_{Y} \|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} \leq Ch^{\beta}$$

where $\mathbb{1}_X$ is the multiplication operator by the indicator function of X etc.

Theorem 1' (a restatement of Theorem 1)

Let X, Y be ν -porous up to scale h. Then there exist $\beta > 0, C$ depending only on ν such that for all $f \in L^2(\mathbb{R})$

$$\operatorname{supp} \widehat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad \|1_X f\|_{L^2(\mathbb{R})} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}$$

Statement of Fractal Uncertainty Principle (FUP)

Theorem 1 [Bourgain-D '18]

Let X, Y be ν -porous up to scale h. Then there exist $\beta > 0, C$ depending only on ν such that

$$\|\mathbf{1}_{X} \mathcal{F}_{h} \, \mathbf{1}_{Y} \|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} \leq Ch^{\beta}$$

where $\mathbb{1}_X$ is the multiplication operator by the indicator function of X etc.

Theorem 1' (a restatement of Theorem 1)

Let X, Y be ν -porous up to scale h. Then there exist $\beta > 0$, C depending only on ν such that for all $f \in L^2(\mathbb{R})$

$$\operatorname{supp} \widehat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad \|1_X f\|_{L^2(\mathbb{R})} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}$$

Basic uncertainty principles

Looking for

$$\|\mathbf{1}_X \, \mathcal{F}_h \, \mathbf{1}_Y \|_{L^2(\mathbb{R}) o L^2(\mathbb{R})} = \mathcal{O}(h^{eta}) \quad ext{as} \quad h o 0$$

• Trivial bound: $\beta = 0$ as $\|\mathbf{1}_X \mathcal{F}_h \mathbf{1}_Y\|_{L^2 \to L^2} \le 1$

• Volume bound: if $|X|, |Y| = \mathcal{O}(h^{1-\delta})$ then get $\beta = \frac{1}{2} - \delta$:

$$\begin{aligned} \|\mathbf{1}_{X}\mathcal{F}_{h}\mathbf{1}_{Y}\|_{L^{2}\to L^{2}} &\leq \|\mathbf{1}_{X}\|_{L^{\infty}\to L^{2}}\|\mathcal{F}_{h}\|_{L^{1}\to L^{\infty}}\|\mathbf{1}_{Y}\|_{L^{2}\to L^{1}}\\ &\leq \sqrt{\frac{|X|\cdot|Y|}{2\pi h}} = \mathcal{O}(h^{\frac{1}{2}-\delta})\end{aligned}$$

Cannot be improved if we only know the volume, e.g.

$$X = Y = [-\sqrt{h}, \sqrt{h}] \implies$$
 cannot get $\beta > 0$

So we need to know more about the structure of X, Y (e.g. porosity)

Basic uncertainty principles

Looking for

$$\|\mathbf{1}_X \, \mathcal{F}_h \, \mathbf{1}_Y \|_{L^2(\mathbb{R}) o L^2(\mathbb{R})} = \mathcal{O}(h^eta)$$
 as $h o 0$

• Trivial bound: $\beta = 0$ as $\|\mathbf{1}_X \mathcal{F}_h \mathbf{1}_Y\|_{L^2 \to L^2} \le 1$

• Volume bound: if $|X|, |Y| = \mathcal{O}(h^{1-\delta})$ then get $\beta = \frac{1}{2} - \delta$:

$$\begin{split} \|\mathbf{1}_{X}\mathcal{F}_{h}\mathbf{1}_{Y}\|_{L^{2}\to L^{2}} &\leq \|\mathbf{1}_{X}\|_{L^{\infty}\to L^{2}}\|\mathcal{F}_{h}\|_{L^{1}\to L^{\infty}}\|\mathbf{1}_{Y}\|_{L^{2}\to L^{1}}\\ &\leq \sqrt{\frac{|X|\cdot|Y|}{2\pi h}} = \mathcal{O}(h^{\frac{1}{2}-\delta}) \end{split}$$

• Cannot be improved if we only know the volume, e.g.

$$X=Y=[-\sqrt{h},\sqrt{h}] \implies$$
 cannot get $eta>0$

So we need to know more about the structure of X, Y (e.g. porosity)

Basic uncertainty principles

Looking for

$$\|\mathbf{1}_X \, \mathcal{F}_h \, \mathbf{1}_Y \|_{L^2(\mathbb{R}) o L^2(\mathbb{R})} = \mathcal{O}(h^eta) \quad ext{as} \quad h o 0$$

• Trivial bound: $\beta = 0$ as $\|\mathbf{1}_X \mathcal{F}_h \mathbf{1}_Y\|_{L^2 \to L^2} \le 1$

• Volume bound: if $|X|, |Y| = \mathcal{O}(h^{1-\delta})$ then get $\beta = \frac{1}{2} - \delta$:

$$\begin{split} \|\mathbf{1}_{X}\mathcal{F}_{h}\mathbf{1}_{Y}\|_{L^{2}\to L^{2}} &\leq \|\mathbf{1}_{X}\|_{L^{\infty}\to L^{2}}\|\mathcal{F}_{h}\|_{L^{1}\to L^{\infty}}\|\mathbf{1}_{Y}\|_{L^{2}\to L^{1}}\\ &\leq \sqrt{\frac{|X|\cdot|Y|}{2\pi h}} = \mathcal{O}(h^{\frac{1}{2}-\delta}) \end{split}$$

• Cannot be improved if we only know the volume, e.g.

$$X=Y=[-\sqrt{h},\sqrt{h}]$$
 \implies cannot get $eta>0$

So we need to know more about the structure of X, Y (e.g. porosity)

Semyon Dyatlov

Theorem 1'

Let X, Y be ν -porous up to scale h. Then there exist $\beta > 0$, C depending only on ν such that for all $f \in L^2(\mathbb{R})$

 $\operatorname{supp} \widehat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad \|1_X f\|_{L^2(\mathbb{R})} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}$

- Write $X \subset \bigcap_j X_j$ where each $X_j \subset X_{j-1}$ has holes on scale $2^{-j} \ge h$
- Will show: for each j, $\|1_{X_j}f\|_{L^2} \le (1-c)\|1_{X_{j-1}}f\|_{L^2}$

• This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R} \setminus X_j$, reducing FUP to the following

Key Lemma

Assume that for each $\ell \in \mathbb{Z}$, $I_{\ell} \subset [\ell, \ell + 1]$ is an interval of length $\alpha > 0$. Then there exists c > 0 depending only on ν , α such that

 $\operatorname{supp} \widehat{f} \subset h^{-1}Y \implies \|\mathbf{1}_{\bigsqcup_{\ell} l_{\ell}} f\|_{L^{2}(\mathbb{R})} \geq c \|f\|_{L^{2}(\mathbb{R})}.$

Theorem 1'

Let X, Y be ν -porous up to scale h. Then there exist $\beta > 0$, C depending only on ν such that for all $f \in L^2(\mathbb{R})$

$$\operatorname{supp} \widehat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad \| 1_X f \|_{L^2(\mathbb{R})} \leq \frac{C h^\beta}{\| f \|_{L^2(\mathbb{R})}}$$

- Write $X \subset \bigcap_j X_j$ where each $X_j \subset X_{j-1}$ has holes on scale $2^{-j} \ge h$
- Will show: for each j, $\|1_{X_j}f\|_{L^2} \le (1-c)\|1_{X_{j-1}}f\|_{L^2}$

• This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R} \setminus X_j$, reducing FUP to the following

Key Lemma

Assume that for each $\ell \in \mathbb{Z}$, $I_{\ell} \subset [\ell, \ell + 1]$ is an interval of length $\alpha > 0$. Then there exists c > 0 depending only on ν , α such that

 $\operatorname{supp} \widehat{f} \subset h^{-1}Y \implies \|\mathbb{1}_{\bigsqcup_{\ell} l_{\ell}} f\|_{L^{2}(\mathbb{R})} \geq c \|f\|_{L^{2}(\mathbb{R})}.$

Theorem 1'

Let X, Y be ν -porous up to scale h. Then there exist $\beta > 0$, C depending only on ν such that for all $f \in L^2(\mathbb{R})$

$$\operatorname{supp} \widehat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad \| 1_X f \|_{L^2(\mathbb{R})} \leq \frac{C h^\beta}{\|} \| f \|_{L^2(\mathbb{R})}$$

- Write $X \subset \bigcap_j X_j$ where each $X_j \subset X_{j-1}$ has holes on scale $2^{-j} \ge h$
- Will show: for each j, $\|1_{X_j}f\|_{L^2} \le (1-c)\|1_{X_{j-1}}f\|_{L^2}$
- This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R} \setminus X_j$, reducing FUP to the following

Key Lemma

$$\operatorname{supp} \widehat{f} \subset h^{-1}Y \implies \|\mathbf{1}_{\bigsqcup_{\ell} I_{\ell}} f\|_{L^{2}(\mathbb{R})} \geq c \|f\|_{L^{2}(\mathbb{R})}.$$

Key Lemma

Assume that for each $\ell \in \mathbb{Z}$, $I_{\ell} \subset [\ell, \ell + 1]$ is an interval of length $\alpha > 0$. Then there exists c > 0 depending only on ν , α such that

 $\operatorname{supp} \widehat{f} \subset h^{-1}Y \quad \Longrightarrow \quad \| \mathbb{1}_{\bigsqcup_{\ell} I_{\ell}} f \|_{L^2(\mathbb{R})} \geq c \| f \|_{L^2(\mathbb{R})}.$

- This is a unique continuation estimate: need f |_{□ℓ} I_ℓ = 0 ⇒ f = 0
 This is known if f has Fourier transform decaying fast enough, e.g.
 | f(ξ)| = O(e^{-|ξ|/(log |ξ|)^s}) for some s < 1 (
- Using porosity of Y and the Beurling–Malliavin theorem, can construct a compactly supported multiplier, $g \in C_c^{\infty}((-\frac{\alpha}{10}, \frac{\alpha}{10}))$, where \widehat{g} has decay (1) but only on $h^{-1} \cdot Y$
- Now use that the convolution f * g satisfies (1) everywhere

Key Lemma

$$\operatorname{supp} \widehat{f} \subset h^{-1}Y \implies \|\mathbb{1}_{\bigsqcup_{\ell} I_{\ell}} f\|_{L^{2}(\mathbb{R})} \geq c \|f\|_{L^{2}(\mathbb{R})}.$$

- This is a unique continuation estimate: need $f|_{||_{\ell} l_{\ell}} = 0 \implies f = 0$
- This is known if f has Fourier transform decaying fast enough, e.g.

$$|\widehat{f}(\xi)| = \mathcal{O}(e^{-|\xi|/(\log |\xi|)^s})$$
 for some $s < 1$ (1)

- Using porosity of Y and the Beurling–Malliavin theorem, can construct a compactly supported multiplier, $g \in C_c^{\infty}((-\frac{\alpha}{10}, \frac{\alpha}{10}))$, where \widehat{g} has decay (1) but only on $h^{-1} \cdot Y$
- Now use that the convolution f * g satisfies (1) everywhere

Key Lemma

$$\operatorname{supp} \widehat{f} \subset h^{-1}Y \implies \|\mathbb{1}_{\bigsqcup_{\ell} I_{\ell}} f\|_{L^{2}(\mathbb{R})} \geq c \|f\|_{L^{2}(\mathbb{R})}.$$

- This is a unique continuation estimate: need $f|_{||_{\ell} l_{\ell}} = 0 \implies f = 0$
- This is known if f has Fourier transform decaying fast enough, e.g.

$$|\widehat{f}(\xi)| = \mathcal{O}(e^{-|\xi|/(\log |\xi|)^s}) \quad ext{for some } s < 1 \tag{1}$$

- Using porosity of Y and the Beurling–Malliavin theorem, can construct a compactly supported multiplier, g ∈ C[∞]_c((-^α/₁₀, ^α/₁₀)), where ĝ has decay (1) but only on h⁻¹ · Y
- Now use that the convolution f * g satisfies (1) everywhere

Key Lemma

$$\operatorname{supp} \widehat{f} \subset h^{-1}Y \implies \|\mathbb{1}_{\bigsqcup_{\ell} I_{\ell}} f\|_{L^{2}(\mathbb{R})} \geq c \|f\|_{L^{2}(\mathbb{R})}.$$

- This is a unique continuation estimate: need $f|_{||_{\ell} l_{\ell}} = 0 \implies f = 0$
- This is known if f has Fourier transform decaying fast enough, e.g.

$$|\widehat{f}(\xi)| = \mathcal{O}(e^{-|\xi|/(\log |\xi|)^s}) \quad ext{for some } s < 1 \tag{1}$$

- Using porosity of Y and the Beurling–Malliavin theorem, can construct a compactly supported multiplier, $g \in C_c^{\infty}((-\frac{\alpha}{10}, \frac{\alpha}{10}))$, where \hat{g} has decay (1) but only on $h^{-1} \cdot Y$
- Now use that the convolution f * g satisfies (1) everywhere

Hyperbolic FUP

For applications to hyperbolic surfaces, we replace the phase xy in \mathcal{F}_h by $2 \log |x - y|$ and introduce a cutoff $\chi \in C_c^{\infty}(\mathbb{R}^2)$, $\operatorname{supp} \chi \subset \{x \neq y\}$:

$$\mathcal{B}_{\chi,h}f(x)=(2\pi h)^{-rac{1}{2}}\int_{\mathbb{R}}|x-y|^{-rac{2i}{h}}\chi(x,y)f(y)\,dy$$

The operator $\mathcal{B}_{\chi,h}$ appears in the composition $B_{-}^{-1}B_{+}$ where B_{\pm} are FIOs locally straightening out stable/unstable foliations

One can deduce from FUP for \mathcal{F}_h a similar statement for $\mathcal{B}_{\chi,h}$:

Theorem 2 (Hyperbolic FUP)

Assume that $X, Y \subset \mathbb{R}$ are ν -porous up to scale h. Then there exist $\beta = \beta(\nu) > 0$ and $C = C(\nu, \chi)$ such that

$\|\mathbf{1}_X \mathcal{B}_{\chi,h} \, \mathbf{1}_Y \|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} \le Ch^{\beta}.$

Hyperbolic FUP

For applications to hyperbolic surfaces, we replace the phase xy in \mathcal{F}_h by $2 \log |x - y|$ and introduce a cutoff $\chi \in C_c^{\infty}(\mathbb{R}^2)$, $\operatorname{supp} \chi \subset \{x \neq y\}$:

$$\mathcal{B}_{\chi,h}f(x)=(2\pi h)^{-rac{1}{2}}\int_{\mathbb{R}}|x-y|^{-rac{2i}{h}}\chi(x,y)f(y)\,dy$$

The operator $\mathcal{B}_{\chi,h}$ appears in the composition $B_{-}^{-1}B_{+}$ where B_{\pm} are FIOs locally straightening out stable/unstable foliations

One can deduce from FUP for \mathcal{F}_h a similar statement for $\mathcal{B}_{\chi,h}$:

Theorem 2 (Hyperbolic FUP)

Assume that $X, Y \subset \mathbb{R}$ are ν -porous up to scale h. Then there exist $\beta = \beta(\nu) > 0$ and $C = C(\nu, \chi)$ such that

$$\|\mathbf{1}_{\boldsymbol{X}} \mathcal{B}_{\chi,h} \, \mathbf{1}_{\boldsymbol{Y}} \|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} \le Ch^{\beta}.$$

A bit on reducing hyperbolic FUP to Fourier FUP

- Replace Y by its $h^{1/2-}$ -neighborhood \widetilde{Y} : $\|\mathbb{1}_X \mathcal{B}_h \mathbb{1}_Y\| \le \|\mathbb{1}_X \mathcal{B}_h \mathbb{1}_{\widetilde{Y}}\|$
- Split $X = \bigsqcup_j X_j$, each X_j lies in an $h^{1/2}$ -sized interval $[x_j, x_j + h^{1/2}]$
- Show $B_j := \mathbb{1}_{X_j} \mathcal{B}_h \mathbb{1}_{\widetilde{Y}}$ almost orthogonal: for $|j \ell| \gg 1$

 $\|B_j^*B_\ell\|=\mathcal{O}(h^\infty), \quad \|B_jB_\ell^*\|=\mathcal{O}(h^\infty)$

so by Cotlar–Stein $\|\mathbf{1}_X \mathcal{B}_h \mathbf{1}_{\widetilde{Y}}\| \lesssim \max_j \|\mathbf{1}_{X_j} \mathcal{B}_h \mathbf{1}_{\widetilde{Y}}\|$

• Use a change of variables to bound $\|\mathbb{1}_{X_j}\mathcal{B}_h\mathbb{1}_{\widetilde{Y}}\|$ using the Fourier FUP: if $\Phi(x, y) = -2\log|x - y|$ and $|x - x_j| \le h^{1/2}$ then on supp χ

$$e^{\frac{i}{\hbar}\Phi(x,y)} \approx e^{\frac{i}{\hbar}\Phi(x_j,y)}e^{\frac{i}{\hbar}(x-x_j)\kappa_j(y)}, \quad \kappa_j(y) := \partial_x \Phi(x_j,y)$$

• The β for hyperbolic FUP is $\frac{1}{2}$ of the β for the Fourier FUP

A bit on reducing hyperbolic FUP to Fourier FUP

- Replace Y by its $h^{1/2-}$ -neighborhood \widetilde{Y} : $\|\mathbb{1}_X \mathcal{B}_h \mathbb{1}_Y\| \le \|\mathbb{1}_X \mathcal{B}_h \mathbb{1}_{\widetilde{Y}}\|$
- Split $X = \bigsqcup_j X_j$, each X_j lies in an $h^{1/2}$ -sized interval $[x_j, x_j + h^{1/2}]$
- Show $B_j := \mathbbm{1}_{X_j} \mathcal{B}_h \mathbbm{1}_{\widetilde{Y}}$ almost orthogonal: for $|j \ell| \gg 1$

 $\|B_j^*B_\ell\| = \mathcal{O}(h^\infty), \quad \|B_jB_\ell^*\| = \mathcal{O}(h^\infty)$

so by Cotlar–Stein $\|\mathbf{1}_X \mathcal{B}_h \mathbf{1}_{\widetilde{Y}}\| \lesssim \max_j \|\mathbf{1}_{X_j} \mathcal{B}_h \mathbf{1}_{\widetilde{Y}}\|$

• Use a change of variables to bound $\|\mathbb{1}_{X_j}\mathcal{B}_h\mathbb{1}_{\widetilde{Y}}\|$ using the Fourier FUP: if $\Phi(x, y) = -2\log|x - y|$ and $|x - x_j| \le h^{1/2}$ then on supp χ

$$e^{\frac{i}{\hbar}\Phi(x,y)} \approx e^{\frac{i}{\hbar}\Phi(x_j,y)}e^{\frac{i}{\hbar}(x-x_j)\kappa_j(y)}, \quad \kappa_j(y) := \partial_x\Phi(x_j,y)$$

• The β for hyperbolic FUP is $\frac{1}{2}$ of the β for the Fourier FUP

A bit on reducing hyperbolic FUP to Fourier FUP

- Replace Y by its $h^{1/2-}$ -neighborhood \widetilde{Y} : $\|\mathbb{1}_X \mathcal{B}_h \mathbb{1}_Y\| \le \|\mathbb{1}_X \mathcal{B}_h \mathbb{1}_{\widetilde{Y}}\|$
- Split $X = \bigsqcup_j X_j$, each X_j lies in an $h^{1/2}$ -sized interval $[x_j, x_j + h^{1/2}]$
- Show $B_j := \mathbf{1}_{X_j} \mathcal{B}_h \mathbf{1}_{\widetilde{Y}}$ almost orthogonal: for $|j \ell| \gg 1$

 $\|B_j^*B_\ell\| = \mathcal{O}(h^\infty), \quad \|B_jB_\ell^*\| = \mathcal{O}(h^\infty)$

so by Cotlar–Stein $\|\mathbf{1}_{X}\mathcal{B}_{h}\mathbf{1}_{\widetilde{Y}}\| \lesssim \max_{j} \|\mathbf{1}_{X_{j}}\mathcal{B}_{h}\mathbf{1}_{\widetilde{Y}}\|$

• Use a change of variables to bound $\|\mathbf{1}_{X_j} \mathcal{B}_h \mathbf{1}_{\widetilde{Y}}\|$ using the Fourier FUP: if $\Phi(x, y) = -2 \log |x - y|$ and $|x - x_j| \le h^{1/2}$ then on supp χ

$$e^{\frac{i}{\hbar}\Phi(x,y)} \approx e^{\frac{i}{\hbar}\Phi(x_j,y)}e^{\frac{i}{\hbar}(x-x_j)\kappa_j(y)}, \quad \kappa_j(y) := \partial_x\Phi(x_j,y)$$

• The β for hyperbolic FUP is $\frac{1}{2}$ of the β for the Fourier FUP

We now present a proof of FUP in the special setting of Cantor sets. This is much simpler than the general case but keeps some key features. We follow D-Jin '17, with the exposition from [arXiv:1903.02599]

• Discrete unitary Fourier transform $\mathcal{F}_N : \mathbb{C}^N \to \mathbb{C}^N$

$$\mathcal{F}_N u(j) = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} e^{-\frac{2\pi i j \ell}{N}} u(\ell)$$

• Fix $M \ge 3$, $\mathscr{A} \subset \{0, \ldots, M-1\}$. Put $N := M^k$, $k \gg 1$ and define

$$\mathcal{C}_k := \{a_0 + a_1 M + \dots + a_{k-1} M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$$

• Example: if M = 3, $\mathscr{A} = \{0, 2\}$, then $C_k \subset \{0, \dots, N-1\}$, $N = 3^k$, is the discrete mid-3rd Cantor set $\{0, 2, 6, 8, 18, 20, 24, 26, \dots\}$

• The number of elements of C_k is $|C_k| = N^{\delta}$ where $\delta = \log_M |\mathcal{A}|$

We now present a proof of FUP in the special setting of Cantor sets. This is much simpler than the general case but keeps some key features. We follow D-Jin '17, with the exposition from [arXiv:1903.02599]

• Discrete unitary Fourier transform $\mathcal{F}_N:\mathbb{C}^N\to\mathbb{C}^N$

$$\mathcal{F}_N u(j) = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} e^{-\frac{2\pi i j \ell}{N}} u(\ell)$$

• Fix $M \ge 3$, $\mathscr{A} \subset \{0, \ldots, M-1\}$. Put $N := M^k$, $k \gg 1$ and define

 $\mathcal{C}_k := \{a_0 + a_1 M + \dots + a_{k-1} M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$

• Example: if M = 3, $\mathscr{A} = \{0, 2\}$, then $C_k \subset \{0, \dots, N-1\}$, $N = 3^k$, is the discrete mid-3rd Cantor set $\{0, 2, 6, 8, 18, 20, 24, 26, \dots\}$

• The number of elements of C_k is $|C_k| = N^{\delta}$ where $\delta = \log_M |\mathscr{A}|$

We now present a proof of FUP in the special setting of Cantor sets. This is much simpler than the general case but keeps some key features. We follow D-Jin '17, with the exposition from [arXiv:1903.02599]

• Discrete unitary Fourier transform $\mathcal{F}_N:\mathbb{C}^N\to\mathbb{C}^N$

$$\mathcal{F}_N u(j) = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} e^{-\frac{2\pi i j \ell}{N}} u(\ell)$$

• Fix $M \ge 3$, $\mathscr{A} \subset \{0, \ldots, M-1\}$. Put $N := M^k$, $k \gg 1$ and define

$$\mathcal{C}_k := \{a_0 + a_1 M + \dots + a_{k-1} M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$$

• Example: if M = 3, $\mathscr{A} = \{0, 2\}$, then $C_k \subset \{0, ..., N - 1\}$, $N = 3^k$, is the discrete mid-3rd Cantor set $\{0, 2, 6, 8, 18, 20, 24, 26, ...\}$

• The number of elements of C_k is $|C_k| = N^{\delta}$ where $\delta = \log_M |\mathscr{A}|$

We now present a proof of FUP in the special setting of Cantor sets. This is much simpler than the general case but keeps some key features. We follow D-Jin '17, with the exposition from [arXiv:1903.02599]

• Discrete unitary Fourier transform $\mathcal{F}_N:\mathbb{C}^N\to\mathbb{C}^N$

$$\mathcal{F}_N u(j) = \frac{1}{\sqrt{N}} \sum_{\ell=0}^{N-1} e^{-\frac{2\pi i j \ell}{N}} u(\ell)$$

• Fix $M \ge 3$, $\mathscr{A} \subset \{0, \ldots, M-1\}$. Put $N := M^k$, $k \gg 1$ and define

$$\mathcal{C}_k := \{a_0 + a_1 M + \dots + a_{k-1} M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$$

• Example: if M = 3, $\mathscr{A} = \{0, 2\}$, then $C_k \subset \{0, ..., N - 1\}$, $N = 3^k$, is the discrete mid-3rd Cantor set $\{0, 2, 6, 8, 18, 20, 24, 26, ...\}$

• The number of elements of C_k is $|C_k| = N^{\delta}$ where $\delta = \log_M |\mathscr{A}|$

Uncertainty principle for discrete Cantor sets

Theorem 3

Assume that $0 < \delta < 1$, i.e. $1 < |\mathscr{A}| < M$. Then there exists $\beta = \beta(M, \mathscr{A}) > \max(0, \frac{1}{2} - \delta)$ such that as $N = M^k \to \infty$,

$$\| 1_{\mathcal{C}_k} \mathcal{F}_N 1_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N} = \mathcal{O}(N^{-\beta}).$$

• Trivial bound $\beta = 0$: since \mathcal{F}_N is unitary, $\| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N} \le 1$ • Volume bound $\beta = \frac{1}{2} - \delta$: defining the Hilbert–Schmidt norm

$$||A||_{HS}^2 = \sum_{j,k} |a_{jk}|^2$$
 where $A = (a_{jk})_{j,k=1}^N$

we have

 $\| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N} \leq \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathrm{HS}} = N^{\delta - \frac{1}{2}}.$

Uncertainty principle for discrete Cantor sets

Theorem 3

Assume that $0 < \delta < 1$, i.e. $1 < |\mathscr{A}| < M$. Then there exists $\beta = \beta(M, \mathscr{A}) > \max(0, \frac{1}{2} - \delta)$ such that as $N = M^k \to \infty$,

$$\| 1_{\mathcal{C}_k} \mathcal{F}_N 1_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N} = \mathcal{O}(N^{-\beta}).$$

- Trivial bound $\beta = 0$: since \mathcal{F}_N is unitary, $\| 1\!\!1_{\mathcal{C}_k} \mathcal{F}_N 1\!\!1_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N} \leq 1$
- Volume bound $\beta = \frac{1}{2} \delta$: defining the Hilbert–Schmidt norm

$$\|A\|_{\mathsf{HS}}^2 = \sum_{j,k} |a_{jk}|^2$$
 where $A = (a_{jk})_{j,k=1}^N$

we have

$$\| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N} \leq \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathsf{HS}} = N^{\delta - \frac{1}{2}}.$$

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_k := \| \mathbb{1}_{\mathcal{C}^k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$. Then $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ for all k_1, k_2 .

- Write $k = k_1 + k_2$, $N = M^k = N_1 \cdot N_2$, $N_j := M^{k_j}$
- Identify $u \in \mathbb{C}^N$ with an $N_1 \times N_2$ matrix $U_{ab} = u(N_1b + a)$
- Apply the Fourier transform \mathcal{F}_{N_2} to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2\pi iab}{N}}$
- Apply the Fourier transform \mathcal{F}_{N_1} to each column of U
- The resulting matrix V gives $v = \mathcal{F}_N u$ by $V_{ab} = v(N_2 a + b)$
- Using that $C_k = N_1 C_{k_2} + C_{k_1} = N_2 C_{k_1} + C_{k_2}$, we get $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_k := \| \mathbb{1}_{\mathcal{C}^k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$. Then $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ for all k_1, k_2 .

- Write $k = k_1 + k_2$, $N = M^k = N_1 \cdot N_2$, $N_j := M^{k_j}$
- Identify $u \in \mathbb{C}^N$ with an $N_1 \times N_2$ matrix $U_{ab} = u(N_1b + a)$
- Apply the Fourier transform \mathcal{F}_{N_2} to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2\pi iab}{N}}$
- Apply the Fourier transform \mathcal{F}_{N_1} to each column of U
- The resulting matrix V gives $v = \mathcal{F}_N u$ by $V_{ab} = v(N_2 a + b)$
- Using that $C_k = N_1 C_{k_2} + C_{k_1} = N_2 C_{k_1} + C_{k_2}$, we get $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_k := \| \mathbb{1}_{\mathcal{C}^k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$. Then $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ for all k_1, k_2 .

- Write $k = k_1 + k_2$, $N = M^k = N_1 \cdot N_2$, $N_j := M^{k_j}$
- Identify $u \in \mathbb{C}^N$ with an $N_1 \times N_2$ matrix $U_{ab} = u(N_1b + a)$
- Apply the Fourier transform \mathcal{F}_{N_2} to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2\pi iab}{N}}$
- Apply the Fourier transform \mathcal{F}_{N_1} to each column of U
- The resulting matrix V gives $v = \mathcal{F}_N u$ by $V_{ab} = v(N_2 a + b)$
- Using that $C_k = N_1 C_{k_2} + C_{k_1} = N_2 C_{k_1} + C_{k_2}$, we get $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_k := \| \mathbb{1}_{\mathcal{C}^k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$. Then $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ for all k_1, k_2 .

- Write $k=k_1+k_2$, $N=M^k=N_1\cdot N_2$, $N_j:=M^{k_j}$
- Identify $u \in \mathbb{C}^N$ with an $N_1 \times N_2$ matrix $U_{ab} = u(N_1b + a)$
- Apply the Fourier transform \mathcal{F}_{N_2} to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2\pi iab}{N}}$
- Apply the Fourier transform \mathcal{F}_{N_1} to each column of U
- The resulting matrix V gives $v = \mathcal{F}_N u$ by $V_{ab} = v(N_2 a + b)$
- Using that $C_k = N_1 C_{k_2} + C_{k_1} = N_2 C_{k_1} + C_{k_2}$, we get $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_k := \| \mathbb{1}_{\mathcal{C}^k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$. Then $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ for all k_1, k_2 .

To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_1+k_2$, $N=M^k=N_1\cdot N_2$, $N_j:=M^{k_j}$
- Identify $u \in \mathbb{C}^N$ with an $N_1 \times N_2$ matrix $U_{ab} = u(N_1b + a)$
- Apply the Fourier transform \mathcal{F}_{N_2} to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2\pi iab}{N}}$
- Apply the Fourier transform \mathcal{F}_{N_1} to each column of U

• The resulting matrix V gives $v = \mathcal{F}_N u$ by $V_{ab} = v(N_2 a + b)$

• Using that $C_k = N_1 C_{k_2} + C_{k_1} = N_2 C_{k_1} + C_{k_2}$, we get $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_k := \| \mathbb{1}_{\mathcal{C}^k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$. Then $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ for all k_1, k_2 .

To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_1+k_2$, $N=M^k=N_1\cdot N_2$, $N_j:=M^{k_j}$
- Identify $u \in \mathbb{C}^N$ with an $N_1 \times N_2$ matrix $U_{ab} = u(N_1b + a)$
- Apply the Fourier transform \mathcal{F}_{N_2} to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2\pi iab}{N}}$
- Apply the Fourier transform \mathcal{F}_{N_1} to each column of U
- The resulting matrix V gives $v = \mathcal{F}_N u$ by $V_{ab} = v(N_2 a + b)$
- Using that $C_k = N_1 C_{k_2} + C_{k_1} = N_2 C_{k_1} + C_{k_2}$, we get $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define $r_k := \| \mathbb{1}_{\mathcal{C}^k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$. Then $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ for all k_1, k_2 .

To prove it, we employ the following decomposition also used in FFT:

- Write $k=k_1+k_2$, $N=M^k=N_1\cdot N_2$, $N_j:=M^{k_j}$
- Identify $u \in \mathbb{C}^N$ with an $N_1 \times N_2$ matrix $U_{ab} = u(N_1b + a)$
- Apply the Fourier transform \mathcal{F}_{N_2} to each row of U
- Multiply the entries of U by the twist factors $e^{-\frac{2\pi iab}{N}}$
- Apply the Fourier transform \mathcal{F}_{N_1} to each column of U
- The resulting matrix V gives $v = \mathcal{F}_N u$ by $V_{ab} = v(N_2 a + b)$
- Using that $\mathcal{C}_k = N_1 \mathcal{C}_{k_2} + \mathcal{C}_{k_1} = N_2 \mathcal{C}_{k_1} + \mathcal{C}_{k_2}$, we get $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$

An example of the 'Fast Fourier Transform' decomposition

Let's say $N = 4 = N_1 N_2$ where $N_1 = N_2 = 2$.

Take $u = (u_0, u_1, u_2, u_3) \in \mathbb{C}^4$. Follow the instructions on the last slide: • Take $U = \begin{pmatrix} u_0 & u_2 \\ u_1 & u_3 \end{pmatrix}$, \mathcal{F}_2 each row to get $\frac{1}{\sqrt{2}} \begin{pmatrix} u_0 + u_2 & u_0 - u_2 \\ u_1 + u_3 & u_1 - u_3 \end{pmatrix}$ • Multiply by twist factors $e^{-\frac{\pi i a b}{2}}$ to get $\frac{1}{\sqrt{2}} \begin{pmatrix} u_0 + u_2 & u_0 - u_2 \\ u_1 + u_3 & u_1 - u_3 \end{pmatrix}$

• \mathcal{F}_2 each column to get

$$V = \frac{1}{2} \begin{pmatrix} u_0 + u_1 + u_2 + u_3 & u_0 - iu_1 - u_2 + iu_3 \\ u_0 - u_1 + u_2 - u_3 & u_0 + iu_1 - u_2 - iu_3 \end{pmatrix}$$

• V gives the Fourier transform $\mathcal{F}_4 u$:

$$V = \begin{pmatrix} \mathcal{F}_4 u(0) & \mathcal{F}_4 u(1) \\ \mathcal{F}_4 u(2) & \mathcal{F}_4 u(3) \end{pmatrix}$$

An example of the 'Fast Fourier Transform' decomposition

Let's say $N = 4 = N_1 N_2$ where $N_1 = N_2 = 2$.

Take $u = (u_0, u_1, u_2, u_3) \in \mathbb{C}^4$. Follow the instructions on the last slide: • Take $U = \begin{pmatrix} u_0 & u_2 \\ u_1 & u_3 \end{pmatrix}$, \mathcal{F}_2 each row to get $\frac{1}{\sqrt{2}} \begin{pmatrix} u_0 + u_2 & u_0 - u_2 \\ u_1 + u_3 & u_1 - u_3 \end{pmatrix}$ • Multiply by twist factors $e^{-\frac{\pi i a b}{2}}$ to get $\frac{1}{\sqrt{2}} \begin{pmatrix} u_0 + u_2 & u_0 - u_2 \\ u_1 + u_3 & u_1 - u_3 \end{pmatrix}$ • \mathcal{F}_2 each column to get

$$V = \frac{1}{2} \begin{pmatrix} u_0 + u_1 + u_2 + u_3 & u_0 - iu_1 - u_2 + iu_3 \\ u_0 - u_1 + u_2 - u_3 & u_0 + iu_1 - u_2 - iu_3 \end{pmatrix}$$

• V gives the Fourier transform $\mathcal{F}_4 u$:

$$V = \begin{pmatrix} \mathcal{F}_4 u(0) & \mathcal{F}_4 u(1) \\ \mathcal{F}_4 u(2) & \mathcal{F}_4 u(3) \end{pmatrix}$$

An example of the 'Fast Fourier Transform' decomposition

Let's say $N = 4 = N_1 N_2$ where $N_1 = N_2 = 2$.

Take $u = (u_0, u_1, u_2, u_3) \in \mathbb{C}^4$. Follow the instructions on the last slide:

• Take
$$U = \begin{pmatrix} u_0 & u_2 \\ u_1 & u_3 \end{pmatrix}$$
, \mathcal{F}_2 each row to get $\frac{1}{\sqrt{2}} \begin{pmatrix} u_0 + u_2 & u_0 - u_2 \\ u_1 + u_3 & u_1 - u_3 \end{pmatrix}$

• Multiply by twist factors
$$e^{-\frac{\pi i a b}{2}}$$
 to get $\frac{1}{\sqrt{2}} \begin{pmatrix} u_0 + u_2 & u_0 - u_2 \\ u_1 + u_3 & i(u_3 - u_1) \end{pmatrix}$

• \mathcal{F}_2 each column to get

$$V = \frac{1}{2} \begin{pmatrix} u_0 + u_1 + u_2 + u_3 & u_0 - iu_1 - u_2 + iu_3 \\ u_0 - u_1 + u_2 - u_3 & u_0 + iu_1 - u_2 - iu_3 \end{pmatrix}$$

• V gives the Fourier transform $\mathcal{F}_4 u$:

$$V = \begin{pmatrix} \mathcal{F}_4 u(0) & \mathcal{F}_4 u(1) \\ \mathcal{F}_4 u(2) & \mathcal{F}_4 u(3) \end{pmatrix}$$

- $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ where $r_k := \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$, $N = M^k$
- We want $r_k \leq CN^{-\beta}$ for large k and some $\beta > 0$, so enough to show that $\exists k : r_k < 1$
- Since \mathcal{F}_N is unitary, we always have $r_k \leq 1$. Assume $r_k = 1$, then $\exists u \in \mathbb{C}^N \setminus \{0\}: \quad u = \mathbb{1}_{\mathcal{C}_k} u, \quad \mathcal{F}_N u = \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N u$
- Define the polynomial $P(z) = \sum_{\ell \in C_k} u(\ell) z^{\ell}$, then

 $\mathcal{F}_N u(j) = N^{-1/2} P(\omega^j), \quad \omega := e^{-\frac{2\pi i}{N}}$

• Assume for simplicity that $M - 1 \notin \mathscr{A}$, then the degree of P satisfies

 $\deg P \leq \max \mathcal{C}_k \leq M^k (1 - \frac{1}{M})$

 \bullet For k large, $M^k \big(1-(1-\frac{1}{M})^k\big) > M^k \big(1-\frac{1}{M}\big),$ so $r_k < 1$ as needed

- $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ where $r_k := \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$, $N = M^k$
- We want $r_k \leq CN^{-\beta}$ for large k and some $\beta > 0$, so enough to show that $\exists k : r_k < 1$
- Since \mathcal{F}_N is unitary, we always have $r_k \leq 1$. Assume $r_k = 1$, then $\exists u \in \mathbb{C}^N \setminus \{0\}: \quad u = \mathbb{1}_{\mathcal{C}_k} u, \quad \mathcal{F}_N u = \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N u$
- Define the polynomial $P(z) = \sum_{\ell \in C_k} u(\ell) z^{\ell}$, then

 $\mathcal{F}_N u(j) = N^{-1/2} P(\omega^j), \quad \omega := e^{-\frac{2\pi i}{N}}$

• Assume for simplicity that $M - 1 \notin \mathscr{A}$, then the degree of P satisfies

 $\deg P \leq \max \mathcal{C}_k \leq M^k (1 - \frac{1}{M})$

 \bullet For k large, $M^k \big(1-(1-\frac{1}{M})^k\big) > M^k \big(1-\frac{1}{M}\big),$ so $r_k < 1$ as needed

- $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ where $r_k := \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$, $N = M^k$
- We want $r_k \leq CN^{-\beta}$ for large k and some $\beta > 0$, so enough to show that $\exists k : r_k < 1$
- Since \mathcal{F}_N is unitary, we always have $r_k \leq 1$. Assume $r_k = 1$, then $\exists u \in \mathbb{C}^N \setminus \{0\}: \quad u = \mathbb{1}_{C_k} u, \quad \mathcal{F}_N u = \mathbb{1}_{C_k} \mathcal{F}_N u$
- Define the polynomial $P(z) = \sum_{\ell \in C_k} u(\ell) z^{\ell}$, then

$$\mathcal{F}_{N}u(j) = N^{-1/2}P(\omega^{j}), \quad \omega := e^{-\frac{2\pi i}{N}}$$

• Assume for simplicity that $M - 1 \notin \mathscr{A}$, then the degree of P satisfies

$$\deg P \leq \max \mathcal{C}_k \leq M^k (1 - \frac{1}{M})$$

 \bullet For k large, $M^k (1-(1-rac{1}{M})^k) > M^k (1-rac{1}{M})$, so $r_k < 1$ as needed

- $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ where $r_k := \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$, $N = M^k$
- We want $r_k \leq CN^{-\beta}$ for large k and some $\beta > 0$, so enough to show that $\exists k : r_k < 1$
- Since \mathcal{F}_N is unitary, we always have $r_k \leq 1$. Assume $r_k = 1$, then $\exists u \in \mathbb{C}^N \setminus \{0\}: \quad u = \mathbb{1}_{C_k} u, \quad \mathcal{F}_N u = \mathbb{1}_{C_k} \mathcal{F}_N u$
- Define the polynomial $P(z) = \sum_{\ell \in C_k} u(\ell) z^{\ell}$, then

$$\mathcal{F}_{N}u(j) = N^{-1/2}P(\omega^{j}), \quad \omega := e^{-\frac{2\pi i}{N}}$$

• Assume for simplicity that $M - 1 \notin \mathscr{A}$, then the degree of P satisfies $\deg P \leq \max C_k \leq M^k (1 - \frac{1}{M})$

• For k large, $M^k (1 - (1 - \frac{1}{M})^k) > M^k (1 - \frac{1}{M})$, so $r_k < 1$ as needed

- $r_{k_1+k_2} \leq r_{k_1} \cdot r_{k_2}$ where $r_k := \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$, $N = M^k$
- We want $r_k \leq CN^{-\beta}$ for large k and some $\beta > 0$, so enough to show that $\exists k : r_k < 1$
- Since \mathcal{F}_N is unitary, we always have $r_k \leq 1$. Assume $r_k = 1$, then $\exists u \in \mathbb{C}^N \setminus \{0\}: \quad u = \mathbb{1}_{C_k} u, \quad \mathcal{F}_N u = \mathbb{1}_{C_k} \mathcal{F}_N u$
- Define the polynomial $P(z) = \sum_{\ell \in C_k} u(\ell) z^{\ell}$, then

$$\mathcal{F}_{N}u(j) = N^{-1/2}P(\omega^{j}), \quad \omega := e^{-\frac{2\pi i}{N}}$$

• Assume for simplicity that $M - 1 \notin \mathscr{A}$, then the degree of P satisfies

$$\deg P \leq \max \mathcal{C}_k \leq M^k(1-rac{1}{M})$$

• On the other hand, $P(\omega^j) = 0$ for all $j \in \{0, ..., N-1\} \setminus C_k$, so P has at least $N - |C_k| \ge M^k (1 - (1 - \frac{1}{M})^k)$ roots

• For k large, $M^k(1-(1-\frac{1}{M})^k) > M^k(1-\frac{1}{M})$, so $r_k < 1$ as needed

14/20

FUP with $\beta > \frac{1}{2} - \delta$ ('baby Dolgopyat')

- Similarly to the previous slide, enough to show that $\exists k : r_k < N^{\delta \frac{1}{2}}$ where $r_k := \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$, $N = M^k$
- We always have $r_k \leq \| 1_{\mathcal{C}_k} \mathcal{F}_N 1_{\mathcal{C}_k} \|_{\mathsf{HS}} = N^{\delta \frac{1}{2}}$
- Assume $r_k = N^{\delta \frac{1}{2}}$, then $\mathbb{1}_{C_k} \mathcal{F}_N \mathbb{1}_{C_k}$ has the same operator norm $(= \max \text{ singular value } \sigma_j)$ and H–S norm $\left(= \sqrt{\sigma_1^2 + \cdots + \sigma_N^2} \right)$
- This can only happen if $\mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k}$ is a rank 1 matrix, i.e. each of its 2×2 minors is equal to 0. This gives

 $(j-j')(\ell-\ell')\in N\mathbb{Z}$ for all $j,j',\ell,\ell'\in \mathcal{C}_k$

This cannot happen already when k = 2 (and |𝔄| > 1): just take two different a, b ∈ 𝔄 and put

$$j = \ell = Ma + a, \quad j' = \ell' = Ma + b$$

FUP with $\beta > \frac{1}{2} - \delta$ ('baby Dolgopyat')

- Similarly to the previous slide, enough to show that $\exists k : r_k < N^{\delta \frac{1}{2}}$ where $r_k := \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$, $N = M^k$
- We always have $r_k \leq \| 1_{\mathcal{C}_k} \mathcal{F}_N 1_{\mathcal{C}_k} \|_{\mathsf{HS}} = N^{\delta \frac{1}{2}}$
- Assume $r_k = N^{\delta \frac{1}{2}}$, then $\mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k}$ has the same operator norm $(= \max \text{ singular value } \sigma_j)$ and H–S norm $\left(= \sqrt{\sigma_1^2 + \cdots + \sigma_N^2} \right)$
- This can only happen if $\mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k}$ is a rank 1 matrix, i.e. each of its 2×2 minors is equal to 0. This gives

 $(j-j')(\ell-\ell')\in N\mathbb{Z}$ for all $j,j',\ell,\ell'\in \mathcal{C}_k$

This cannot happen already when k = 2 (and |𝔄| > 1): just take two different a, b ∈ 𝔄 and put

$$j = \ell = Ma + a, \quad j' = \ell' = Ma + b$$

FUP with $\beta > \frac{1}{2} - \delta$ ('baby Dolgopyat')

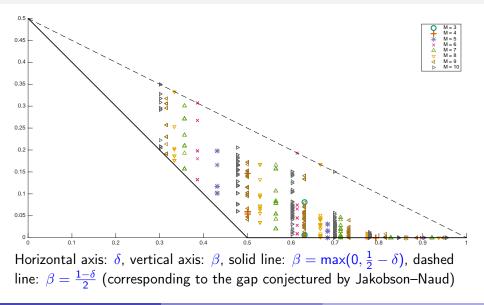
- Similarly to the previous slide, enough to show that $\exists k : r_k < N^{\delta \frac{1}{2}}$ where $r_k := \| \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k} \|_{\mathbb{C}^N \to \mathbb{C}^N}$, $N = M^k$
- We always have $r_k \leq \| 1_{\mathcal{C}_k} \mathcal{F}_N 1_{\mathcal{C}_k} \|_{\mathsf{HS}} = N^{\delta \frac{1}{2}}$
- Assume $r_k = N^{\delta \frac{1}{2}}$, then $\mathbb{1}_{C_k} \mathcal{F}_N \mathbb{1}_{C_k}$ has the same operator norm $(= \max \text{ singular value } \sigma_j)$ and H–S norm $\left(= \sqrt{\sigma_1^2 + \cdots + \sigma_N^2} \right)$
- This can only happen if $\mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N \mathbb{1}_{\mathcal{C}_k}$ is a rank 1 matrix, i.e. each of its 2×2 minors is equal to 0. This gives

 $(j-j')(\ell-\ell')\in N\mathbb{Z}$ for all $j,j',\ell,\ell'\in \mathcal{C}_k$

This cannot happen already when k = 2 (and |𝒴| > 1): just take two different a, b ∈ 𝒴 and put

$$j = \ell = Ma + a$$
, $j' = \ell' = Ma + b$

A picture of FUP exponents for all alphabets with $M \leq 10$



- Open problem: get FUP with $\beta > 0$ on \mathbb{R}^n , n > 1. Let's take n = 2
- $\mathcal{F}_h f(x) = (2\pi h)^{-1} \widehat{f}(\frac{x}{h})$ semiclassical Fourier transform
- Want $\| \mathbb{1}_X \mathcal{F}_h \mathbb{1}_Y \|_{L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)} = \mathcal{O}(h^{\beta})$ where $X, Y \subset \mathbb{R}^2$ are δ -regular up to scale h and $\delta < 2$
- This is false: take $\delta = 1$, $X = [0, h] \times [0, 1]$, $Y = [0, 1] \times [0, h]$
- Han–Schlag '20: FUP holds with β > 0 if one of X, Y is contained in the product of 2 fractal sets
- It could be that the hyperbolic FUP (with $e^{-\frac{i}{h}\langle x,y\rangle}$ replaced by $|x y|^{-\frac{2i}{h}}$) still holds. Partial result by D–Zhang WIP, when one of X, Y is a curve

- Open problem: get FUP with $\beta > 0$ on \mathbb{R}^n , n > 1. Let's take n = 2
- $\mathcal{F}_h f(x) = (2\pi h)^{-1} \widehat{f}(\frac{x}{h})$ semiclassical Fourier transform
- Want $\| \mathbb{1}_X \mathcal{F}_h \mathbb{1}_Y \|_{L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)} = \mathcal{O}(h^{\beta})$ where $X, Y \subset \mathbb{R}^2$ are δ -regular up to scale h and $\delta < 2$
- This is false: take $\delta = 1$, $X = [0, h] \times [0, 1]$, $Y = [0, 1] \times [0, h]$
- Han–Schlag '20: FUP holds with β > 0 if one of X, Y is contained in the product of 2 fractal sets
- It could be that the hyperbolic FUP (with $e^{-\frac{i}{h}\langle x,y\rangle}$ replaced by $|x y|^{-\frac{2i}{h}}$) still holds. Partial result by D–Zhang WIP, when one of X, Y is a curve

- Open problem: get FUP with $\beta > 0$ on \mathbb{R}^n , n > 1. Let's take n = 2
- $\mathcal{F}_h f(x) = (2\pi h)^{-1} \widehat{f}(\frac{x}{h})$ semiclassical Fourier transform
- Want $\| \mathbb{1}_X \mathcal{F}_h \mathbb{1}_Y \|_{L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)} = \mathcal{O}(h^{\beta})$ where $X, Y \subset \mathbb{R}^2$ are δ -regular up to scale h and $\delta < 2$
- This is false: take $\delta = 1$, $X = [0, h] \times [0, 1]$, $Y = [0, 1] \times [0, h]$
- Han–Schlag '20: FUP holds with $\beta > 0$ if one of X, Y is contained in the product of 2 fractal sets
- It could be that the hyperbolic FUP (with $e^{-\frac{i}{h}\langle x,y\rangle}$ replaced by $|x-y|^{-\frac{2i}{h}}$) still holds. Partial result by D–Zhang WIP, when one of X, Y is a curve

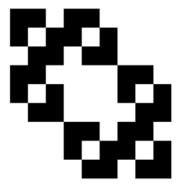
- Open problem: get FUP with $\beta > 0$ on \mathbb{R}^n , n > 1. Let's take n = 2
- $\mathcal{F}_h f(x) = (2\pi h)^{-1} \widehat{f}(\frac{x}{h})$ semiclassical Fourier transform
- Want $\| \mathbb{1}_X \mathcal{F}_h \mathbb{1}_Y \|_{L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^2)} = \mathcal{O}(h^{\beta})$ where $X, Y \subset \mathbb{R}^2$ are δ -regular up to scale h and $\delta < 2$
- This is false: take $\delta = 1$, $X = [0, h] \times [0, 1]$, $Y = [0, 1] \times [0, h]$
- Han–Schlag '20: FUP holds with $\beta > 0$ if one of X, Y is contained in the product of 2 fractal sets
- It could be that the hyperbolic FUP (with $e^{-\frac{i}{h}\langle x,y\rangle}$ replaced by $|x-y|^{-\frac{2i}{h}}$) still holds. Partial result by D-Zhang WIP, when one of X, Y is a curve

Fix
$$M \ge 2$$
, $\mathscr{A} \subset \{0, \dots, M-1\}^2$. Put $N = M^k$, $k \gg 1$ and
 $C_k = \{a_0 + a_1M + \dots + a_{k-1}M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$
which is a subset of $\{0, \dots, N-1\}^2$.

Example (M = 3, k = 1):

Fix
$$M \ge 2$$
, $\mathscr{A} \subset \{0, \dots, M-1\}^2$. Put $N = M^k$, $k \gg 1$ and
 $C_k = \{a_0 + a_1M + \dots + a_{k-1}M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$
which is a subset of $\{0, \dots, N-1\}^2$.

Example (M = 3, k = 2):

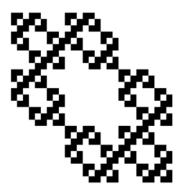


Fix
$$M \ge 2$$
, $\mathscr{A} \subset \{0, \dots, M-1\}^2$. Put $N = M^k$, $k \gg 1$ and

$$\mathcal{C}_k = \{a_0 + a_1M + \dots + a_{k-1}M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$$

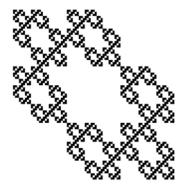
which is a subset of $\{0, \ldots, N-1\}^2$.

Example (M = 3, k = 3):



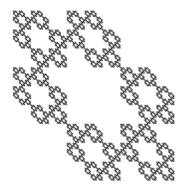
Fix
$$M \ge 2$$
, $\mathscr{A} \subset \{0, \dots, M-1\}^2$. Put $N = M^k$, $k \gg 1$ and
 $C_k = \{a_0 + a_1M + \dots + a_{k-1}M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$
which is a subset of $\{0, \dots, N-1\}^2$.

Example (M = 3, k = 4):



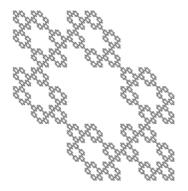
Fix
$$M \ge 2$$
, $\mathscr{A} \subset \{0, \dots, M-1\}^2$. Put $N = M^k$, $k \gg 1$ and
 $C_k = \{a_0 + a_1M + \dots + a_{k-1}M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$
which is a subset of $\{0, \dots, N-1\}^2$.

Example (M = 3, k = 5):



Fix
$$M \ge 2$$
, $\mathscr{A} \subset \{0, \dots, M-1\}^2$. Put $N = M^k$, $k \gg 1$ and
 $\mathcal{C}_k = \{a_0 + a_1M + \dots + a_{k-1}M^{k-1} \mid a_0, \dots, a_{k-1} \in \mathscr{A}\}$
which is a subset of $\{0, \dots, N-1\}^2$.

Example (M = 3, k = 6):



Theorem 4 [Cohen '22]

Let $C_k, D_k \subset \{0, \dots, N-1\}^2$ be Cantor sets generated by two alphabets $\mathscr{A}, \mathscr{B} \subset \{0, \dots, M-1\}^2$. Then either

• FUP holds for C_k, D_k , namely $\exists \beta > 0$:

$$\| 1\!\!1_{\mathcal{C}_k} \mathcal{F}_{N \times N} 1\!\!1_{\mathcal{D}_k} \|_{\mathbb{C}^{N \times N} \to \mathbb{C}^{N \times N}} = \mathcal{O}(N^{-\beta}),$$

• or the limiting Cantor sets $\mathcal{C}_{\infty}, \mathcal{D}_{\infty} \subset \mathbb{T}^2$ contain rational lines orthogonal to each other.

• Submultiplicativity still holds \Rightarrow enough to show that $\exists k$: there is no $u \in \mathbb{C}^{N \times N} \setminus \{0\}$: $u = \mathbb{1}_{\mathcal{D}_k} u$, $\mathcal{F}_N u = \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N u$

• The proof uses algebraic geometry and number theory; key ingredient is a quantitative version of Lang's conjecture on cyclotomic points on algebraic curves in \mathbb{C}^2 [Ruppert '93, Beukers–Smyth '02]

Semyon Dyatlov

Fractal Uncertainty Principle

Theorem 4 [Cohen '22]

Let $C_k, D_k \subset \{0, \dots, N-1\}^2$ be Cantor sets generated by two alphabets $\mathscr{A}, \mathscr{B} \subset \{0, \dots, M-1\}^2$. Then either

• FUP holds for C_k, D_k , namely $\exists \beta > 0$:

$$\| 1\!\!1_{\mathcal{C}_k} \mathcal{F}_{N \times N} 1\!\!1_{\mathcal{D}_k} \|_{\mathbb{C}^{N \times N} \to \mathbb{C}^{N \times N}} = \mathcal{O}(N^{-\beta}),$$

• or the limiting Cantor sets $\mathcal{C}_{\infty}, \mathcal{D}_{\infty} \subset \mathbb{T}^2$ contain rational lines orthogonal to each other.

• Submultiplicativity still holds \Rightarrow enough to show that $\exists k$: there is no $u \in \mathbb{C}^{N \times N} \setminus \{0\}$: $u = \mathbb{1}_{\mathcal{D}_k} u$, $\mathcal{F}_N u = \mathbb{1}_{\mathcal{C}_k} \mathcal{F}_N u$

• The proof uses algebraic geometry and number theory; key ingredient is a quantitative version of Lang's conjecture on cyclotomic points on algebraic curves in \mathbb{C}^2 [Ruppert '93, Beukers–Smyth '02]

Semyon Dyatlov

Fractal Uncertainty Principle

Thank you for your attention!