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Overview

The topic of this talk is a Fractal Uncertainty Principle (FUP):

No function can be localized
in both position and frequency

near a fractal set

Applications include lower bound on mass of eigenfunctions on
compact surfaces and spectral gaps on noncompact surfaces

I will discuss the general proof a bit but focus on the simpler case of
discrete Cantor sets

We know FUP for subsets of R; in higher dimensions it is largely an
open problem
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General FUP

Unitary semiclassical Fourier transform on L2(R):

Fhf (x) = (2πh)−
1
2 f̂
(x
h

)
= (2πh)−

1
2

∫
R
e−

i
h
xy f (y) dy

Here h→ 0 is the semiclassical parameter. For applications to Laplacian
eigenfunctions, h ∼ λ−1 where λ2 is the eigenvalue.

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there is an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Here ν > 0 should be independent of h. For instance we can take
X (h) = X0 + [−εh, εh] where X0 is porous up to scale 0.

Example: mid-third Cantor set C ⊂ [0, 1] is 1
6 -porous up to scale 0
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General FUP

Statement of Fractal Uncertainty Principle (FUP)

Theorem 1 [Bourgain–D ’18]

Let X ,Y be ν-porous up to scale h. Then there exist β > 0,C depending
only on ν such that

‖1lX Fh 1lY ‖L2(R)→L2(R) ≤ Chβ

where 1lX is the multiplication operator by the indicator function of X etc.

Theorem 1’ (a restatement of Theorem 1)

Let X ,Y be ν-porous up to scale h. Then there exist β > 0,C depending
only on ν such that for all f ∈ L2(R)

supp f̂ ⊂ h−1 · Y =⇒ ‖1X f ‖L2(R) ≤ Chβ‖f ‖L2(R)
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General FUP

Basic uncertainty principles

Looking for

‖1lX Fh 1lY ‖L2(R)→L2(R) = O(hβ) as h→ 0

Trivial bound: β = 0 as ‖1lXFh1lY ‖L2→L2 ≤ 1
Volume bound: if |X |, |Y | = O(h1−δ) then get β = 1

2 − δ:

‖1lXFh1lY ‖L2→L2 ≤ ‖ 1lX ‖L∞→L2‖Fh‖L1→L∞‖ 1lY ‖L2→L1

≤
√
|X | · |Y |
2πh

= O(h
1
2−δ)

Cannot be improved if we only know the volume, e.g.

X = Y = [−
√
h,
√
h] =⇒ cannot get β > 0

So we need to know more about the structure of X ,Y (e.g. porosity)
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General FUP

On the proof of FUP I

Theorem 1’
Let X ,Y be ν-porous up to scale h. Then there exist β > 0,C depending
only on ν such that for all f ∈ L2(R)

supp f̂ ⊂ h−1 · Y =⇒ ‖1X f ‖L2(R) ≤ Chβ‖f ‖L2(R)

Write X ⊂
⋂

j Xj where each Xj ⊂ Xj−1 has holes on scale 2−j ≥ h

Will show: for each j , ‖1Xj
f ‖L2 ≤ (1− c)‖1Xj−1f ‖L2

This requires a lower bound on the mass of f on the ‘holes’ in R \ Xj ,
reducing FUP to the following

Key Lemma

Assume that for each ` ∈ Z, I` ⊂ [`, `+ 1] is an interval of length α > 0.
Then there exists c > 0 depending only on ν, α such that

supp f̂ ⊂ h−1Y =⇒ ‖1l⊔
` I`

f ‖L2(R) ≥ c‖f ‖L2(R).
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General FUP

On the proof of FUP II

Key Lemma

Assume that for each ` ∈ Z, I` ⊂ [`, `+ 1] is an interval of length α > 0.
Then there exists c > 0 depending only on ν, α such that

supp f̂ ⊂ h−1Y =⇒ ‖1l⊔
` I`

f ‖L2(R) ≥ c‖f ‖L2(R).

This is a unique continuation estimate: need f |⊔
` I`

= 0 ⇒ f = 0
This is known if f has Fourier transform decaying fast enough, e.g.

|f̂ (ξ)| = O(e−|ξ|/(log |ξ|)s ) for some s < 1 (1)

Using porosity of Y and the Beurling–Malliavin theorem, can
construct a compactly supported multiplier, g ∈ C∞c ((− α

10 ,
α
10)),

where ĝ has decay (1) but only on h−1 · Y
Now use that the convolution f ∗ g satisfies (1) everywhere
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General FUP

Hyperbolic FUP

For applications to hyperbolic surfaces, we replace the phase xy in Fh by
2 log |x − y | and introduce a cutoff χ ∈ C∞c (R2), suppχ ⊂ {x 6= y}:

Bχ,hf (x) = (2πh)−
1
2

∫
R
|x − y |−

2i
h χ(x , y)f (y) dy

The operator Bχ,h appears in the composition B−1
− B+ where B± are FIOs

locally straightening out stable/unstable foliations

One can deduce from FUP for Fh a similar statement for Bχ,h:

Theorem 2 (Hyperbolic FUP)

Assume that X ,Y ⊂ R are ν-porous up to scale h. Then there exist
β = β(ν) > 0 and C = C (ν, χ) such that

‖1lX Bχ,h 1lY ‖L2(R)→L2(R) ≤ Chβ.
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General FUP

A bit on reducing hyperbolic FUP to Fourier FUP

Replace Y by its h1/2−-neighborhood Ỹ : ‖1lXBh1lY ‖ ≤ ‖1lXBh1l
Ỹ
‖

Split X =
⊔

j Xj , each Xj lies in an h1/2-sized interval [xj , xj + h1/2]

Show Bj := 1lXj
Bh1l

Ỹ
almost orthogonal: for |j − `| � 1

‖B∗j B`‖ = O(h∞), ‖BjB
∗
` ‖ = O(h∞)

so by Cotlar–Stein ‖1lXBh1l
Ỹ
‖ . maxj ‖1lXj

Bh1l
Ỹ
‖

Use a change of variables to bound ‖1lXj
Bh1l

Ỹ
‖ using the Fourier FUP:

if Φ(x , y) = −2 log |x − y | and |x − xj | ≤ h1/2 then on suppχ

e
i
h

Φ(x ,y) ≈ e
i
h

Φ(xj ,y)e
i
h

(x−xj )κj (y), κj(y) := ∂xΦ(xj , y)

The β for hyperbolic FUP is 1
2 of the β for the Fourier FUP

Semyon Dyatlov Fractal Uncertainty Principle December 13, 2022 9 / 20



General FUP

A bit on reducing hyperbolic FUP to Fourier FUP

Replace Y by its h1/2−-neighborhood Ỹ : ‖1lXBh1lY ‖ ≤ ‖1lXBh1l
Ỹ
‖

Split X =
⊔

j Xj , each Xj lies in an h1/2-sized interval [xj , xj + h1/2]

Show Bj := 1lXj
Bh1l

Ỹ
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FUP for Cantor sets

Discrete Cantor sets

We now present a proof of FUP in the special setting of Cantor sets.
This is much simpler than the general case but keeps some key features.
We follow D–Jin ’17, with the exposition from [arXiv:1903.02599]

Discrete unitary Fourier transform FN : CN → CN

FNu(j) =
1√
N

N−1∑
`=0

e−
2πij`
N u(`)

Fix M ≥ 3, A ⊂ {0, . . . ,M − 1}. Put N := Mk , k � 1 and define

Ck := {a0 + a1M + · · ·+ ak−1M
k−1 | a0, . . . , ak−1 ∈ A }

Example: if M = 3, A = {0, 2}, then Ck ⊂ {0, . . . ,N − 1}, N = 3k ,
is the discrete mid-3rd Cantor set {0, 2, 6, 8, 18, 20, 24, 26, . . . }
The number of elements of Ck is |Ck | = Nδ where δ = logM |A |
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FUP for Cantor sets

Uncertainty principle for discrete Cantor sets

Theorem 3
Assume that 0 < δ < 1, i.e. 1 < |A | < M. Then there exists
β = β(M,A ) > max(0, 1

2 − δ) such that as N = Mk →∞,

‖ 1lCk FN 1lCk ‖CN→CN = O(N−β).

Trivial bound β = 0: since FN is unitary, ‖ 1lCk FN 1lCk ‖CN→CN ≤ 1
Volume bound β = 1

2 − δ: defining the Hilbert–Schmidt norm

‖A‖2HS =
∑
j ,k

|ajk |2 where A = (ajk)Nj ,k=1

we have

‖ 1lCk FN 1lCk ‖CN→CN ≤ ‖ 1lCk FN 1lCk ‖HS = Nδ− 1
2 .
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FUP for Cantor sets

Submultiplicativity

The proof of FUP for Cantor sets is greatly simplified by the

Submultiplicativity Lemma

Define rk := ‖ 1lCk FN 1lCk ‖CN→CN . Then rk1+k2 ≤ rk1 · rk2 for all k1, k2.

To prove it, we employ the following decomposition also used in FFT:
Write k = k1 + k2, N = Mk = N1 · N2, Nj := Mkj

Identify u ∈ CN with an N1 × N2 matrix Uab = u(N1b + a)

Apply the Fourier transform FN2 to each row of U

Multiply the entries of U by the twist factors e−
2πiab
N

Apply the Fourier transform FN1 to each column of U
The resulting matrix V gives v = FNu by Vab = v(N2a + b)

Using that Ck = N1Ck2 + Ck1 = N2Ck1 + Ck2 , we get rk1+k2 ≤ rk1 · rk2
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FUP for Cantor sets

An example of the ‘Fast Fourier Transform’ decomposition

Let’s say N = 4 = N1N2 where N1 = N2 = 2.

Take u = (u0, u1, u2, u3) ∈ C4. Follow the instructions on the last slide:

Take U =

(
u0 u2
u1 u3

)
, F2 each row to get 1√

2

(
u0 + u2 u0 − u2
u1 + u3 u1 − u3

)
Multiply by twist factors e−

πiab
2 to get 1√

2

(
u0 + u2 u0 − u2
u1 + u3 i(u3 − u1)

)
F2 each column to get

V =
1
2

(
u0 + u1 + u2 + u3 u0 − iu1 − u2 + iu3
u0 − u1 + u2 − u3 u0 + iu1 − u2 − iu3

)

V gives the Fourier transform F4u:

V =

(
F4u(0) F4u(1)
F4u(2) F4u(3)

)
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FUP for Cantor sets

FUP with β > 0

rk1+k2 ≤ rk1 · rk2 where rk := ‖ 1lCk FN 1lCk ‖CN→CN , N = Mk

We want rk ≤ CN−β for large k and some β > 0, so
enough to show that ∃k : rk < 1
Since FN is unitary, we always have rk ≤ 1. Assume rk = 1, then

∃u ∈ CN \ {0} : u = 1lCk u, FNu = 1lCk FNu

Define the polynomial P(z) =
∑

`∈Ck u(`)z`, then

FNu(j) = N−1/2P(ωj), ω := e−
2πi
N

Assume for simplicity that M − 1 /∈ A , then the degree of P satisfies

degP ≤ max Ck ≤ Mk(1− 1
M )

On the other hand, P(ωj) = 0 for all j ∈ {0, . . . ,N − 1} \ Ck , so
P has at least N − |Ck | ≥ Mk(1− (1− 1

M )k) roots

For k large, Mk(1− (1− 1
M )k) > Mk(1− 1

M ), so rk < 1 as needed
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FUP for Cantor sets

FUP with β > 1
2 − δ (‘baby Dolgopyat’)

Similarly to the previous slide, enough to show that ∃k : rk < Nδ− 1
2

where rk := ‖ 1lCk FN 1lCk ‖CN→CN , N = Mk

We always have rk ≤ ‖ 1lCk FN 1lCk ‖HS = Nδ− 1
2

Assume rk = Nδ− 1
2 , then 1lCk FN 1lCk has the same operator norm

(= max singular value σj) and H–S norm
(

=
√
σ2

1 + · · ·+ σ2
N

)
This can only happen if 1lCk FN 1lCk is a rank 1 matrix, i.e. each of its
2× 2 minors is equal to 0. This gives

(j − j ′)(`− `′) ∈ NZ for all j , j ′, `, `′ ∈ Ck

This cannot happen already when k = 2 (and |A | > 1): just take two
different a, b ∈ A and put

j = ` = Ma + a, j ′ = `′ = Ma + b
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FUP for Cantor sets

A picture of FUP exponents for all alphabets with M ≤ 10
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Horizontal axis: δ, vertical axis: β, solid line: β = max(0, 1
2 − δ), dashed

line: β = 1−δ
2 (corresponding to the gap conjectured by Jakobson–Naud)
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An open problem

A higher dimensional FUP?

Open problem: get FUP with β > 0 on Rn, n > 1. Let’s take n = 2
Fhf (x) = (2πh)−1f̂ ( xh ) semiclassical Fourier transform
Want ‖ 1lX Fh 1lY ‖L2(R2)→L2(R2) = O(hβ) where X ,Y ⊂ R2 are
δ-regular up to scale h and δ < 2
This is false: take δ = 1, X = [0, h]× [0, 1], Y = [0, 1]× [0, h]

Han–Schlag ’20: FUP holds with β > 0 if one of X ,Y is contained in
the product of 2 fractal sets

It could be that the hyperbolic FUP (with e−
i
h
〈x ,y〉 replaced by

|x − y |−
2i
h ) still holds.

Partial result by D–Zhang WIP, when one of X ,Y is a curve

Semyon Dyatlov Fractal Uncertainty Principle December 13, 2022 17 / 20



An open problem

A higher dimensional FUP?

Open problem: get FUP with β > 0 on Rn, n > 1. Let’s take n = 2
Fhf (x) = (2πh)−1f̂ ( xh ) semiclassical Fourier transform
Want ‖ 1lX Fh 1lY ‖L2(R2)→L2(R2) = O(hβ) where X ,Y ⊂ R2 are
δ-regular up to scale h and δ < 2
This is false: take δ = 1, X = [0, h]× [0, 1], Y = [0, 1]× [0, h]

Han–Schlag ’20: FUP holds with β > 0 if one of X ,Y is contained in
the product of 2 fractal sets

It could be that the hyperbolic FUP (with e−
i
h
〈x ,y〉 replaced by

|x − y |−
2i
h ) still holds.

Partial result by D–Zhang WIP, when one of X ,Y is a curve

Semyon Dyatlov Fractal Uncertainty Principle December 13, 2022 17 / 20



An open problem

A higher dimensional FUP?

Open problem: get FUP with β > 0 on Rn, n > 1. Let’s take n = 2
Fhf (x) = (2πh)−1f̂ ( xh ) semiclassical Fourier transform
Want ‖ 1lX Fh 1lY ‖L2(R2)→L2(R2) = O(hβ) where X ,Y ⊂ R2 are
δ-regular up to scale h and δ < 2
This is false: take δ = 1, X = [0, h]× [0, 1], Y = [0, 1]× [0, h]

Han–Schlag ’20: FUP holds with β > 0 if one of X ,Y is contained in
the product of 2 fractal sets

It could be that the hyperbolic FUP (with e−
i
h
〈x ,y〉 replaced by

|x − y |−
2i
h ) still holds.

Partial result by D–Zhang WIP, when one of X ,Y is a curve

Semyon Dyatlov Fractal Uncertainty Principle December 13, 2022 17 / 20



An open problem

A higher dimensional FUP?

Open problem: get FUP with β > 0 on Rn, n > 1. Let’s take n = 2
Fhf (x) = (2πh)−1f̂ ( xh ) semiclassical Fourier transform
Want ‖ 1lX Fh 1lY ‖L2(R2)→L2(R2) = O(hβ) where X ,Y ⊂ R2 are
δ-regular up to scale h and δ < 2
This is false: take δ = 1, X = [0, h]× [0, 1], Y = [0, 1]× [0, h]

Han–Schlag ’20: FUP holds with β > 0 if one of X ,Y is contained in
the product of 2 fractal sets

It could be that the hyperbolic FUP (with e−
i
h
〈x ,y〉 replaced by

|x − y |−
2i
h ) still holds.

Partial result by D–Zhang WIP, when one of X ,Y is a curve

Semyon Dyatlov Fractal Uncertainty Principle December 13, 2022 17 / 20



An open problem

Two-dimensional FUP for discrete Cantor sets

Fix M ≥ 2, A ⊂ {0, . . . ,M − 1}2. Put N = Mk , k � 1 and

Ck = {a0 + a1M + · · ·+ ak−1M
k−1 | a0, . . . , ak−1 ∈ A }

which is a subset of {0, . . . ,N − 1}2.

Example (M = 3, k = 1):
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Two-dimensional FUP for discrete Cantor sets

Fix M ≥ 2, A ⊂ {0, . . . ,M − 1}2. Put N = Mk , k � 1 and

Ck = {a0 + a1M + · · ·+ ak−1M
k−1 | a0, . . . , ak−1 ∈ A }

which is a subset of {0, . . . ,N − 1}2.

Example (M = 3, k = 6):
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An open problem

Two-dimensional FUP for discrete Cantor sets

Theorem 4 [Cohen ’22]

Let Ck ,Dk ⊂ {0, . . . ,N − 1}2 be Cantor sets generated by two alphabets
A ,B ⊂ {0, . . . ,M − 1}2. Then either

FUP holds for Ck ,Dk , namely ∃β > 0:

‖ 1lCk FN×N 1lDk
‖CN×N→CN×N = O(N−β),

or the limiting Cantor sets C∞,D∞ ⊂ T2 contain rational lines
orthogonal to each other.

Submultiplicativity still holds ⇒ enough to show that ∃k : there is no

u ∈ CN×N \ {0} : u = 1lDk
u, FNu = 1lCk FNu

The proof uses algebraic geometry and number theory; key ingredient
is a quantitative version of Lang’s conjecture on cyclotomic points on
algebraic curves in C2 [ Ruppert ’93, Beukers–Smyth ’02 ]
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Thank you for your attention!
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