Eigenstate Thermalization Hypothesis: from interacting qubits to QFT

Anatoly Dymarsky

University of Kentucky

Collège de France, November 22, 2022

(日) (문) (문) (문) (문)

Warm-up: quantum chaos

observation

 universality of energy level statistics in complex systems – Wigner surmise

precise formulation

Bohigas-Giannoni-Schmit conjecture – level statistics is given by RMT

physical significance

• late times, exponential sensitivity

derivation

• for semiclassical limit of classically chaotic systems

うして ふゆ く は く は く む く し く

What is ETH?

observation

• individual energy eigenstates are thermal

precise formulation(?)

• matrix elements of observables can be described statistically

physical significance(?)

• universality of late-time behavior (thermalization)

$\operatorname{derivation}(?)$

• for semiclassical limit of classically chaotic systems

Eigenstate Thermalization Hypothesis

• individual energy eigenstates are thermal

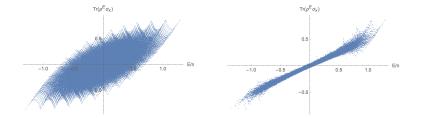
$$\langle E_n | A | E_m \rangle = A_{nm} = A^{\text{eth}}(E_n) \delta_{nm} + e^{-S/2} f(\bar{E}, \omega) R_{nm}$$

Deutsch'91 Srednicki'94; 99 Rigol, Dunjko, Olshanii'08

- A^{eth} is a smooth function of its argument
- f is a smooth function of $\bar{E}=(E_n+E_m)/2$ and $\omega=E_n-E_m$
- ${\cal S}$ is entropy, $e^{{\cal S}}$ is density of states
- R_{nm} are pseudo-random fluctuations of zero mean and unit variance

Integrability vs "chaoticity" (ETH)

diagonal matrix elements $A_{nn} = \langle E_n | A | E_n \rangle$ for integrable and non-integrable spin-chains



• $A_{nn} = A^{\text{eth}}(E_n/V) + \varepsilon_n$, where $\langle \varepsilon^2 \rangle \sim \text{Vol}^{-\#}$ or $e^{-O(\text{Vol})}$

うして ふゆ く は く は く む く し く

• max $\varepsilon_n \sim O(1)$ or $e^{-O(\text{Vol})}$ (strong ETH) systems "in the middle" – quantum scars

Thermalization of Isolated Quantum System

- unitary evolution $\Psi(t)=U(t)\Psi_0$ precludes emergence of thermal state $\rho(t)\to\rho^{\rm th}=e^{-\beta H}/Z$
- ETH guarantees (eventual) thermalization of *all* initial states

$$\langle \Psi | A(t) | \Psi \rangle = \sum_{n} |c_n|^2 A_{nn} + \sum_{n \neq m} e^{-i(E_n - E_m)t} c_n^* c_m A_{nm}$$

universal (thermal) value of the "diagonal" ensemble $\overline{A(t)} = \overline{\langle \Psi | A(t) | \Psi \rangle} = \sum |c_n|^2 A_{nn} \approx (\sum |c_n|^2) A^{\text{eth}} \approx A^{\text{th}}$

• ETH = quantum ergodicity (independence of initial state) no promise regarding dynamics, except

$$\overline{A^2(t)} - \overline{A(t)}^2 \le \max_{n \ne m} |A_{nm}|^2 \sim e^{-S}$$

Different notions of "quantum ergodicity"

- $\bullet\,$ in this talk: quantum ergodicity is universality of A(t) for any initial state
- single particle context: statistically equal distribution of $|\langle i|E_n\rangle|^2 \approx \text{const}$ in the local basis $|i\rangle$

standard indicator of ergodicity vs localization is inverse participating ratio

$$\left(\sum_{i} |\langle i|E_n\rangle|^4\right)^{-1} \approx N_{\text{eff}}$$

うして ふゆ く は く は く む く し く

• relation between different definitions in the many-body case is not clear

Relation between different ensembles

- statistical mechanics defines thermal quantities with help of an ensemble
- $A^{\text{eth}}(E)$ is the thermal expectation of A in the "eigenensemble"
- \bullet thermal expectations of A in the microcanonical and canonical ensembles

$$\langle A \rangle_{\rm mic} = \int_{E}^{E+\Delta E} \frac{dEA^{\rm eth}(E)}{\Delta E}, \quad \langle A \rangle_{\beta} = \int \frac{dE \, e^{S-\beta E} A^{\rm eth}(E)}{Z}$$

are only polynomially close to $A^{\text{eth}}(E)$

$$\langle A \rangle_{\beta} = A^{\text{eth}}(E) + O(1/\text{Vol})$$

うして ふゆ く は く は く む く し く

Subsystem ETH

- which operators A satisfy ETH?
- universal form of the reduced density matrix of the subsystem \mathcal{A}

$$\left|\left|\rho^{E} - \rho^{\text{eth}}(E_{n})\right|\right| = O(e^{S_{\mathcal{A}} - S/2}), \quad \rho^{E} = \text{Tr}_{\bar{\mathcal{A}}}|E_{n}\rangle\langle E_{n}|$$

-strong(est) formulation: list of operators follows -volume-dependence of the pre-factor

- AD, Lashkari, Liu, Phys. Rev. E 97, 012140
 - at late times state of a subsystem becomes thermal

$$\operatorname{Tr}_{\bar{\mathcal{A}}}\rho(t) \to \rho_{\mathcal{A}}^{\mathrm{th}} = \operatorname{Tr}_{\bar{\mathcal{A}}} e^{-\beta H} / Z \approx e^{-\beta H_{\mathcal{A}}} / Z_{\mathcal{A}}$$

うして ふゆ く は く は く む く し く

rest of the system acts as a "heat bath"

Weak ETH

 fluctuations of diagonal matrix elements ε_n are always small on average

 $\langle \varepsilon_n^2 \rangle \sim \mathrm{Vol}^{-1}$

• for translationally-invariant systems

$$A_{nn} \equiv \hat{A}_{nn}, \qquad \hat{A} = \sum_{x} A(x) / \text{Vol}$$

quantity of interest is a minimum with respect to A^{eth}

$$\langle \varepsilon_n^2 \rangle \equiv \langle (A_{nn} - A^{\text{eth}}(E_n))^2 \rangle \le \langle A_{nn}^2 \rangle - \langle A_{nn} \rangle^2$$

this can be bounded using $\hat{A}_{nn}^2 \leq \sum_m |\hat{A}_{nm}|^2 = (\hat{A}^2)_{nn}$

$$\# \mathrm{Vol}^{-1} \le \langle A_{nn}^2 \rangle - \langle A_{nn} \rangle^2 \le \langle (\hat{A}^2)_{nn} \rangle - \langle \hat{A}_{nn} \rangle^2 \le \# \mathrm{Vol}^{-1}$$

うして ふゆ く は く は く む く し く

Weak ETH

• in full generality

$$\langle (\hat{A}^2)_{nn} \rangle - \langle \hat{A}_{nn} \rangle^2 = \frac{1}{\operatorname{Vol}^2} \sum_{x,y} \sum_n \langle E_n | A(x) A(y) | E_n \rangle^c \frac{e^{-\beta E_n}}{Z}$$
$$= \frac{1}{\operatorname{Vol}} \sum_x \langle A(x) A(0) \rangle_\beta^c \sim \operatorname{Vol}^{-1}$$

extension for continuous systems, not exactly tr. invariant, etc.

• variance of ε_n is never too big, altough individual ε_n could be large, O(1)

Off-diagonal ETH

• factor $e^{-S/2}$ is kinematic *assuming* all A_{nm} are of the same order

$$O(1) \sim A_{nn}^2 = \sum_m |A_{nm}^2| \sim e^S |A_{nm}|^2$$

• the same applies to reduced density matrix

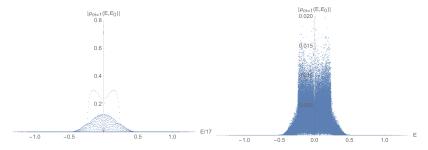
$$||\rho_{nm}|| = O(e^{S_{\mathcal{A}} - S/2}), \quad \rho_{nm} = \operatorname{Tr}_{\bar{\mathcal{A}}}|E_n\rangle\langle E_m|$$

AD, Lashkari, Liu, Phys. Rev. E 97, 012140

• for some (simple) integrable models A_{nm} is distincitvely different, for interacting models, e.g. XXZ, the structure is similar

Off-diagonal matrix elements

off-diagonal matrix elements $|\rho_{nm}|$ for integrable and non-integrable spin-chains



イロト 不得下 イヨト イヨト

э

• in the non-integrable case A_{nm} can be described statistically

ETH recap

- ETH anzats for the matrix elements
- diagonal ETH quantum ergodicity (independence of initial state)

stark difference between integrable and generic case at the level of $\langle \varepsilon_n^2\rangle$ and max $|\varepsilon_n|$

• off-diagonal ETH – statistical nature of A_{nm}

questions to explore

- ETH in semiclassical regime for classically ergodic systems Berry'72-89; Hortikar, Srednicki, 9711020, 9908009; Eckhardt, Main, Physc. Rev. Lett. 75, 2300
- off-diagonal ETH for single particle problem (continuous and discrete) extension of Shnirelman theorem

・ロト・日本・モン・モン・ ヨー うへぐ

• systems with symmetry sectors, e.g. tr. invariant

Beyond "standard" ETH:

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ ∽のへで

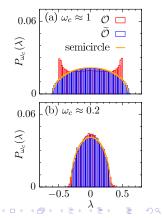
Beyond "standard" ETH

- ETH and thermalization dynamics?
- RMT behavior of A_{nm} ?

within small energy window A_{nm} is a GUE (GOE)

- individual A_{nm} are distributed normally
- $f(\bar{E}, \omega)$ is approximately constant for $\omega \leq \tau^{-1}$
- correct ratio of $\overline{A_{nn}^2}$ and $\overline{A_{nm}^2}$
- spectrum of A_{nm} approaches the Wigner's semicircle

Richter et al., Phys. Rev. E 102, 042127



When is the onset of GUE/GOE?

- energy scale marking the onset of GUE/GOE is parametrically smaller than τ^{-1}
- consider $a(t) = \langle \Psi | A(t) | \Psi \rangle$ in a special semiclassical initial state with known late time dynamics of a(t)

for diffusive systems, Ψ describes "cos" distribution of energy density

• integral quantity $\int a(t) \sin(t/T) dt/t$ can be bounded from above by largest eigenvalue of A_{nm} within the band of size T^{-1} , for $any \Psi$,

$$T_{GUE} \ge \tau \, S$$

- interpretation of T_{GUE} : onset of late-time quantum fluctuations $a(t)\approx e^{-t/\tau}\sim e^{-S}$
- AD, Phys. Rev. Lett. 128, 190601

RMT for A_{nm} ?

- to what extent A_{nm} can be described by an RMT? possible non-Gaussian RMT description beyond T_{GUE}^{-1} Pappalardi, Foini, Kurchan, Phys. Rev. Lett. 129, 170603 Jafferis et al, 2209.02131
- RMT implications for dynamics?

2pt function is independent of the statistics of R_{nm}

$$\langle A(t)A(0)\rangle_{\bar{E}} = \int d\omega f^2(\bar{E},\omega)e^{-i\omega t}$$

- 2pt function fixes dynamics $\langle \Psi | A(t) | \Psi \rangle \sim \langle A(t) A(0) \rangle$ Srednicki'99, Richter et al., Phys. Rev. E 99, 050104(R)
- (conjectural) bound on $\int a(t) \sin(t/T) dt/t$ in terms of max eigenvalues of A_{nm} AD, Phys. Rev. B 99, 224302

ETH for integrable systems?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Generalized ETH

• quantum systems with (infinitely) many conserved quantities Q_i

$$\langle E_n | A | E_n \rangle = A_{nn} = A^{\text{eth}}(Q_i) + \varepsilon_n$$

• reduced density matrix is described by a GGE

$$\operatorname{Tr}_{\bar{\mathcal{A}}}(|E\rangle\langle E|) \approx \operatorname{Tr}_{\bar{\mathcal{A}}} e^{-\sum \mu_i Q_i}/Z$$

A D F A 目 F A E F A E F A Q Q

Rigol et al., Phys. Rev. Lett. 98, 050405 (2007)

 \bullet scaling of ε_n is not understood, as well as many other details

ETH in CFT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

ETH in CFT

• conformal field theories (CFT) are QFTs without dimensional parameters

rigid mathematical structure, theory is specified by the "CFT data" – dimensions Δ_i and OPE coefficients C_{ij}^k

 statements about matrix elements – statements about OPE coefficients

diagonal ETH translates into

$$C_{HH}^L \sim \Delta_H^{\Delta_L/(d+1)}, \qquad \Delta_H \to \infty$$

うして ふゆ く は く は く む く し く

Lashkari, AD, Liu, J. Stat. Mech. (2018) 033101

ETH in 2d CFT

- specifics of 2d case: vanishing thermal expectation value of (almost) all operators, infinite-dimensional Virasoro algebra
- conjecture:

$$C_{HH}^L \to 0, \quad \Delta_H \to 0$$

averaged value vanishes, $\overline{C_{HH}^L} \rightarrow 0$

- stress-energy tensor sector in an integrable system (quantum KdV), fixed by symmetry
 - infinite number of quantum KdV charges in involution
 - at leading 1/c order GETH with polynomial A^{geth}

$$\langle E|A|E\rangle = A^{\text{geth}}(Q) + O(1/c)$$

(日) (日) (日) (日) (日) (日) (日)

- at finite c situation is more complicated AD, Pavlenko, Phys. Rev. Lett. 123, 111602

Future directions

- ETH for single particle or semiclassical systems relation between ETH and level statistics
- ETH for systems with discrete translational invariance and other instances of symmetry sectors
- RMT description of A_{nm}
- ETH and approach to equilibrium
- formulation of generalized ETH for integrable systems
 which Q to include, scaling of ε_n, structure of off-diagonal matrix elements

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

- statistical approach to OPE coefficients in CFT
- a whole lot more...